1
|
Li J, Yang S, Wu Y, Wang R, Liu Y, Liu J, Ye Z, Tang R, Whiteway M, Lv Q, Yan L. Alternative Oxidase: From Molecule and Function to Future Inhibitors. ACS OMEGA 2024; 9:12478-12499. [PMID: 38524433 PMCID: PMC10955580 DOI: 10.1021/acsomega.3c09339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 03/26/2024]
Abstract
In the respiratory chain of the majority of aerobic organisms, the enzyme alternative oxidase (AOX) functions as the terminal oxidase and has important roles in maintaining metabolic and signaling homeostasis in mitochondria. AOX endows the respiratory system with flexibility in the coupling among the carbon metabolism pathway, electron transport chain (ETC) activity, and ATP turnover. AOX allows electrons to bypass the main cytochrome pathway to restrict the generation of reactive oxygen species (ROS). The inhibition of AOX leads to oxidative damage and contributes to the loss of adaptability and viability in some pathogenic organisms. Although AOXs have recently been identified in several organisms, crystal structures and major functions still need to be explored. Recent work on the trypanosome alternative oxidase has provided a crystal structure of an AOX protein, which contributes to the structure-activity relationship of the inhibitors of AOX. Here, we review the current knowledge on the development, structure, and properties of AOXs, as well as their roles and mechanisms in plants, animals, algae, protists, fungi, and bacteria, with a special emphasis on the development of AOX inhibitors, which will improve the understanding of respiratory regulation in many organisms and provide references for subsequent studies of AOX-targeted inhibitors.
Collapse
Affiliation(s)
- Jiye Li
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
- Institute
of Medicinal Biotechnology, Chinese Academy
of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shiyun Yang
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yujie Wu
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Ruina Wang
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yu Liu
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Jiacun Liu
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Zi Ye
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Renjie Tang
- Beijing
South Medical District of Chinese PLA General Hospital, Beijing 100072, China
| | - Malcolm Whiteway
- Department
of Biology, Concordia University, Montreal, H4B 1R6 Quebec, Canada
| | - Quanzhen Lv
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
- Basic
Medicine Innovation Center for Fungal Infectious Diseases, (Naval Medical University), Ministry of Education, Shanghai 200433, China
- Key
Laboratory of Biosafety Defense (Naval Medical University), Ministry
of Education, Shanghai 200433, China
- Shanghai
Key Laboratory of Medical Biodefense, Shanghai 200433, China
| | - Lan Yan
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
- Basic
Medicine Innovation Center for Fungal Infectious Diseases, (Naval Medical University), Ministry of Education, Shanghai 200433, China
- Key
Laboratory of Biosafety Defense (Naval Medical University), Ministry
of Education, Shanghai 200433, China
- Shanghai
Key Laboratory of Medical Biodefense, Shanghai 200433, China
| |
Collapse
|
2
|
Zhang S, Yan C, Lu T, Fan Y, Ren Y, Zhao J, Shan X, Guan Y, Song P, Li D, Hu H. New insights into molecular features of the genome-wide AOX family and their responses to various stresses in common wheat (Triticum aestivum L.). Gene 2023; 888:147756. [PMID: 37659597 DOI: 10.1016/j.gene.2023.147756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 09/04/2023]
Abstract
Alternative oxidase (AOX) is an important terminal oxidase involved in the alternative oxidation pathway in plants, which is closely related to various biotic and abiotic stress responses. However, a comprehensive research on AOX gene family of wheat is still lacking. In this study, the members of wheat AOX (TaAOX) family were identified, and their molecular characteristics and gene expression patterns were systematically investigated. Seventeen TaAOX genes were identified from Chinese Spring (CS) genome, which were mapped on 7 chromosomes and mainly clustered on the long arm's distal end of the second homologous groups. Phylogenetic analysis showed that TaAOX genes were classified into four subgroups (Ia, Ib, Ic, and Id), and the Ia subgroup possessed the most members. Tandem duplication and segmental duplication events were found during the evolution of TaAOX genes and they were affected by purifying selection demonstrated by Ka/Ks analysis. The exon numbers of this family gene varied greatly from 1 to 9. Except for Ta3BSAOX14, all the proteins encoded by the other 16 TaAOX genes contained the amino acid residues of the key active sites in the AOX domain (cd01053). The expression patterns of TaAOX genes in various tissues and under abiotic and biotic stresses were analyzed using public transcriptome data, furthermore, qRT-PCR analysis was performed for some selected TaAOX genes, and the results suggested that most members of this gene family play an important role in response to different stresses in common wheat. Our results provide basic information and valuable reference for further exploring the gene function of TaAOX family by using gene editing, RNAi, VIGS, and other technologies.
Collapse
Affiliation(s)
- Shengli Zhang
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China; Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, Henan, China.
| | - Cuiping Yan
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China; Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, Henan, China
| | - Tairui Lu
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China; Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, Henan, China
| | - Yuchao Fan
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China; Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, Henan, China
| | - Yueming Ren
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China; Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, Henan, China
| | - Jishun Zhao
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China; Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, Henan, China
| | - Xiaojing Shan
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China; Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, Henan, China
| | - Yuanyuan Guan
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China; Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, Henan, China
| | - Puwen Song
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China; Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, Henan, China
| | - Dongfang Li
- School of Resource and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Haiyan Hu
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China; Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, Henan, China
| |
Collapse
|
3
|
Gao H, Zhou L, Zhang P, Wang Y, Qian X, Liu Y, Wu G. Filamentous Fungi-Derived Orsellinic Acid-Sesquiterpene Meroterpenoids: Fungal Sources, Chemical Structures, Bioactivities, and Biosynthesis. PLANTA MEDICA 2023; 89:1110-1124. [PMID: 37225133 DOI: 10.1055/a-2099-4932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Fungi-derived polyketide-terpenoid hybrids are important meroterpenoid natural products that possess diverse structure scaffolds with a broad spectrum of bioactivities. Herein, we focus on an ever-increasing group of meroterpenoids, orsellinic acid-sesquiterpene hybrids comprised of biosynthetic start unit orsellinic acid coupling to a farnesyl group or/and its modified cyclic products. The review entails the search of China National Knowledge Infrastructure (CNKI), Web of Science, Science Direct, Google Scholar, and PubMed databases up to June 2022. The key terms include "orsellinic acid", "sesquiterpene", "ascochlorin", "ascofuranone", and "Ascochyta viciae", which are combined with the structures of "ascochlorin" and "ascofuranone" drawn by the Reaxys and Scifinder databases. In our search, these orsellinic acid-sesquiterpene hybrids are mainly produced by filamentous fungi. Ascochlorin was the first compound reported in 1968 and isolated from filamentous fungus Ascochyta viciae (synonym: Acremonium egyptiacum; Acremonium sclerotigenum); to date, 71 molecules are discovered from various filamentous fungi inhabiting in a variety of ecological niches. As typical representatives of the hybrid molecules, the biosynthetic pathway of ascofuranone and ascochlorin are discussed. The group of meroterpenoid hybrids exhibits a broad arrange of bioactivities, as highlighted by targeting hDHODH (human dihydroorotate dehydrogenase) inhibition, antitrypanosomal, and antimicrobial activities. This review summarizes the findings related to the structures, fungal sources, bioactivities, and their biosynthesis from 1968 to June 2022.
Collapse
Affiliation(s)
- Hua Gao
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Luning Zhou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, People's Republic of China
| | - Peng Zhang
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, United States
| | - Ying Wang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Xuan Qian
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Yujia Liu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Guangwei Wu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| |
Collapse
|
4
|
Xenotopic expression of alternative oxidase (AOX) to study mechanisms of mitochondrial disease. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148947. [PMID: 36481273 DOI: 10.1016/j.bbabio.2022.148947] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
The mitochondrial respiratory chain or electron transport chain (ETC) facilitates redox reactions which ultimately lead to the reduction of oxygen to water (respiration). Energy released by this process is used to establish a proton electrochemical gradient which drives ATP formation (oxidative phosphorylation, OXPHOS). It also plays an important role in vital processes beyond ATP formation and cellular metabolism, such as heat production, redox and ion homeostasis. Dysfunction of the ETC can thus impair cellular and organismal viability and is thought to be the underlying cause of a heterogeneous group of so-called mitochondrial diseases. Plants, yeasts, and many lower organisms, but not insects and vertebrates, possess an enzymatic mechanism that confers resistance to respiratory stress conditions, i.e., the alternative oxidase (AOX). Even in cells that naturally lack AOX, it is autonomously imported into the mitochondrial compartment upon xenotopic expression, where it refolds and becomes catalytically engaged when the cytochrome segment of the ETC is blocked. AOX was therefore proposed as a tool to study disease etiologies. To this end, AOX has been xenotopically expressed in mammalian cells and disease models of the fruit fly and mouse. Surprisingly, AOX showed remarkable rescue effects in some cases, whilst in others it had no effect or even exacerbated a condition. Here we summarize what has been learnt from the use of AOX in various disease models and discuss issues which still need to be addressed in order to understand the role of the ETC in health and disease.
Collapse
|
5
|
Dunn AK. Alternative oxidase in bacteria. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148929. [PMID: 36265564 DOI: 10.1016/j.bbabio.2022.148929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/20/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
While alternative oxidase (AOX) was discovered in bacteria in 2003, the expression, function, and evolutionary history of this protein in these important organisms is largely unexplored. To date, expression and functional analysis is limited to studies in the Proteobacteria Novosphingobium aromaticivorans and Vibrio fischeri, where AOX likely plays roles in maintenance of cellular energy homeostasis and supporting responses to cellular stress. This review describes the history of the study of AOX in bacteria, details current knowledge of the predicted biochemical and structural characteristics, distribution, and function of bacterial AOX, and highlights interesting areas for the future study of AOX in bacteria.
Collapse
Affiliation(s)
- Anne K Dunn
- Department of Microbiology and Plant Biology, University of Oklahoma, 770 Van Vleet Oval, Norman, OK 73019, USA.
| |
Collapse
|
6
|
Targeting the alternative oxidase (AOX) for human health and food security, a pharmaceutical and agrochemical target or a rescue mechanism? Biochem J 2022; 479:1337-1359. [PMID: 35748702 PMCID: PMC9246349 DOI: 10.1042/bcj20180192] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/23/2022] [Accepted: 06/07/2022] [Indexed: 11/25/2022]
Abstract
Some of the most threatening human diseases are due to a blockage of the mitochondrial electron transport chain (ETC). In a variety of plants, fungi, and prokaryotes, there is a naturally evolved mechanism for such threats to viability, namely a bypassing of the blocked portion of the ETC by alternative enzymes of the respiratory chain. One such enzyme is the alternative oxidase (AOX). When AOX is expressed, it enables its host to survive life-threatening conditions or, as in parasites, to evade host defenses. In vertebrates, this mechanism has been lost during evolution. However, we and others have shown that transfer of AOX into the genome of the fruit fly and mouse results in a catalytically engaged AOX. This implies that not only is the AOX a promising target for combating human or agricultural pathogens but also a novel approach to elucidate disease mechanisms or, in several cases, potentially a therapeutic cure for human diseases. In this review, we highlight the varying functions of AOX in their natural hosts and upon xenotopic expression, and discuss the resulting need to develop species-specific AOX inhibitors.
Collapse
|
7
|
Xu F, Copsey AC, Young L, Barsottini MRO, Albury MS, Moore AL. Comparison of the Kinetic Parameters of Alternative Oxidases From Trypanosoma brucei and Arabidopsis thaliana-A Tale of Two Cavities. FRONTIERS IN PLANT SCIENCE 2021; 12:744218. [PMID: 34745175 PMCID: PMC8569227 DOI: 10.3389/fpls.2021.744218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/21/2021] [Indexed: 05/27/2023]
Abstract
The alternative oxidase (AOX) is widespread in plants, fungi, and some protozoa. While the general structure of the AOX remains consistent, its overall activity, sources of kinetic activation and their sensitivity to inhibitors varies between species. In this study, the recombinant Trypanosoma brucei AOX (rTAO) and Arabidopsis thaliana AOX1A (rAtAOX1A) were expressed in the Escherichia coli ΔhemA mutant FN102, and the kinetic parameters of purified AOXs were compared. Results showed that rTAO possessed the highest V max and K m for quinol-1, while much lower V max and K m were observed in the rAtAOX1A. The catalytic efficiency (k cat/K m) of rTAO was higher than that of rAtAOX1A. The rTAO also displayed a higher oxygen affinity compared to rAtAOX1A. It should be noted that rAtAOX1a was sensitive to α-keto acids while rTAO was not. Nevertheless, only pyruvate and glyoxylate can fully activate Arabidopsis AOX. In addition, rTAO and rAtAOX1A showed different sensitivity to AOX inhibitors, with ascofuranone (AF) being the best inhibitor against rTAO, while colletochlorin B (CB) appeared to be the most effective inhibitor against rAtAOX1A. Octylgallate (OG) and salicylhydroxamic acid (SHAM) are less effective than the other inhibitors against protist and plant AOX. A Caver analysis indicated that the rTAO and rAtAOX1A differ with respect to the mixture of polar residues lining the hydrophobic cavity, which may account for the observed difference in kinetic and inhibitor sensitivities. The data obtained in this study are not only beneficial for our understanding of the variation in the kinetics of AOX within protozoa and plants but also contribute to the guidance for the future development of phytopathogenic fungicides.
Collapse
|
8
|
Rubbiani R, Weil T, Tocci N, Mastrobuoni L, Jeger S, Moretto M, Ng J, Lin Y, Hess J, Ferrari S, Kaech A, Young L, Spencer J, Moore AL, Cariou K, Renga G, Pariano M, Romani L, Gasser G. In vivo active organometallic-containing antimycotic agents. RSC Chem Biol 2021; 2:1263-1273. [PMID: 34458840 PMCID: PMC8341145 DOI: 10.1039/d1cb00123j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/07/2021] [Indexed: 11/25/2022] Open
Abstract
Fungal infections represent a global problem, notably for immunocompromised patients in hospital, COVID-19 patient wards and care home settings, and the ever-increasing emergence of multidrug resistant fungal strains is a sword of Damocles hanging over many healthcare systems. Azoles represent the mainstay of antifungal drugs, and their mode of action involves the binding mode of these molecules to the fungal lanosterol 14α-demethylase target enzyme. In this study, we have prepared and characterized four novel organometallic derivatives of the frontline antifungal drug fluconazole (1a-4a). Very importantly, enzyme inhibition and chemogenomic profiling demonstrated that lanosterol 14α-demethylase, as for fluconazole, was the main target of the most active compound of the series, (N-(ferrocenylmethyl)-2-(2,4-difluorophenyl)-2-hydroxy-N-methyl-3-(1H-1,2,4-triazol-1-yl)propan-1-aminium chloride, 2a). Transmission electron microscopy (TEM) studies suggested that 2a induced a loss in cell wall integrity as well as intracellular features ascribable to late apoptosis or necrosis. The impressive activity of 2a was further confirmed on clinical isolates, where antimycotic potency up to 400 times higher than fluconazole was observed. Also, 2a showed activity towards azole-resistant strains. This finding is very interesting since the primary target of 2a is the same as that of fluconazole, emphasizing the role played by the organometallic moiety. In vivo experiments in a mice model of Candida infections revealed that 2a reduced the fungal growth and dissemination but also ameliorated immunopathology, a finding suggesting that 2a is active in vivo with added activity on the host innate immune response.
Collapse
Affiliation(s)
- Riccardo Rubbiani
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Tobias Weil
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach Via E. Mach 1 38010 San Michele all'Adige Italy
| | - Noemi Tocci
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach Via E. Mach 1 38010 San Michele all'Adige Italy
| | - Luciano Mastrobuoni
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Severin Jeger
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Marco Moretto
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach Via E. Mach 1 38010 San Michele all'Adige Italy
| | - James Ng
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France
| | - Yan Lin
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France
| | - Jeannine Hess
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Stefano Ferrari
- Institute of Molecular Cancer Research, University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Andres Kaech
- Center for Microscopy and Image Analysis, University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Luke Young
- Department of Chemistry, School of Life Sciences, University of Sussex Brighton BN1 9QJ UK
| | - John Spencer
- Department of Chemistry, School of Life Sciences, University of Sussex Brighton BN1 9QJ UK
| | - Anthony L Moore
- Biochemistry & Biomedicine, School of Life Sciences, University of Sussex Brighton BN1 9QG UK
| | - Kevin Cariou
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France
| | - Giorgia Renga
- University of Perugia, Department of Medicine and Surgery, Piazzale Lucio Severi - Polo Unico Sant'Andrea delle Fratte 06132 Perugia Italy
| | - Marilena Pariano
- University of Perugia, Department of Medicine and Surgery, Piazzale Lucio Severi - Polo Unico Sant'Andrea delle Fratte 06132 Perugia Italy
| | - Luigina Romani
- University of Perugia, Department of Medicine and Surgery, Piazzale Lucio Severi - Polo Unico Sant'Andrea delle Fratte 06132 Perugia Italy
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France
| |
Collapse
|
9
|
Rosell-Hidalgo A, Young L, Moore AL, Ghafourian T. QSAR and molecular docking for the search of AOX inhibitors: a rational drug discovery approach. J Comput Aided Mol Des 2020; 35:245-260. [PMID: 33289903 PMCID: PMC7904559 DOI: 10.1007/s10822-020-00360-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 11/12/2020] [Indexed: 11/24/2022]
Abstract
The alternative oxidase (AOX) is a monotopic diiron carboxylate protein that catalyses the oxidation of ubiquinol and the reduction of oxygen to water. Although a number of AOX inhibitors have been discovered, little is still known about the ligand–protein interaction and essential chemical characteristics of compounds required for a potent inhibition. Furthermore, owing to the rapidly growing resistance to existing inhibitors, new compounds with improved potency and pharmacokinetic properties are urgently required. In this study we used two computational approaches, ligand–protein docking and Quantitative Structure–Activity Relationships (QSAR) to investigate binding of AOX inhibitors to the enzyme and the molecular characteristics required for inhibition. Docking studies followed by protein–ligand interaction fingerprint (PLIF) analysis using the AOX enzyme and the mutated analogues revealed the importance of the residues Leu 122, Arg 118 and Thr 219 within the hydrophobic cavity. QSAR analysis, using stepwise regression analysis with experimentally obtained IC50 values as the response variable, resulted in a multiple regression model with a good prediction accuracy. The model highlighted the importance of the presence of hydrogen bonding acceptor groups on specific positions of the aromatic ring of ascofuranone derivatives, acidity of the compounds, and a large linker group on the compounds on the inhibitory effect of AOX.
Collapse
Affiliation(s)
- Alicia Rosell-Hidalgo
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Luke Young
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Anthony L Moore
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Taravat Ghafourian
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK. .,School of Life Sciences, Faculty of Creative Arts, Technologies and Science, University of Bedfordshire, Luton, Bedfordshire, LU1 3JU, UK.
| |
Collapse
|
10
|
Young L, Rosell-Hidalgo A, Inaoka DK, Xu F, Albury M, May B, Kita K, Moore AL. Kinetic and structural characterisation of the ubiquinol-binding site and oxygen reduction by the trypanosomal alternative oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148247. [PMID: 32565080 DOI: 10.1016/j.bbabio.2020.148247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022]
Abstract
The alternative oxidase (AOX) is a monotopic di‑iron carboxylate protein which acts as a terminal respiratory chain oxidase in a variety of plants, fungi and protists. Of particular importance is the finding that both emerging infectious diseases caused by human and plant fungal pathogens, the majority of which are multi-drug resistant, appear to be dependent upon AOX activity for survival. Since AOX is absent in mammalian cells, AOX is considered a viable therapeutic target for the design of specific fungicidal and anti-parasitic drugs. In this work, we have mutated conserved residues within the hydrophobic channel (R96, D100, R118, L122, L212, E215 and T219), which crystallography has indicated leads to the active site. Our data shows that all mutations result in a drastic reduction in Vmax and catalytic efficiency whilst some also affected the Km for quinol and oxygen. The extent to which mutation effects inhibitor sensitivity was also investigated, with mutation of R118 and T219 leading to a complete loss of inhibitor potency. However, only a slight reduction in IC50 values was observed when R96 was mutated, implying that this residue is less important in inhibitor binding. In silico modelling has been used to provide insight into the reason for such changes, which we suggest is due to disruptions in the proton transfer network, resulting in a reduction in overall reaction kinetics. We discuss our results in terms of the structural features of the ubiquinol binding site and consider the implications of such findings on the nature of the catalytic cycle. SIGNIFICANCE: The alternative oxidase is a ubiquinol oxidoreductase enzyme that catalyses the oxidation of ubiquinol and the reduction of oxygen to water. It is widely distributed amongst the plant, fungal and parasitic kingdoms and plays a central role in metabolism through facilitating the turnover of the TCA cycle whilst reducing ROS production.
Collapse
Affiliation(s)
- Luke Young
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom.
| | - Alicia Rosell-Hidalgo
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | - Daniel Ken Inaoka
- Department of Molecular Infection Dynamics, Shinogi Global Infectious Diseases Division, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan; School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki 852-8523, Japan
| | - Fei Xu
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | - Mary Albury
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | - Benjamin May
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki 852-8523, Japan
| | - Anthony L Moore
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| |
Collapse
|
11
|
Barsottini MRO, Copsey A, Young L, Baroni RM, Cordeiro AT, Pereira GAG, Moore AL. Biochemical characterization and inhibition of the alternative oxidase enzyme from the fungal phytopathogen Moniliophthora perniciosa. Commun Biol 2020; 3:263. [PMID: 32451394 PMCID: PMC7248098 DOI: 10.1038/s42003-020-0981-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/30/2020] [Indexed: 01/27/2023] Open
Abstract
Moniliophthora perniciosa is a fungal pathogen and causal agent of the witches' broom disease of cocoa, a threat to the chocolate industry and to the economic and social security in cocoa-planting countries. The membrane-bound enzyme alternative oxidase (MpAOX) is crucial for pathogen survival; however a lack of information on the biochemical properties of MpAOX hinders the development of novel fungicides. In this study, we purified and characterised recombinant MpAOX in dose-response assays with activators and inhibitors, followed by a kinetic characterization both in an aqueous environment and in physiologically-relevant proteoliposomes. We present structure-activity relationships of AOX inhibitors such as colletochlorin B and analogues which, aided by an MpAOX structural model, indicates key residues for protein-inhibitor interaction. We also discuss the importance of the correct hydrophobic environment for MpAOX enzymatic activity. We envisage that such results will guide the future development of AOX-targeting antifungal agents against M. perniciosa, an important outcome for the chocolate industry.
Collapse
Affiliation(s)
- Mario R O Barsottini
- Genomics and bioEnergy Laboratory, Institute of Biology, University of Campinas, Campinas, Brazil.,Biochemistry & Biomedicine, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Alice Copsey
- Biochemistry & Biomedicine, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Luke Young
- Biochemistry & Biomedicine, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Renata M Baroni
- Genomics and bioEnergy Laboratory, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Artur T Cordeiro
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Gonçalo A G Pereira
- Genomics and bioEnergy Laboratory, Institute of Biology, University of Campinas, Campinas, Brazil.
| | - Anthony L Moore
- Biochemistry & Biomedicine, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK.
| |
Collapse
|
12
|
Brew-Appiah RAT, Sanguinet KA. Considerations of AOX Functionality Revealed by Critical Motifs and Unique Domains. Int J Mol Sci 2018; 19:ijms19102972. [PMID: 30274246 PMCID: PMC6213860 DOI: 10.3390/ijms19102972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 09/14/2018] [Accepted: 09/28/2018] [Indexed: 12/28/2022] Open
Abstract
An understanding of the genes and mechanisms regulating environmental stress in crops is critical for boosting agricultural yield and safeguarding food security. Under adverse conditions, response pathways are activated for tolerance or resistance. In multiple species, the alternative oxidase (AOX) genes encode proteins which help in this process. Recently, this gene family has been extensively investigated in the vital crop plants, wheat, barley and rice. Cumulatively, these three species and/or their wild ancestors contain the genes for AOX1a, AOX1c, AOX1e, and AOX1d, and common patterns in the protein isoforms have been documented. Here, we add more information on these trends by emphasizing motifs that could affect expression, and by utilizing the most recent discoveries from the AOX isoform in Trypanosoma brucei to highlight clade-dependent biases. The new perspectives may have implications on how the AOX gene family has evolved and functions in monocots. The common or divergent amino acid substitutions between these grasses and the parasite are noted, and the potential effects of these changes are discussed. There is the hope that the insights gained will inform the way future AOX research is performed in monocots, in order to optimize crop production for food, feed, and fuel.
Collapse
Affiliation(s)
- Rhoda A T Brew-Appiah
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164-6420, USA.
| | - Karen A Sanguinet
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164-6420, USA.
| |
Collapse
|
13
|
Brew-Appiah RAT, York ZB, Krishnan V, Roalson EH, Sanguinet KA. Genome-wide identification and analysis of the ALTERNATIVE OXIDASE gene family in diploid and hexaploid wheat. PLoS One 2018; 13:e0201439. [PMID: 30074999 PMCID: PMC6075773 DOI: 10.1371/journal.pone.0201439] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/16/2018] [Indexed: 11/19/2022] Open
Abstract
A comprehensive understanding of wheat responses to environmental stress will contribute to the long-term goal of feeding the planet. ALERNATIVE OXIDASE (AOX) genes encode proteins involved in a bypass of the electron transport chain and are also known to be involved in stress tolerance in multiple species. Here, we report the identification and characterization of the AOX gene family in diploid and hexaploid wheat. Four genes each were found in the diploid ancestors Triticum urartu, and Aegilops tauschii, and three in Aegilops speltoides. In hexaploid wheat (Triticum aestivum), 20 genes were identified, some with multiple splice variants, corresponding to a total of 24 proteins for those with observed transcription and translation. These proteins were classified as AOX1a, AOX1c, AOX1e or AOX1d via phylogenetic analysis. Proteins lacking most or all signature AOX motifs were assigned to putative regulatory roles. Analysis of protein-targeting sequences suggests mixed localization to the mitochondria and other organelles. In comparison to the most studied AOX from Trypanosoma brucei, there were amino acid substitutions at critical functional domains indicating possible role divergence in wheat or grasses in general. In hexaploid wheat, AOX genes were expressed at specific developmental stages as well as in response to both biotic and abiotic stresses such as fungal pathogens, heat and drought. These AOX expression patterns suggest a highly regulated and diverse transcription and expression system. The insights gained provide a framework for the continued and expanded study of AOX genes in wheat for stress tolerance through breeding new varieties, as well as resistance to AOX-targeted herbicides, all of which can ultimately be used synergistically to improve crop yield.
Collapse
Affiliation(s)
- Rhoda A. T. Brew-Appiah
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, United States of America
| | - Zara B. York
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, United States of America
| | - Vandhana Krishnan
- Stanford Center for Genomics and Personalized Medicine, Department of Genetics, Stanford University, Stanford, United States of America
| | - Eric H. Roalson
- School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Karen A. Sanguinet
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
14
|
Correlating kinetic and structural data on ubiquinone binding and reduction by respiratory complex I. Proc Natl Acad Sci U S A 2017; 114:12737-12742. [PMID: 29133414 DOI: 10.1073/pnas.1714074114] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Respiratory complex I (NADH:ubiquinone oxidoreductase), one of the largest membrane-bound enzymes in mammalian cells, powers ATP synthesis by using the energy from electron transfer from NADH to ubiquinone-10 to drive protons across the energy-transducing mitochondrial inner membrane. Ubiquinone-10 is extremely hydrophobic, but in complex I the binding site for its redox-active quinone headgroup is ∼20 Å above the membrane surface. Structural data suggest it accesses the site by a narrow channel, long enough to accommodate almost all of its ∼50-Å isoprenoid chain. However, how ubiquinone/ubiquinol exchange occurs on catalytically relevant timescales, and whether binding/dissociation events are involved in coupling electron transfer to proton translocation, are unknown. Here, we use proteoliposomes containing complex I, together with a quinol oxidase, to determine the kinetics of complex I catalysis with ubiquinones of varying isoprenoid chain length, from 1 to 10 units. We interpret our results using structural data, which show the hydrophobic channel is interrupted by a highly charged region at isoprenoids 4-7. We demonstrate that ubiquinol-10 dissociation is not rate determining and deduce that ubiquinone-10 has both the highest binding affinity and the fastest binding rate. We propose that the charged region and chain directionality assist product dissociation, and that isoprenoid stepping ensures short transit times. These properties of the channel do not benefit the exhange of short-chain quinones, for which product dissociation may become rate limiting. Thus, we discuss how the long channel does not hinder catalysis under physiological conditions and the possible roles of ubiquinone/ubiquinol binding/dissociation in energy conversion.
Collapse
|
15
|
Structural insights into the alternative oxidases: are all oxidases made equal? Biochem Soc Trans 2017; 45:731-740. [PMID: 28620034 DOI: 10.1042/bst20160178] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 01/15/2023]
Abstract
The alternative oxidases (AOXs) are ubiquinol-oxidoreductases that are members of the diiron carboxylate superfamily. They are not only ubiquitously distributed within the plant kingdom but also found in increasing numbers within the fungal, protist, animal and prokaryotic kingdoms. Although functions of AOXs are highly diverse in general, they tend to play key roles in thermogenesis, stress tolerance (through the management of radical oxygen species) and the maintenance of mitochondrial and cellular energy homeostasis. The best structurally characterised AOX is from Trypanosoma brucei In this review, we compare the structure of AOXs, created using homology modelling, from many important species in an attempt to explain differences in activity and sensitivity to AOX inhibitors. We discuss the implications of these findings not only for future structure-based drug design but also for the design of novel AOXs for gene therapy.
Collapse
|
16
|
|
17
|
Rogov AG, Sukhanova EI, Uralskaya LA, Aliverdieva DA, Zvyagilskaya RA. Alternative oxidase: distribution, induction, properties, structure, regulation, and functions. BIOCHEMISTRY (MOSCOW) 2015; 79:1615-34. [PMID: 25749168 DOI: 10.1134/s0006297914130112] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The respiratory chain in the majority of organisms with aerobic type metabolism features the concomitant existence of the phosphorylating cytochrome pathway and the cyanide- and antimycin A-insensitive oxidative route comprising a so-called alternative oxidase (AOX) as a terminal oxidase. In this review, the history of AOX discovery is described. Considerable evidence is presented that AOX occurs widely in organisms at various levels of organization and is not confined to the plant kingdom. This enzyme has not been found only in Archaea, mammals, some yeasts and protists. Bioinformatics research revealed the sequences characteristic of AOX in representatives of various taxonomic groups. Based on multiple alignments of these sequences, a phylogenetic tree was constructed to infer their possible evolution. The ways of AOX activation, as well as regulatory interactions between AOX and the main respiratory chain are described. Data are summarized concerning the properties of AOX and the AOX-encoding genes whose expression is either constitutive or induced by various factors. Information is presented on the structure of AOX, its active center, and the ubiquinone-binding site. The principal functions of AOX are analyzed, including the cases of cell survival, optimization of respiratory metabolism, protection against excess of reactive oxygen species, and adaptation to variable nutrition sources and to biotic and abiotic stress factors. It is emphasized that different AOX functions complement each other in many instances and are not mutually exclusive. Examples are given to demonstrate that AOX is an important tool to overcome the adverse aftereffects of restricted activity of the main respiratory chain in cells and whole animals. This is the first comprehensive review on alternative oxidases of various organisms ranging from yeasts and protists to vascular plants.
Collapse
Affiliation(s)
- A G Rogov
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | | | | | |
Collapse
|
18
|
Nawrocki WJ, Tourasse NJ, Taly A, Rappaport F, Wollman FA. The plastid terminal oxidase: its elusive function points to multiple contributions to plastid physiology. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:49-74. [PMID: 25580838 DOI: 10.1146/annurev-arplant-043014-114744] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plastids have retained from their cyanobacterial ancestor a fragment of the respiratory electron chain comprising an NADPH dehydrogenase and a diiron oxidase, which sustain the so-called chlororespiration pathway. Despite its very low turnover rates compared with photosynthetic electron flow, knocking out the plastid terminal oxidase (PTOX) in plants or microalgae leads to severe phenotypes that encompass developmental and growth defects together with increased photosensitivity. On the basis of a phylogenetic and structural analysis of the enzyme, we discuss its physiological contribution to chloroplast metabolism, with an emphasis on its critical function in setting the redox poise of the chloroplast stroma in darkness. The emerging picture of PTOX is that of an enzyme at the crossroads of a variety of metabolic processes, such as, among others, the regulation of cyclic electron transfer and carotenoid biosynthesis, which have in common their dependence on the redox state of the plastoquinone pool, set largely by the activity of PTOX in darkness.
Collapse
Affiliation(s)
- Wojciech J Nawrocki
- Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, UMR 7141, Centre National de la Recherche Scientifique-Université Pierre et Marie Curie
| | | | | | | | | |
Collapse
|
19
|
Purification and characterisation of recombinant DNA encoding the alternative oxidase from Sauromatum guttatum. Mitochondrion 2014; 19 Pt B:261-8. [PMID: 24632469 DOI: 10.1016/j.mito.2014.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/27/2014] [Accepted: 03/04/2014] [Indexed: 11/21/2022]
Abstract
The alternative oxidase (AOX) is a non-protonmotive ubiquinol oxidase that is found in mitochondria of all higher plants studied to date. Structural and functional characterisation of this important but enigmatic plant diiron protein has been hampered by an inability to obtain sufficient native protein from plant sources. In the present study recombinant SgAOX (rSgAOX), overexpressed in a ΔhemA-deficient Escherichia coli strain (FN102), was solubilized from E. coli membranes and purified to homogeneity in a stable and highly active form. The kinetics of ubiquinol-1 oxidation by purified rSgAOX showed typical Michaelis-Menten kinetics (K(m) of 332 μM and Vmax of 30 μmol(-1) min(-1) mg(-1)), a turnover number 20 μmol s(-1) and a remarkable stability. The enzyme was potently inhibited not only by conventional inhibitors such as SHAM and n-propyl gallate but also by the potent TAO inhibitors ascofuranone, an ascofuranone-derivative colletochlorin B and the cytochrome bc1 inhibitor ascochlorin. Circular dichroism studies revealed that AOX was approximately 50% α-helical and furthermore such studies revealed that rSgAOX and rTAO partially retained the helical absorbance signal even at 90 °C (58% and 64% respectively) indicating a high conformational stability. It is anticipated that highly purified and active AOX and its mutants will facilitate investigations into the structure and reaction mechanisms of AOXs through the provision of large amounts of purified protein for crystallography and contribute to further progress of the study on this important plant terminal oxidase.
Collapse
|