1
|
Yang S, He M, Tang Z, Liu K, Wang J, Cui L, Guo F, Liu P, Zhang J, Wan S. Deciphering the Proteome and Phosphoproteome of Peanut ( Arachis hypogaea L.) Pegs Penetrating into the Soil. Int J Mol Sci 2025; 26:634. [PMID: 39859350 PMCID: PMC11765555 DOI: 10.3390/ijms26020634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Peanut (Arachis hypogaea L.) is one of the most important crops for oil and protein production. The unique characteristic of peanut is geocarpy, which means that it blooms aerially and the peanut gynophores (pegs) penetrate into the soil, driving the fruit underground. In order to fully understand this phenomenon, we investigated the dynamic proteomic and phosphoproteomic profiling of the pegs aerially and underground in this study. A total of 6859 proteins and 4142 unique phosphoproteins with 10,070 phosphosites were identified. The data were validated and quantified using samples randomly selected from arial pegs (APs) and underground pegs (UPs) by parallel reaction monitoring (PRM). Function analyses of differentially abundant proteins (DAPs) and differentially regulated phosphoproteins (DRPPs) exhibited that they were mainly related to stress response, photosynthesis, and substance metabolism. Once the pegs successfully entered the soil, disease-resistant and stress response proteins, such as glutathione S-transferase, peroxidase, and cytochrome P450, significantly increased in the UP samples in order to adapt to the new soil environment. The increased abundance of photosynthesis-associated proteins in the UP samples provided more abundant photosynthetic products, which provided the preparation for subsequent pod development. Phosphoproteomics reveals the regulatory network of the synthesis of nutrients such as starch, protein, and fatty acid (FA). These results provide new insights into the mechanism, indicating that after the pegs are inserted into the soil, phosphorylation is involved in the rapid elongation of the pegs, accompanied by supplying energy for pod development and preparing for the synthesis of metabolites during pod development following mechanical stimulation and darkness.
Collapse
Affiliation(s)
- Sha Yang
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (S.Y.); (M.H.); (Z.T.); (K.L.); (J.W.); (L.C.); (F.G.)
| | - Mei He
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (S.Y.); (M.H.); (Z.T.); (K.L.); (J.W.); (L.C.); (F.G.)
| | - Zhaohui Tang
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (S.Y.); (M.H.); (Z.T.); (K.L.); (J.W.); (L.C.); (F.G.)
| | - Keke Liu
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (S.Y.); (M.H.); (Z.T.); (K.L.); (J.W.); (L.C.); (F.G.)
| | - Jianguo Wang
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (S.Y.); (M.H.); (Z.T.); (K.L.); (J.W.); (L.C.); (F.G.)
| | - Li Cui
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (S.Y.); (M.H.); (Z.T.); (K.L.); (J.W.); (L.C.); (F.G.)
| | - Feng Guo
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (S.Y.); (M.H.); (Z.T.); (K.L.); (J.W.); (L.C.); (F.G.)
| | - Ping Liu
- Shandong Academy of Agricultural Sciences Institute of Agricultural Resources and Environment, Jinan 250100, China;
| | - Jialei Zhang
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (S.Y.); (M.H.); (Z.T.); (K.L.); (J.W.); (L.C.); (F.G.)
| | - Shubo Wan
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (S.Y.); (M.H.); (Z.T.); (K.L.); (J.W.); (L.C.); (F.G.)
| |
Collapse
|
2
|
Mellor SB, Behrendorff JBYH, Ipsen JØ, Crocoll C, Laursen T, Gillam EMJ, Pribil M. Exploiting photosynthesis-driven P450 activity to produce indican in tobacco chloroplasts. FRONTIERS IN PLANT SCIENCE 2023; 13:1049177. [PMID: 36743583 PMCID: PMC9890960 DOI: 10.3389/fpls.2022.1049177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/14/2022] [Indexed: 05/28/2023]
Abstract
Photosynthetic organelles offer attractive features for engineering small molecule bioproduction by their ability to convert solar energy into chemical energy required for metabolism. The possibility to couple biochemical production directly to photosynthetic assimilation as a source of energy and substrates has intrigued metabolic engineers. Specifically, the chemical diversity found in plants often relies on cytochrome P450-mediated hydroxylations that depend on reductant supply for catalysis and which often lead to metabolic bottlenecks for heterologous production of complex molecules. By directing P450 enzymes to plant chloroplasts one can elegantly deal with such redox prerequisites. In this study, we explore the capacity of the plant photosynthetic machinery to drive P450-dependent formation of the indigo precursor indoxyl-β-D-glucoside (indican) by targeting an engineered indican biosynthetic pathway to tobacco (Nicotiana benthamiana) chloroplasts. We show that both native and engineered variants belonging to the human CYP2 family are catalytically active in chloroplasts when driven by photosynthetic reducing power and optimize construct designs to improve productivity. However, while increasing supply of tryptophan leads to an increase in indole accumulation, it does not improve indican productivity, suggesting that P450 activity limits overall productivity. Co-expression of different redox partners also does not improve productivity, indicating that supply of reducing power is not a bottleneck. Finally, in vitro kinetic measurements showed that the different redox partners were efficiently reduced by photosystem I but plant ferredoxin provided the highest light-dependent P450 activity. This study demonstrates the inherent ability of photosynthesis to support P450-dependent metabolic pathways. Plants and photosynthetic microbes are therefore uniquely suited for engineering P450-dependent metabolic pathways regardless of enzyme origin. Our findings have implications for metabolic engineering in photosynthetic hosts for production of high-value chemicals or drug metabolites for pharmacological studies.
Collapse
Affiliation(s)
- Silas B. Mellor
- Section for Plant Biochemistry, Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark
| | - James B. Y. H. Behrendorff
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Research Council (ARC) Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, Australia
| | - Johan Ø. Ipsen
- Section for Forest, Nature and Biomass, Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| | - Christoph Crocoll
- DynaMo Center, Section for Molecular Plant Biology, Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark
| | - Tomas Laursen
- Section for Plant Biochemistry, Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark
| | - Elizabeth M. J. Gillam
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Mathias Pribil
- Section for Molecular Plant Biology, Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
3
|
Bretosh K, Beaucamp M, Toulotte F, Yuan J, Hapiot P, Penhoat M. Mediated formic acid flow fuel cell (MFAFFC) based on biomimetic electrolytes. J Flow Chem 2022. [DOI: 10.1007/s41981-022-00245-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
4
|
Understanding flavin electronic structure and spectra. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
5
|
Lans I, Anoz-Carbonell E, Palacio-Rodríguez K, Aínsa JA, Medina M, Cossio P. In silico discovery and biological validation of ligands of FAD synthase, a promising new antimicrobial target. PLoS Comput Biol 2020; 16:e1007898. [PMID: 32797038 PMCID: PMC7449411 DOI: 10.1371/journal.pcbi.1007898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/26/2020] [Accepted: 07/09/2020] [Indexed: 01/06/2023] Open
Abstract
New treatments for diseases caused by antimicrobial-resistant microorganisms can be developed by identifying unexplored therapeutic targets and by designing efficient drug screening protocols. In this study, we have screened a library of compounds to find ligands for the flavin-adenine dinucleotide synthase (FADS) -a potential target for drug design against tuberculosis and pneumonia- by implementing a new and efficient virtual screening protocol. The protocol has been developed for the in silico search of ligands of unexplored therapeutic targets, for which limited information about ligands or ligand-receptor structures is available. It implements an integrative funnel-like strategy with filtering layers that increase in computational accuracy. The protocol starts with a pharmacophore-based virtual screening strategy that uses ligand-free receptor conformations from molecular dynamics (MD) simulations. Then, it performs a molecular docking stage using several docking programs and an exponential consensus ranking strategy. The last filter, samples the conformations of compounds bound to the target using MD simulations. The MD conformations are scored using several traditional scoring functions in combination with a newly-proposed score that takes into account the fluctuations of the molecule with a Morse-based potential. The protocol was optimized and validated using a compound library with known ligands of the Corynebacterium ammoniagenes FADS. Then, it was used to find new FADS ligands from a compound library of 14,000 molecules. A small set of 17 in silico filtered molecules were tested experimentally. We identified five inhibitors of the activity of the flavin adenylyl transferase module of the FADS, and some of them were able to inhibit growth of three bacterial species: C. ammoniagenes, Mycobacterium tuberculosis, and Streptococcus pneumoniae, where the last two are human pathogens. Overall, the results show that the integrative VS protocol is a cost-effective solution for the discovery of ligands of unexplored therapeutic targets.
Collapse
Affiliation(s)
- Isaias Lans
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia UdeA, Medellin, Colombia
| | - Ernesto Anoz-Carbonell
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (Unidades Asociadas BIFI-IQFR y CBsC-CSIC), Universidad de Zaragoza, Spain
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Pediatría, Radiología y Salud Pública. Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
| | - Karen Palacio-Rodríguez
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia UdeA, Medellin, Colombia
| | - José Antonio Aínsa
- Instituto de Biocomputación y Física de Sistemas Complejos (Unidades Asociadas BIFI-IQFR y CBsC-CSIC), Universidad de Zaragoza, Spain
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Pediatría, Radiología y Salud Pública. Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
- CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Spain
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (Unidades Asociadas BIFI-IQFR y CBsC-CSIC), Universidad de Zaragoza, Spain
| | - Pilar Cossio
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia UdeA, Medellin, Colombia
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt, Germany
- * E-mail:
| |
Collapse
|
6
|
Kalvaitis ME, Johnson LA, Mart RJ, Rizkallah P, Allemann RK. A Noncanonical Chromophore Reveals Structural Rearrangements of the Light-Oxygen-Voltage Domain upon Photoactivation. Biochemistry 2019; 58:2608-2616. [PMID: 31082213 PMCID: PMC7007005 DOI: 10.1021/acs.biochem.9b00255] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
Light-oxygen-voltage
(LOV) domains are increasingly used to engineer
photoresponsive biological systems. While the photochemical cycle
is well documented, the allosteric mechanism by which formation of
a cysteinyl-flavin adduct leads to activation is unclear. Via replacement
of flavin mononucleotide (FMN) with 5-deazaflavin mononucleotide (5dFMN)
in the Aureochrome1a (Au1a) transcription factor from Ochromonas
danica, a thermally stable cysteinyl-5dFMN adduct was generated.
High-resolution crystal structures (<2 Å) under different
illumination conditions with either FMN or 5dFMN chromophores reveal
three conformations of the highly conserved glutamine 293. An allosteric
hydrogen bond network linking the chromophore via Gln293 to the auxiliary
A′α helix is observed. With FMN, a “flip”
of the Gln293 side chain occurs between dark and lit states. 5dFMN
cannot hydrogen bond through the C5 position and proved to be unable
to support Au1a domain dimerization. Under blue light, the Gln293
side chain instead “swings” away in a conformation distal
to the chromophore and not previously observed in existing LOV domain
structures. Together, the multiple side chain conformations of Gln293
and functional analysis of 5dFMN provide new insight into the structural
requirements for LOV domain activation.
Collapse
Affiliation(s)
- Mindaugas E Kalvaitis
- School of Chemistry , Cardiff University , Park Place , Cardiff CF10 3AT , United Kingdom
| | - Luke A Johnson
- School of Chemistry , Cardiff University , Park Place , Cardiff CF10 3AT , United Kingdom
| | - Robert J Mart
- School of Chemistry , Cardiff University , Park Place , Cardiff CF10 3AT , United Kingdom
| | - Pierre Rizkallah
- School of Medicine , University Hospital Wales , Main Building, Heath Park , Cardiff CF14 4XN , United Kingdom
| | - Rudolf K Allemann
- School of Chemistry , Cardiff University , Park Place , Cardiff CF10 3AT , United Kingdom
| |
Collapse
|
7
|
Molecular mechanism of metabolic NAD(P)H-dependent electron-transfer systems: The role of redox cofactors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1860:233-258. [PMID: 30419202 DOI: 10.1016/j.bbabio.2018.11.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/30/2018] [Accepted: 11/07/2018] [Indexed: 12/14/2022]
Abstract
NAD(P)H-dependent electron-transfer (ET) systems require three functional components: a flavin-containing NAD(P)H-dehydrogenase, one-electron carrier and metal-containing redox center. In principle, these ET systems consist of one-, two- and three-components, and the electron flux from pyridine nucleotide cofactors, NADPH or NADH to final electron acceptor follows a linear pathway: NAD(P)H → flavin → one-electron carrier → metal containing redox center. In each step ET is primarily controlled by one- and two-electron midpoint reduction potentials of protein-bound redox cofactors in which the redox-linked conformational changes during the catalytic cycle are required for the domain-domain interactions. These interactions play an effective ET reactions in the multi-component ET systems. The microsomal and mitochondrial cytochrome P450 (cyt P450) ET systems, nitric oxide synthase (NOS) isozymes, cytochrome b5 (cyt b5) ET systems and methionine synthase (MS) ET system include a combination of multi-domain, and their organizations display similarities as well as differences in their components. However, these ET systems are sharing of a similar mechanism. More recent structural information obtained by X-ray and cryo-electron microscopy (cryo-EM) analysis provides more detail for the mechanisms associated with multi-domain ET systems. Therefore, this review summarizes the roles of redox cofactors in the metabolic ET systems on the basis of one-electron redox potentials. In final Section, evolutionary aspects of NAD(P)H-dependent multi-domain ET systems will be discussed.
Collapse
|
8
|
Martínez JI, Frago S, Lans I, Alonso PJ, García-Rubio I, Medina M. Spin Densities in Flavin Analogs within a Flavoprotein. Biophys J 2017; 110:561-571. [PMID: 26840722 DOI: 10.1016/j.bpj.2015.11.3525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/10/2015] [Accepted: 11/16/2015] [Indexed: 11/26/2022] Open
Abstract
Characterization by electron paramagnetic resonance techniques of several variants of Anabaena flavodoxin, where the naturally occurring FMN cofactor is substituted by different analogs, makes it possible to improve the details of the spin distribution map in the isoallosazine ring in its semiquinone state. The analyzed variants were selected to monitor the effects of intrinsic changes in the flavin ring electronic structure, as well as perturbations in the apoflavodoxin-flavin interaction, on the spin populations. When these effects were analyzed together with the functional properties of the different flavodoxin variants, a relationship between spin population and biochemical parameters, as the reduction potential, could be envisaged.
Collapse
Affiliation(s)
- Jesús Ignacio Martínez
- Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain.
| | - Susana Frago
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain; Instituto de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, Zaragoza, Spain; Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Isaías Lans
- Grupo de Bioquímica Teórica, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Pablo Javier Alonso
- Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
| | - Inés García-Rubio
- Centro Universitario de la Defensa, Zaragoza, Spain; Laboratory of Physical Chemistry, Eidgenössische Technische Hochschule Zürich, Switzerland
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain; Instituto de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
9
|
Karstens K, Wahlefeld S, Horch M, Grunzel M, Lauterbach L, Lendzian F, Zebger I, Lenz O. Impact of the iron-sulfur cluster proximal to the active site on the catalytic function of an O2-tolerant NAD(+)-reducing [NiFe]-hydrogenase. Biochemistry 2015; 54:389-403. [PMID: 25517969 DOI: 10.1021/bi501347u] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The soluble NAD(+)-reducing hydrogenase (SH) from Ralstonia eutropha H16 belongs to the O2-tolerant subtype of pyridine nucleotide-dependent [NiFe]-hydrogenases. To identify molecular determinants for the O2 tolerance of this enzyme, we introduced single amino acids exchanges in the SH small hydrogenase subunit. The resulting mutant strains and proteins were investigated with respect to their physiological, biochemical, and spectroscopic properties. Replacement of the four invariant conserved cysteine residues, Cys41, Cys44, Cys113, and Cys179, led to unstable protein, strongly supporting their involvement in the coordination of the iron-sulfur cluster proximal to the catalytic [NiFe] center. The Cys41Ser exchange, however, resulted in an SH variant that displayed up to 10% of wild-type activity, suggesting that the coordinating role of Cys41 might be partly substituted by the nearby Cys39 residue, which is present only in O2-tolerant pyridine nucleotide-dependent [NiFe]-hydrogenases. Indeed, SH variants carrying glycine, alanine, or serine in place of Cys39 showed increased O2 sensitivity compared to that of the wild-type enzyme. Substitution of further amino acids typical for O2-tolerant SH representatives did not greatly affect the H2-oxidizing activity in the presence of O2. Remarkably, all mutant enzymes investigated by electron paramagnetic resonance spectroscopy did not reveal significant spectral changes in relation to wild-type SH, showing that the proximal iron-sulfur cluster does not contribute to the wild-type spectrum. Interestingly, exchange of Trp42 by serine resulted in a completely redox-inactive [NiFe] site, as revealed by infrared spectroscopy and H2/D(+) exchange experiments. The possible role of this residue in electron and/or proton transfer is discussed.
Collapse
Affiliation(s)
- Katja Karstens
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin , Chausseestr. 117, 10115 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Ferreira P, Martínez-Júlvez M, Medina M. Electron transferases. Methods Mol Biol 2014; 1146:79-94. [PMID: 24764089 DOI: 10.1007/978-1-4939-0452-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The flavin isoalloxazine ring in electron transferases functions in a redox capacity, being able to take up electrons from a donor to subsequently deliver them to an acceptor. The main characteristics of these flavoproteins, including their unique ability to mediate obligatory processes of two-electron transfers with those involving single-electron transfer, are here described. To illustrate the versatility of these proteins, the acquired knowledge of the function of the two electron transferases involved in the cyanobacterial photosynthetic electron transfer from photosystem I to NADP(+) is presented. Many aspects of their biochemistry and biophysics have been extensively characterized using site-directed mutagenesis, steady-state and transient kinetics, spectroscopy, calorimetry, X-ray crystallography, electron paramagnetic resonance, and computational methods.
Collapse
Affiliation(s)
- Patricia Ferreira
- Department of Biochemistry and Molecular and Cellular Biology, Institute for Biocomputation and Physics of Complex Systems, Zaragoza, Spain
| | | | | |
Collapse
|
11
|
Martínez JI, Alonso PJ, García-Rubio I, Medina M. Methyl rotors in flavoproteins. Phys Chem Chem Phys 2014; 16:26203-12. [DOI: 10.1039/c4cp03115f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ENDOR evidence shows that methyl groups in flavin behave as quantum locked rotors.
Collapse
Affiliation(s)
- Jesús I. Martínez
- Instituto de Ciencia de Materiales de Aragón
- Universidad de Zaragoza-Consejo Superior de Investigaciones Científicas
- Facultad de Ciencias
- 50009 Zaragoza, Spain
| | - Pablo J. Alonso
- Instituto de Ciencia de Materiales de Aragón
- Universidad de Zaragoza-Consejo Superior de Investigaciones Científicas
- Facultad de Ciencias
- 50009 Zaragoza, Spain
| | - Inés García-Rubio
- Laboratory of Physical Chemistry
- ETH Zurich
- 8093 Zürich, Switzerland
- Centro Universitario de la Defensa
- 50090 Zaragoza, Spain
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular and Instituto de Biocomputación y Física de Sistemas Complejos (BIFI)
- Universidad de Zaragoza
- 50009 Zaragoza, Spain
| |
Collapse
|