1
|
Li H, He X, Gao Y, Liu W, Song J, Zhang J. Integrative Analysis of Transcriptome, Proteome, and Phosphoproteome Reveals Potential Roles of Photosynthesis Antenna Proteins in Response to Brassinosteroids Signaling in Maize. PLANTS (BASEL, SWITZERLAND) 2023; 12:1290. [PMID: 36986978 PMCID: PMC10058427 DOI: 10.3390/plants12061290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Brassinosteroids are a recently discovered group of substances that promote plant growth and productivity. Photosynthesis, which is vital for plant growth and high productivity, is strongly influenced by brassinosteroid signaling. However, the molecular mechanism underlying the photosynthetic response to brassinosteroid signaling in maize remains obscure. Here, we performed integrated transcriptome, proteome, and phosphoproteomic analyses to identify the key photosynthesis pathway that responds to brassinosteroid signaling. Transcriptome analysis suggested that photosynthesis antenna proteins and carotenoid biosynthesis, plant hormone signal transduction, and MAPK signaling in CK VS EBR and CK VS Brz were significantly enriched in the list of differentially expressed genes upon brassinosteroids treatment. Consistently, proteome and phosphoproteomic analyses indicated that photosynthesis antenna and photosynthesis proteins were significantly enriched in the list of differentially expressed proteins. Thus, transcriptome, proteome, and phosphoproteome analyses showed that major genes and proteins related to photosynthesis antenna proteins were upregulated by brassinosteroids treatment in a dose-dependent manner. Meanwhile, 42 and 186 transcription factor (TF) responses to brassinosteroid signals in maize leaves were identified in the CK VS EBR and CK VS Brz groups, respectively. Our study provides valuable information for a better understanding of the molecular mechanism underlying the photosynthetic response to brassinosteroid signaling in maize.
Collapse
Affiliation(s)
- Hui Li
- Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu 611130, China
| | - Xuewu He
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Yuanfen Gao
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Wenjuan Liu
- Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu 611130, China
| | - Jun Song
- Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu 611130, China
| | - Junjie Zhang
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China
| |
Collapse
|
2
|
Methionine Promotes the Growth and Yield of Wheat under Water Deficit Conditions by Regulating the Antioxidant Enzymes, Reactive Oxygen Species, and Ions. LIFE (BASEL, SWITZERLAND) 2022; 12:life12070969. [PMID: 35888059 PMCID: PMC9318804 DOI: 10.3390/life12070969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/02/2022]
Abstract
The individual application of pure and active compounds such as methionine may help to address water scarcity issues without compromising the yield of wheat. As organic plant growth stimulants, amino acids are popularly used to promote the productivity of crops. However, the influence of the exogenous application of methionine in wheat remains elusive. The present investigation was planned in order to understand the impact of methionine in wheat under drought stress. Two wheat genotypes were allowed to grow with 100% field capacity (FC) up to the three-leaf stage. Twenty-five-day-old seedlings of two wheat genotypes, Galaxy-13 and Johar-16, were subjected to 40% FC, denoted as water deficit-stress (D), along with 100% FC, called control (C), with and without L-methionine (Met; 4 mM) foliar treatment. Water deficit significantly reduced shoot length, shoot fresh and dry weights, seed yield, photosynthetic, gas exchange attributes except for transpiration rate (E), and shoot mineral ions (potassium, calcium, and phosphorus) in both genotypes. A significant increase was recorded in superoxide dismutase (SOD), catalase (CAT), hydrogen peroxide (H2O2), malondialdehyde (MDA), and sodium ions (Na+) due to water deficiency. However, foliar application of Met substantially improved the studied growth, photosynthetic, and gas exchange attributes with water deficit conditions in both genotypes. The activities of SOD, POD, and CAT were further enhanced under stress with Met application. Met improved potassium (K), calcium (Ca2+), and phosphorus (P) content. In a nutshell, the foliar application of Met effectively amended water deficit stress tolerance by reducing MDA and H2O2 content under water deficit conditions in wheat plants. Thus, we are able to deduce a positive association between Met-induced improved growth attributes and drought tolerance.
Collapse
|
3
|
Intramolecular Charge Transfer of Curcumin and Solvation Dynamics of DMSO Probed by Time-Resolved Raman Spectroscopy. Int J Mol Sci 2022; 23:ijms23031727. [PMID: 35163647 PMCID: PMC8835799 DOI: 10.3390/ijms23031727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 02/04/2023] Open
Abstract
Intramolecular charge transfer (ICT) of curcumin in dimethyl sulfoxide (DMSO) solution in the excited state was investigated by femtosecond electronic and vibrational spectroscopy. Excited-state Raman spectra of curcumin in the locally-excited and charge-transferred (CT) state of the S1 excited state were separated due to high temporal (<50 fs) and spectral (<10 cm−1) resolutions of femtosecond stimulated Raman spectroscopy. The ultrafast (0.6–0.8 ps) ICT and subsequent vibrational relaxation (6–9 ps) in the CT state were ubiquitously observed in the ground- and excited-state vibrational modes of the solute curcumin and the νCSC and νS=O modes of solvent DMSO. The ICT of curcumin in the excited state was preceded by the disruption of the solvation shells, including the breakage of hydrogen bonding between curcumin and DMSO molecules, which occurs at the ultrafast (20–50 fs) time scales.
Collapse
|
4
|
Ultrafast laser spectroscopic studies on carotenoids in solution and on those bound to photosynthetic pigment-protein complexes. Methods Enzymol 2022; 674:1-51. [DOI: 10.1016/bs.mie.2022.03.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Yu Y, Yu J, Wang Q, Wang J, Zhao G, Wu H, Zhu Y, Chu C, Fang J. Overexpression of the rice ORANGE gene OsOR negatively regulates carotenoid accumulation, leads to higher tiller numbers and decreases stress tolerance in Nipponbare rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 310:110962. [PMID: 34315587 DOI: 10.1016/j.plantsci.2021.110962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/22/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
The ORANGE (OR) gene has been reported to regulate chromoplast differentiation and enhance carotenoid biosynthesis in many dicotyledonous plants. However, the function of the OR gene in monocotyledons, especially rice, is poorly known. Here, the OR gene from rice, OsOR, was isolated and characterized by generating overexpressing and genome editing mutant lines. The OsOR-overexpressing plants exhibited pleiotropic phenotypes, such as alternating transverse green and white sectors on leaves at the early tillering stage, that were due to changes in thylakoid development and reduced carotenoid content. In addition, the number of tillers significantly increased in OsOR-overexpressing plants but decreased in osor mutant lines, a result similar to that previously reported for the carotenoid isomerase mutant mit3. The expression of the DWARF3 and DWARF53 genes that are involved in the strigolactone signalling pathway were similarly downregulated in OsOR-overexpressing plants but upregulated in osor mutants. Moreover, the OsOR-overexpressing plants exhibited greater sensitivity to salt and cold stress, and had lower total chlorophyll and higher MDA contents. All results suggest that the OsOR gene plays an important role not only in carotenoid accumulation but also in tiller number regulation and in responses to environmental stress in rice.
Collapse
Affiliation(s)
- Yang Yu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China; College of Life Science and Engineering, Shenyang University, Shenyang, China
| | - Jiyang Yu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China; Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, China
| | - Qinglong Wang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jing Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China; Quality and Safety Institute of Agriculture Products, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Guangxin Zhao
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China; College of Advanced Agricultural Science, University of Chinese Academy of Sciences, Beijing, China
| | - Hongkai Wu
- College of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, China
| | - Yanming Zhu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Science, University of Chinese Academy of Sciences, Beijing, China.
| | - Jun Fang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China; College of Advanced Agricultural Science, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Azai C, Harada J, Fujimoto S, Masuda S, Kosumi D. Anaerobic energy dissipation by glycosylated carotenoids in the green sulfur bacterium Chlorobaculum tepidum. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Zhang L, Wang S, Yang R, Mao J, Jiang J, Wang X, Zhang W, Zhang Q, Li P. Simultaneous determination of tocopherols, carotenoids and phytosterols in edible vegetable oil by ultrasound-assisted saponification, LLE and LC-MS/MS. Food Chem 2019; 289:313-319. [PMID: 30955618 DOI: 10.1016/j.foodchem.2019.03.067] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 01/04/2023]
Abstract
A method was developed to simultaneously determine eight bioactive compounds in edible oil based on ultrasound-assisted saponification, liquid-liquid extraction and liquid chromatography coupled with tandem mass spectrometry. Central composite design was employed to optimize ultrasonic temperature and time of saponification. Sample treatment was conducted by ultrasound-assisted saponification at temperature of 75 °C for 40 min. Limits of detection and limits of quantification ranged from 2.0 to 3.2 and from 6.1 to 10.0 ng/mL, respectively. Linear correlations were obtained (R2 > 0.99) and the recoveries at three spiked levels were between 81.7% and 112.0%. This method was employed to determine eight compounds in camellia oils and olive oils. As results, the contents of stigmasterol, δ-tocopherol, γ-tocopherol, β-carotene and lutein in camellia oils were significantly higher than those in olive oils (p < 0.05). The proposed method can be successfully used to determination of these eight active compounds in camellia oil and other edible oils.
Collapse
Affiliation(s)
- Liangxiao Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
| | - Sujun Wang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Ruinan Yang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Jin Mao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Jun Jiang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Xiupin Wang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Wen Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| |
Collapse
|
8
|
Uragami C, Saito K, Yoshizawa M, Molnár P, Hashimoto H. Unified analysis of optical absorption spectra of carotenoids based on a stochastic model. Arch Biochem Biophys 2018; 650:49-58. [DOI: 10.1016/j.abb.2018.04.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/06/2018] [Accepted: 04/30/2018] [Indexed: 11/26/2022]
|
9
|
Hashimoto H, Uragami C, Yukihira N, Gardiner AT, Cogdell RJ. Understanding/unravelling carotenoid excited singlet states. J R Soc Interface 2018; 15:20180026. [PMID: 29643225 PMCID: PMC5938589 DOI: 10.1098/rsif.2018.0026] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/16/2018] [Indexed: 11/12/2022] Open
Abstract
Carotenoids are essential light-harvesting pigments in natural photosynthesis. They absorb in the blue-green region of the solar spectrum and transfer the absorbed energy to (bacterio-)chlorophylls, and thus expand the wavelength range of light that is able to drive photosynthesis. This process is an example of singlet-singlet excitation energy transfer, and carotenoids serve to enhance the overall efficiency of photosynthetic light reactions. The photochemistry and photophysics of carotenoids have often been interpreted by referring to those of simple polyene molecules that do not possess any functional groups. However, this may not always be wise because carotenoids usually have a number of functional groups that induce the variety of photochemical behaviours in them. These differences can also make the interpretation of the singlet excited states of carotenoids very complicated. In this article, we review the properties of the singlet excited states of carotenoids with the aim of producing as coherent a picture as possible of what is currently known and what needs to be learned.
Collapse
Affiliation(s)
- Hideki Hashimoto
- Department of Applied Chemistry for Environment, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Chiasa Uragami
- Department of Applied Chemistry for Environment, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Nao Yukihira
- Department of Applied Chemistry for Environment, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Alastair T Gardiner
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Richard J Cogdell
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| |
Collapse
|
10
|
Kuznetsova V, Southall J, Cogdell RJ, Fuciman M, Polívka T. Spectroscopic properties of the S1 state of linear carotenoids after excess energy excitation. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Jen M, Lee S, Jeon K, Hussain S, Pang Y. Ultrafast Intramolecular Proton Transfer of Alizarin Investigated by Femtosecond Stimulated Raman Spectroscopy. J Phys Chem B 2017; 121:4129-4136. [DOI: 10.1021/acs.jpcb.6b12408] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Myungsam Jen
- Department of Chemistry and ‡Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Sebok Lee
- Department of Chemistry and ‡Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Kooknam Jeon
- Department of Chemistry and ‡Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Shafqat Hussain
- Department of Chemistry and ‡Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Yoonsoo Pang
- Department of Chemistry and ‡Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
12
|
Challenges facing an understanding of the nature of low-energy excited states in photosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1627-1640. [PMID: 27372198 DOI: 10.1016/j.bbabio.2016.06.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 01/09/2023]
Abstract
While the majority of the photochemical states and pathways related to the biological capture of solar energy are now well understood and provide paradigms for artificial device design, additional low-energy states have been discovered in many systems with obscure origins and significance. However, as low-energy states are naively expected to be critical to function, these observations pose important challenges. A review of known properties of low energy states covering eight photochemical systems, and options for their interpretation, are presented. A concerted experimental and theoretical research strategy is suggested and outlined, this being aimed at providing a fully comprehensive understanding.
Collapse
|
13
|
Dietze DR, Mathies RA. Femtosecond Stimulated Raman Spectroscopy. Chemphyschem 2016; 17:1224-51. [DOI: 10.1002/cphc.201600104] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Daniel R. Dietze
- Department of Chemistry; University of California in Berkeley; CA Berkeley 94720 USA
| | - Richard A. Mathies
- Department of Chemistry; University of California in Berkeley; CA Berkeley 94720 USA
| |
Collapse
|
14
|
Perlík V, Seibt J, Cranston LJ, Cogdell RJ, Lincoln CN, Savolainen J, Šanda F, Mančal T, Hauer J. Vibronic coupling explains the ultrafast carotenoid-to-bacteriochlorophyll energy transfer in natural and artificial light harvesters. J Chem Phys 2016; 142:212434. [PMID: 26049454 DOI: 10.1063/1.4919548] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The initial energy transfer steps in photosynthesis occur on ultrafast timescales. We analyze the carotenoid to bacteriochlorophyll energy transfer in LH2 Marichromatium purpuratum as well as in an artificial light-harvesting dyad system by using transient grating and two-dimensional electronic spectroscopy with 10 fs time resolution. We find that Förster-type models reproduce the experimentally observed 60 fs transfer times, but overestimate coupling constants, which lead to a disagreement with both linear absorption and electronic 2D-spectra. We show that a vibronic model, which treats carotenoid vibrations on both electronic ground and excited states as part of the system's Hamiltonian, reproduces all measured quantities. Importantly, the vibronic model presented here can explain the fast energy transfer rates with only moderate coupling constants, which are in agreement with structure based calculations. Counterintuitively, the vibrational levels on the carotenoid electronic ground state play the central role in the excited state population transfer to bacteriochlorophyll; resonance between the donor-acceptor energy gap and the vibrational ground state energies is the physical basis of the ultrafast energy transfer rates in these systems.
Collapse
Affiliation(s)
- Václav Perlík
- Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, Prague 121 16, Czech Republic
| | - Joachim Seibt
- Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, Prague 121 16, Czech Republic
| | - Laura J Cranston
- Institute of Molecular Cell and System Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Biomedical Research Centre, 120 University Place, Glasgow G12 8TA, Scotland
| | - Richard J Cogdell
- Institute of Molecular Cell and System Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Biomedical Research Centre, 120 University Place, Glasgow G12 8TA, Scotland
| | - Craig N Lincoln
- Photonics Institute, Vienna University of Technology, Gusshausstrasse 27, 1040 Vienna, Austria
| | - Janne Savolainen
- Department of Physical Chemistry II, Ruhr-University Bochum, 44780 Bochum, Germany
| | - František Šanda
- Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, Prague 121 16, Czech Republic
| | - Tomáš Mančal
- Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, Prague 121 16, Czech Republic
| | - Jürgen Hauer
- Photonics Institute, Vienna University of Technology, Gusshausstrasse 27, 1040 Vienna, Austria
| |
Collapse
|
15
|
Abstract
Carotenoids are ubiquitous and essential pigments in photosynthesis. They absorb in the blue-green region of the solar spectrum and transfer the absorbed energy to (bacterio-)chlorophylls, and so expand the wavelength range of light that is able to drive photosynthesis. This is an example of singlet-singlet energy transfer, and so carotenoids serve to enhance the overall efficiency of photosynthetic light reactions. Carotenoids also act to protect photosynthetic organisms from the harmful effects of excess exposure to light. Triplet-triplet energy transfer from chlorophylls to carotenoids plays a key role in this photoprotective reaction. In the light-harvesting pigment-protein complexes from purple photosynthetic bacteria and chlorophytes, carotenoids have an additional role of structural stabilization of those complexes. In this article we review what is currently known about how carotenoids discharge these functions. The molecular architecture of photosynthetic systems will be outlined first to provide a basis from which to describe carotenoid photochemistry, which underlies most of their important functions in photosynthesis.
Collapse
Affiliation(s)
- Hideki Hashimoto
- The Osaka City University Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan.
- Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan.
| | - Chiasa Uragami
- Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Richard J Cogdell
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK
| |
Collapse
|
16
|
Natural and artificial light-harvesting systems utilizing the functions of carotenoids. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2015. [DOI: 10.1016/j.jphotochemrev.2015.07.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
17
|
Isolation and characterization of (15 Z )-lycopene thermally generated from a natural source. Biochem Biophys Res Commun 2015; 467:58-62. [DOI: 10.1016/j.bbrc.2015.09.122] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 09/22/2015] [Indexed: 11/22/2022]
|
18
|
Vijayalakshmi K, Jha A, Dasgupta J. Ultrafast Triplet Generation and its Sensitization Drives Efficient Photoisomerization of Tetra-cis-lycopene to All-trans-lycopene. J Phys Chem B 2015; 119:8669-78. [DOI: 10.1021/acs.jpcb.5b02086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | - Ajay Jha
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai-400005, India
| | - Jyotishman Dasgupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai-400005, India
| |
Collapse
|