1
|
Boussac A, Sellés J, Hamon M, Sugiura M. Properties of Photosystem II lacking the PsbJ subunit. PHOTOSYNTHESIS RESEARCH 2022; 152:347-361. [PMID: 34661808 DOI: 10.1007/s11120-021-00880-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Photosystem II (PSII), the oxygen-evolving enzyme, consists of 17 trans-membrane and 3 extrinsic membrane proteins. Other subunits bind to PSII during assembly, like Psb27, Psb28, and Tsl0063. The presence of Psb27 has been proposed (Zabret et al. in Nat Plants 7:524-538, 2021; Huang et al. Proc Natl Acad Sci USA 118:e2018053118, 2021; Xiao et al. in Nat Plants 7:1132-1142, 2021) to prevent the binding of PsbJ, a single transmembrane α-helix close to the quinone QB binding site. Consequently, a PSII rid of Psb27, Psb28, and Tsl0034 prior to the binding of PsbJ would logically correspond to an assembly intermediate. The present work describes experiments aiming at further characterizing such a ∆PsbJ-PSII, purified from the thermophilic Thermosynechococcus elongatus, by means of MALDI-TOF spectroscopy, thermoluminescence, EPR spectroscopy, and UV-visible time-resolved spectroscopy. In the purified ∆PsbJ-PSII, an active Mn4CaO5 cluster is present in 60-70% of the centers. In these centers, although the forward electron transfer seems not affected, the Em of the QB/QB- couple increases by ≥ 120 mV , thus disfavoring the electron coming back on QA. The increase of the energy gap between QA/QA- and QB/QB- could contribute in a protection against the charge recombination between the donor side and QB-, identified at the origin of photoinhibition under low light (Keren et al. in Proc Natl Acad Sci USA 94:1579-1584, 1997), and possibly during the slow photoactivation process.
Collapse
Affiliation(s)
- Alain Boussac
- I2BC, UMR CNRS 9198, CEA Saclay, 91191, Gif-sur-Yvette, France.
| | - Julien Sellés
- Institut de Biologie Physico-Chimique, UMR CNRS 7141 and Sorbonne Université, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Marion Hamon
- Institut de Biologie Physico-Chimique, UMR8226/FRC550 CNRS and Sorbonne-Université, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Miwa Sugiura
- Proteo-Science Research Center, and Department of Chemistry, Graduate School of Science and Technology, Ehime University, Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan.
| |
Collapse
|
2
|
Extensive gain and loss of photosystem I subunits in chromerid algae, photosynthetic relatives of apicomplexans. Sci Rep 2017; 7:13214. [PMID: 29038514 PMCID: PMC5643376 DOI: 10.1038/s41598-017-13575-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/26/2017] [Indexed: 12/16/2022] Open
Abstract
In oxygenic photosynthesis the initial photochemical processes are carried out by photosystem I (PSI) and II (PSII). Although subunit composition varies between cyanobacterial and plastid photosystems, the core structures of PSI and PSII are conserved throughout photosynthetic eukaryotes. So far, the photosynthetic complexes have been characterised in only a small number of organisms. We performed in silico and biochemical studies to explore the organization and evolution of the photosynthetic apparatus in the chromerids Chromera velia and Vitrella brassicaformis, autotrophic relatives of apicomplexans. We catalogued the presence and location of genes coding for conserved subunits of the photosystems as well as cytochrome b6f and ATP synthase in chromerids and other phototrophs and performed a phylogenetic analysis. We then characterised the photosynthetic complexes of Chromera and Vitrella using 2D gels combined with mass-spectrometry and further analysed the purified Chromera PSI. Our data suggest that the photosynthetic apparatus of chromerids underwent unique structural changes. Both photosystems (as well as cytochrome b6f and ATP synthase) lost several canonical subunits, while PSI gained one superoxide dismutase (Vitrella) or two superoxide dismutases and several unknown proteins (Chromera) as new regular subunits. We discuss these results in light of the extraordinarily efficient photosynthetic processes described in Chromera.
Collapse
|
3
|
Nishimura T, Nagao R, Noguchi T, Nield J, Sato F, Ifuku K. The N-terminal sequence of the extrinsic PsbP protein modulates the redox potential of Cyt b559 in photosystem II. Sci Rep 2016; 6:21490. [PMID: 26887804 PMCID: PMC4757834 DOI: 10.1038/srep21490] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/25/2016] [Indexed: 11/20/2022] Open
Abstract
The PsbP protein, an extrinsic subunit of photosystem II (PSII) in green plants, is known to induce a conformational change around the catalytic Mn4CaO5 cluster securing the binding of Ca2+ and Cl– in PSII. PsbP has multiple interactions with the membrane subunits of PSII, but how these affect the structure and function of PSII requires clarification. Here, we focus on the interactions between the N-terminal residues of PsbP and the α subunit of Cytochrome (Cyt) b559 (PsbE). A key observation was that a peptide fragment formed of the first N-terminal 15 residues of PsbP, ‘pN15’, was able to convert Cyt b559 into its HP form. Interestingly, addition of pN15 to NaCl-washed PSII membranes decreased PSII’s oxygen-evolving activity, even in the presence of saturating Ca2+ and Cl– ions. In fact, pN15 reversibly inhibited the S1 to S2 transition of the OEC in PSII. These data suggest that pN15 can modulate the redox property of Cyt b559 involved in the side-electron pathway in PSII. This potential change of Cyt b559, in the absence of the C-terminal domain of PsbP, however, would interfere with any electron donation from the Mn4CaO5 cluster, leading to the possibility that multiple interactions of PsbP, binding to PSII, have distinct roles in regulating electron transfer within PSII.
Collapse
Affiliation(s)
- Taishi Nishimura
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Ryo Nagao
- Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| | - Takumi Noguchi
- Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| | - Jon Nield
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Fumihiko Sato
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kentaro Ifuku
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
4
|
Ishihara T, Ifuku K, Yamashita E, Fukunaga Y, Nishino Y, Miyazawa A, Kashino Y, Inoue-Kashino N. Utilization of light by fucoxanthin-chlorophyll-binding protein in a marine centric diatom, Chaetoceros gracilis. PHOTOSYNTHESIS RESEARCH 2015; 126:437-47. [PMID: 26149177 DOI: 10.1007/s11120-015-0170-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 06/20/2015] [Indexed: 05/23/2023]
Abstract
The major light-harvesting pigment protein complex (fucoxanthin-chlorophyll-binding protein complex; FCP) was purified from a marine centric diatom, Chaetoceros gracilis, by mild solubilization followed by sucrose density gradient centrifugation, and then characterized. The dynamic light scattering measurement showed unimodality, indicating that the complex was highly purified. The amount of chlorophyll a (Chl a) bound to the purified FCP accounted for more than 60 % of total cellular Chl a. The complex was composed of three abundant polypeptides, although there are nearly 30 FCP-related genes. The two major components were identified as Fcp3 (Lhcf3)- and Fcp4 (Lhcf4)-equivalent proteins based on their internal amino acid sequences and a two-dimensional isoelectric focusing electrophoresis analysis developed in this work. Compared with the thylakoids, the FCP complex showed higher contents of fucoxanthin and chlorophyll c but lower contents of the xanthophyll cycle pigments diadinoxanthin and diatoxanthin. Fluorescence excitation spectra analyses indicated that light harvesting, rather than photosystem protection, is the major function of the purified FCP complex, which is associated with more than 60 % of total cellular Chl a. These findings suggest that the huge amount of Chl bound to the FCP complex composed of Lhcf3, Lhcf4, and an unidentified minor protein has a light-harvesting function to allow efficient photosynthesis under the dim-light conditions in the ocean.
Collapse
Affiliation(s)
- Tomoko Ishihara
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Kohto, Kamigohri, Ako-gun, Hyogo, 678-1297, Japan
| | - Kentaro Ifuku
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Eiki Yamashita
- Institute of Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yuko Fukunaga
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Kohto, Kamigohri, Ako-gun, Hyogo, 678-1297, Japan
| | - Yuri Nishino
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Kohto, Kamigohri, Ako-gun, Hyogo, 678-1297, Japan
| | - Atsuo Miyazawa
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Kohto, Kamigohri, Ako-gun, Hyogo, 678-1297, Japan
| | - Yasuhiro Kashino
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Kohto, Kamigohri, Ako-gun, Hyogo, 678-1297, Japan.
| | - Natsuko Inoue-Kashino
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Kohto, Kamigohri, Ako-gun, Hyogo, 678-1297, Japan
| |
Collapse
|
5
|
Purification and characterization of an oxygen-evolving photosystem II from Leptolyngbya sp. strain O-77. J Biosci Bioeng 2014; 118:119-24. [DOI: 10.1016/j.jbiosc.2014.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/15/2014] [Accepted: 01/16/2014] [Indexed: 01/06/2023]
|
6
|
The Tll0287 protein is a hemoprotein associated with the PsbA2-Photosystem II complex in Thermosynechococcus elongatus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1174-82. [DOI: 10.1016/j.bbabio.2013.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 05/27/2013] [Accepted: 06/05/2013] [Indexed: 12/14/2022]
|
7
|
Pagliano C, Saracco G, Barber J. Structural, functional and auxiliary proteins of photosystem II. PHOTOSYNTHESIS RESEARCH 2013; 116:167-88. [PMID: 23417641 DOI: 10.1007/s11120-013-9803-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 02/07/2013] [Indexed: 05/06/2023]
Abstract
Photosystem II (PSII) is the water-splitting enzyme complex of photosynthesis and consists of a large number of protein subunits. Most of these proteins have been structurally and functionally characterized, although there are differences between PSII of plants, algae and cyanobacteria. Here we catalogue all known PSII proteins giving a brief description, where possible of their genetic origin, physical properties, structural relationships and functions. We have also included details of auxiliary proteins known at present to be involved in the in vivo assembly, maintenance and turnover of PSII and which transiently bind to the reaction centre core complex. Finally, we briefly give details of the proteins which form the outer light-harvesting systems of PSII in different types of organisms.
Collapse
Affiliation(s)
- Cristina Pagliano
- Applied Science and Technology Department-BioSolar Lab, Politecnico di Torino, Viale T. Michel 5, 15121, Torino, Alessandria, Italy,
| | | | | |
Collapse
|
8
|
Boussac A, Ishida N, Sugiura M, Rappaport F. Probing the role of chloride in Photosystem II from Thermosynechococcus elongatus by exchanging chloride for iodide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:802-10. [DOI: 10.1016/j.bbabio.2012.02.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 02/21/2012] [Accepted: 02/24/2012] [Indexed: 11/29/2022]
|
9
|
Shi LX, Hall M, Funk C, Schröder WP. Photosystem II, a growing complex: updates on newly discovered components and low molecular mass proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:13-25. [PMID: 21907181 DOI: 10.1016/j.bbabio.2011.08.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/19/2011] [Accepted: 08/23/2011] [Indexed: 12/12/2022]
Abstract
Photosystem II is a unique complex capable of absorbing light and splitting water. The complex has been thoroughly studied and to date there are more than 40 proteins identified, which bind to the complex either stably or transiently. Another special feature of this complex is the unusually high content of low molecular mass proteins that represent more than half of the proteins. In this review we summarize the recent findings on the low molecular mass proteins (<15kDa) and present an overview of the newly identified components as well. We have also performed co-expression analysis of the genes encoding PSII proteins to see if the low molecular mass proteins form a specific sub-group within the Photosystem II complex. Interestingly we found that the chloroplast-localized genes encoding PSII proteins display a different response to environmental and stress conditions compared to the nuclear localized genes. This article is part of a Special Issue entitled: Photosystem II.
Collapse
Affiliation(s)
- Lan-Xin Shi
- Department of Plant Biology, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
10
|
Shinopoulos KE, Brudvig GW. Cytochrome b₅₅₉ and cyclic electron transfer within photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:66-75. [PMID: 21864501 DOI: 10.1016/j.bbabio.2011.08.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 08/06/2011] [Accepted: 08/08/2011] [Indexed: 11/18/2022]
Abstract
Cytochrome b₅₅₉ (Cyt b₅₅₉), β-carotene (Car), and chlorophyll (Chl) cofactors participate in the secondary electron-transfer pathways in photosystem II (PSII), which are believed to protect PSII from photodamage under conditions in which the primary electron-donation pathway leading to water oxidation is inhibited. Among these cofactors, Cyt b₅₅₉ is preferentially photooxidized under conditions in which the primary electron-donation pathway is blocked. When Cyt b₅₅₉ is preoxidized, the photooxidation of several of the 11 Car and 35 Chl molecules present per PSII is observed. In this review, the discovery of the secondary electron donors, their structures and electron-transfer properties, and progress in the characterization of the secondary electron-transfer pathways are discussed. This article is part of a Special Issue entitled: Photosystem II.
Collapse
|
11
|
Probing the quinone binding site of Photosystem II from Thermosynechococcus elongatus containing either PsbA1 or PsbA3 as the D1 protein through the binding characteristics of herbicides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:119-29. [DOI: 10.1016/j.bbabio.2010.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 09/23/2010] [Accepted: 10/04/2010] [Indexed: 11/18/2022]
|
12
|
Sugiura M, Iwai E, Hayashi H, Boussac A. Differences in the interactions between the subunits of photosystem II dependent on D1 protein variants in the thermophilic cyanobacterium Thermosynechococcus elongatus. J Biol Chem 2010; 285:30008-18. [PMID: 20630865 DOI: 10.1074/jbc.m110.136945] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The main cofactors involved in the oxygen evolution activity of Photosystem II (PSII) are located in two proteins, D1 (PsbA) and D2 (PsbD). In Thermosynechococcus elongatus, a thermophilic cyanobacterium, the D1 protein is encoded by either the psbA(1) or the psbA(3) gene, the expression of which is dependent on environmental conditions. It has been shown that the energetic properties of the PsbA1-PSII and those of the PsbA3-PSII differ significantly (Sugiura, M., Kato, Y., Takahashi, R., Suzuki, H., Watanabe, T., Noguchi, T., Rappaport, F., and Boussac, A. (2010) Biochim. Biophys. Acta 1797, 1491-1499). In this work the structural stability of PSII upon a PsbA1/PsbA3 exchange was investigated. Two deletion mutants lacking another PSII subunit, PsbJ, were constructed in strains expressing either PsbA1 or PsbA3. The PsbJ subunit is a 4-kDa transmembrane polypeptide that is surrounded by D1 (i.e. PsbA1), PsbK, and cytochrome b(559) (Cyt b(559)) in existing three-dimensional models. It is shown that the structural properties of the PsbA3/ΔPsbJ-PSII are not significantly affected. The polypeptide contents, the Cyt b(559) properties, and the proportion of PSII dimer were similar to those found for PsbA3-PSII. In contrast, in PsbA1/ΔPsbJ-PSII the stability of the dimer is greatly diminished, the EPR properties of the Cyt b(559) likely indicates a decrease in its redox potential, and many other PSII subunits are lacking. These results shows that the 21-amino acid substitutions between PsbA1 and PsbA3, which appear to be mainly conservative, must include side chains that are involved in a network of interactions between PsbA and the other PSII subunits.
Collapse
Affiliation(s)
- Miwa Sugiura
- Department of Chemistry, Venture Business Laboratory, Cell-Free Science and Technology Research Center, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan.
| | | | | | | |
Collapse
|