1
|
Han S, Zeng Y, Liu M, Yang L, Wang J, Song X. Regulating Sensing Patterns in Fluorescent Probes for Discriminative Detection of Biothiols. Anal Chem 2025; 97:419-426. [PMID: 39741462 DOI: 10.1021/acs.analchem.4c04523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Discerning and quantifying the critical biothiols cysteine (Cys), homocysteine (Hcy), and glutathione (GSH) are vital for understanding their synergistic roles in biological systems. In this study, we synthesized a series of phenylethynylcoumarin fluorescent probes with varied structures to investigate the mechanisms underlying biothiol detection. We found that different substituents (-OCH3, -H, -CN) at the para-position of the phenylacetylene, combined with an aldehyde group at the 3-position of the coumarin, significantly affected the probes' reactivity and produced distinct response patterns toward biothiols. These insights enable the strategic development of fluorescent probes tailored to provide the personalized and discriminative detection of these biothiols. Additionally, probes CPOMe and CPCN were specifically evaluated for their efficacy in physiological environments, demonstrating their ability to accurately distinguish between Cys, Hcy, and GSH in living cells through unique fluorescent signals.
Collapse
Affiliation(s)
- Shaohui Han
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yuyang Zeng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Miaomiao Liu
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Lei Yang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Jianxiu Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Xiangzhi Song
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
2
|
Sheng J, Luo S, Zheng B, He K, Hu J. Codelivery of Gaseous Signaling Molecules for Biomedical Applications. Chempluschem 2024; 89:e202400080. [PMID: 38514396 DOI: 10.1002/cplu.202400080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 03/23/2024]
Abstract
Gaseous signaling molecules (GSMs) including nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) have presented excellent therapeutic efficacy such as anti-inflammatory, anti-microbial and anti-cancer effects and multiple biomedical applications in recent years. As the three most vital signaling molecules in human physiology, these three GSMs show so intertwined and orchestrated interactions that the synergy of multiple gases may demonstrate a more complex therapeutic potential than single gas delivery. Consequently, researchers have been devoted to developing codelivery systems of GSMs by synthesizing a single molecule as a dual donor to maximize the gaseous therapeutic efficacy. In this minireview, we summarize the recent developments of molecules or materials enabling codelivery of GSMs for biomedical applications. It appears that compared with the abundant cases of codelivery of NO and H2S, research on codelivery of CO and the other two GSMs separately remains to be explored.
Collapse
Affiliation(s)
- Jiahui Sheng
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Siyuan Luo
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Bin Zheng
- School of Chemistry and Pharmaceutical Engineering, Hefei Normal University, Hefei, Anhui, 230061, China
| | - Kewu He
- Imaging Center of the Third Affiliated Hospital of Anhui Medical University, Hefei, 230031, Anhui, China
| | - Jinming Hu
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| |
Collapse
|
3
|
Cornwell A, Badiei A. From Gasotransmitter to Immunomodulator: The Emerging Role of Hydrogen Sulfide in Macrophage Biology. Antioxidants (Basel) 2023; 12:935. [PMID: 37107310 PMCID: PMC10135606 DOI: 10.3390/antiox12040935] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Hydrogen sulfide (H2S) has been increasingly recognized as a crucial inflammatory mediator in immune cells, particularly macrophages, due to its direct and indirect effects on cellular signaling, redox homeostasis, and energy metabolism. The intricate regulation of endogenous H2S production and metabolism involves the coordination of transsulfuration pathway (TSP) enzymes and sulfide oxidizing enzymes, with TSP's role at the intersection of the methionine pathway and glutathione synthesis reactions. Additionally, H2S oxidation mediated by sulfide quinone oxidoreductase (SQR) in mammalian cells may partially control cellular concentrations of this gasotransmitter to induce signaling. H2S is hypothesized to signal through the posttranslational modification known as persulfidation, with recent research highlighting the significance of reactive polysulfides, a derivative of sulfide metabolism. Overall, sulfides have been identified as having promising therapeutic potential to alleviate proinflammatory macrophage phenotypes, which are linked to the exacerbation of disease outcomes in various inflammatory conditions. H2S is now acknowledged to have a significant influence on cellular energy metabolism by affecting the redox environment, gene expression, and transcription factor activity, resulting in changes to both mitochondrial and cytosolic energy metabolism processes. This review covers recent discoveries pertaining to the involvement of H2S in macrophage cellular energy metabolism and redox regulation, and the potential implications for the inflammatory response of these cells in the broader framework of inflammatory diseases.
Collapse
Affiliation(s)
- Alex Cornwell
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775, USA;
| | - Alireza Badiei
- Department of Veterinary Medicine, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| |
Collapse
|
4
|
Tan KL, Lee HC, Cheah PS, Ling KH. Mitochondrial Dysfunction in Down Syndrome: From Pathology to Therapy. Neuroscience 2023; 511:1-12. [PMID: 36496187 DOI: 10.1016/j.neuroscience.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/07/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
Mitochondrial dysfunctions have been described in Down syndrome (DS) caused by either partial or full trisomy of chromosome 21 (HSA21). Mitochondria play a crucial role in various vital functions in eukaryotic cells, especially in energy production, calcium homeostasis and programmed cell death. The function of mitochondria is primarily regulated by genes encoded in the mitochondrion and nucleus. Many genes on HSA21 are involved in oxidative phosphorylation (OXPHOS) and regulation of mitochondrial functions. This review highlights the HSA21 dosage-sensitive nuclear-encoded mitochondrial genes associated with overexpression-related phenotypes seen in DS. This includes impaired mitochondrial dynamics, structural defects and dysregulated bioenergetic profiles such as OXPHOS deficiency and reduced ATP production. Various therapeutic approaches for modulating energy deficits in DS, effects and molecular mechanism of gene therapy and drugs that exert protective effects through modulation of mitochondrial function and attenuation of oxidative stress in DS cells were discussed. It is prudent that improving DS pathophysiological conditions or quality of life may be feasible by targeting something as simple as cellular mitochondrial biogenesis and function.
Collapse
Affiliation(s)
- Kai-Leng Tan
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia; Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Han-Chung Lee
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia; Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Pike-See Cheah
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia; Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia; Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | - King-Hwa Ling
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia; Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia; Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Jiang S, Chen Y. The role of sulfur compounds in chronic obstructive pulmonary disease. Front Mol Biosci 2022; 9:928287. [PMID: 36339716 PMCID: PMC9626809 DOI: 10.3389/fmolb.2022.928287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/03/2022] [Indexed: 11/19/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common respiratory disease that brings about great social and economic burden, with oxidative stress and inflammation affecting the whole disease progress. Sulfur compounds such as hydrogen sulfide (H2S), thiols, and persulfides/polysulfides have intrinsic antioxidant and anti-inflammatory ability, which is engaged in the pathophysiological process of COPD. Hydrogen sulfide mainly exhibits its function by S-sulfidation of the cysteine residue of the targeted proteins. It also interacts with nitric oxide and acts as a potential biomarker for the COPD phenotype. Thiols’ redox buffer such as the glutathione redox couple is a major non-enzymatic redox buffer reflecting the oxidative stress in the organism. The disturbance of redox buffers was often detected in patients with COPD, and redressing the balance could delay COPD exacerbation. Sulfane sulfur refers to a divalent sulfur atom bonded with another sulfur atom. Among them, persulfides and polysulfides have an evolutionarily conserved modification with antiaging effects. Sulfur compounds and their relative signaling pathways are also associated with the development of comorbidities in COPD. Synthetic compounds which can release H2S and persulfides in the organism have gradually been developed. Naturally extracted sulfur compounds with pharmacological effects also aroused great interest. This study discussed the biological functions and mechanisms of sulfur compounds in regulating COPD and its comorbidities.
Collapse
|
6
|
Ascenção K, Szabo C. Emerging roles of cystathionine β-synthase in various forms of cancer. Redox Biol 2022; 53:102331. [PMID: 35618601 PMCID: PMC9168780 DOI: 10.1016/j.redox.2022.102331] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
The expression of the reverse transsulfuration enzyme cystathionine-β-synthase (CBS) is markedly increased in many forms of cancer, including colorectal, ovarian, lung, breast and kidney, while in other cancers (liver cancer and glioma) it becomes downregulated. According to the clinical database data in high-CBS-expressor cancers (e.g. colon or ovarian cancer), high CBS expression typically predicts lower survival, while in the low-CBS-expressor cancers (e.g. liver cancer), low CBS expression is associated with lower survival. In the high-CBS expressing tumor cells, CBS, and its product hydrogen sulfide (H2S) serves as a bioenergetic, proliferative, cytoprotective and stemness factor; it also supports angiogenesis and epithelial-to-mesenchymal transition in the cancer microenvironment. The current article reviews the various tumor-cell-supporting roles of the CBS/H2S axis in high-CBS expressor cancers and overviews the anticancer effects of CBS silencing and pharmacological CBS inhibition in various cancer models in vitro and in vivo; it also outlines potential approaches for biomarker identification, to support future targeted cancer therapies based on pharmacological CBS inhibition.
Collapse
|
7
|
The CBS-H 2S axis promotes liver metastasis of colon cancer by upregulating VEGF through AP-1 activation. Br J Cancer 2022; 126:1055-1066. [PMID: 34952931 PMCID: PMC8979992 DOI: 10.1038/s41416-021-01681-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/04/2021] [Accepted: 12/16/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The main therapy for colon cancer with liver metastasis is chemotherapy based on 5-fluorouracil combined with targeted drugs. However, acquired drug resistance and severe adverse reactions limit patients' benefit from standard chemotherapy. Here, we investigate the involvement of endogenous hydrogen sulfide (H2S) in liver metastasis of colon cancer and its potential value as a novel therapeutic target. METHODS We used the CRISPR/Cas9 system to knockdown CBS gene expression in colon cancer cell lines. PCR arrays and proteome arrays were applied to detect the transcription and protein expression levels, respectively, of angiogenesis-related genes after knockdown. The molecular mechanism was investigated by western blot analysis, RT-qPCR, immunofluorescence staining, ChIP assays and dual-luciferase reporter assays. A liver metastasis mouse model was adopted to investigate the effect of targeting CBS on tumour metastasis in vivo. RESULTS Knockdown of CBS decreased the metastasis and invasion of colon cancer cells and inhibited angiogenesis both in vivo and in vitro. Tissue microarray analysis showed a positive correlation between CBS and VEGF expression in colon cancer tissues. Further analysis at the molecular level validated a positive feedback loop between the CBS-H2S axis and VEGF. CONCLUSIONS Endogenous H2S promotes angiogenesis and metastasis in colon cancer, and targeting the positive feedback loop between the CBS-H2S axis and VEGF can effectively intervene in liver metastasis of colon cancer.
Collapse
|
8
|
Gupta R, Sahu M, Tripathi R, Ambasta RK, Kumar P. Protein S-sulfhydration: Unraveling the prospective of hydrogen sulfide in the brain, vasculature and neurological manifestations. Ageing Res Rev 2022; 76:101579. [PMID: 35124235 DOI: 10.1016/j.arr.2022.101579] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H2S) and hydrogen polysulfides (H2Sn) are essential regulatory signaling molecules generated by the entire body, including the central nervous system. Researchers have focused on the classical H2S signaling from the past several decades, whereas the last decade has shown the emergence of H2S-induced protein S-sulfhydration signaling as a potential therapeutic approach. Cysteine S-persulfidation is a critical paradigm of post-translational modification in the process of H2S signaling. Additionally, studies have shown the cross-relationship between S-sulfhydration and other cysteine-induced post-translational modifications, namely nitrosylation and carbonylation. In the central nervous system, S-sulfhydration is involved in the cytoprotection through various signaling pathways, viz. inflammatory response, oxidative stress, endoplasmic reticulum stress, atherosclerosis, thrombosis, and angiogenesis. Further, studies have demonstrated H2S-induced S-sulfhydration in regulating different biological processes, such as mitochondrial integrity, calcium homeostasis, blood-brain permeability, cerebral blood flow, and long-term potentiation. Thus, protein S-sulfhydration becomes a crucial regulatory molecule in cerebrovascular and neurodegenerative diseases. Herein, we first described the generation of intracellular H2S followed by the application of H2S in the regulation of cerebral blood flow and blood-brain permeability. Further, we described the involvement of S-sulfhydration in different biological and cellular functions, such as inflammatory response, mitochondrial integrity, calcium imbalance, and oxidative stress. Moreover, we highlighted the importance of S-sulfhydration in cerebrovascular and neurodegenerative diseases.
Collapse
|
9
|
Nahata M, Fujitsuka N, Sekine H, Shimobori C, Ohbuchi K, Iizuka S, Mogami S, Ohnishi S, Takeda H. Decline in Liver Mitochondria Metabolic Function Is Restored by Hochuekkito Through Sirtuin 1 in Aged Mice With Malnutrition. Front Physiol 2022; 13:848960. [PMID: 35299665 PMCID: PMC8921682 DOI: 10.3389/fphys.2022.848960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
Malnutrition impairs basic daily activities and leads to physical frailty, which is aggravated in the elderly compared with young adults. It is also well-known that the elderly are more vulnerable to metabolic stress. Therefore, in this study, using a food restricted (FR) mouse, we aimed to evaluate the effect of aging on locomotor activity and liver metabolic function. Further, we also investigated the involvement of hepatic mitochondria in liver metabolic function during aging, as well as the therapeutic benefit of the traditional Japanese medicine, hochuekkito (HET). Our findings indicated that following food restriction provided as 30% of ad libitum intake for 5 days, the locomotor activity was lower in 23–26-month-old (aged) mice than in 9-week-old (young) mice. Further, compared with young mice, aged mice exhibited significant decreases in the levels of metabolites related to the urea cycle, mitochondrial function, and anti-oxidative stress. The livers of the aged mice also showed a greater decrease in mitochondrial DNA copy number than young mice. Furthermore, the gene expression levels of sirtuin 1 (SIRT1) and mitochondrial biogenesis-related regulators were attenuated in aged mice. However, these changes were partially restored by HET treatment, which also improved locomotor activity, and combined treatment with alanine resulted in more significant effects in this regard. Therefore, our findings suggested that the decrease in locomotor activity in aged FR mice was associated with a decline in the metabolic function of hepatic mitochondria via decreased SIRT1 expression, which was restored by HET treatment. This implies that enhancing the metabolic function of liver mitochondria can contribute to alleviating energy deficiency in the elderly.
Collapse
Affiliation(s)
- Miwa Nahata
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Naoki Fujitsuka
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
- *Correspondence: Naoki Fujitsuka,
| | - Hitomi Sekine
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Chika Shimobori
- Tsumura Advanced Technology Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Katsuya Ohbuchi
- Tsumura Advanced Technology Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Seiichi Iizuka
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Sachiko Mogami
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Shunsuke Ohnishi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hiroshi Takeda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Gastroenterology, Tokeidai Memorial Hospital, Sapporo, Japan
| |
Collapse
|
10
|
Human Cystathionine γ-Lyase Is Inhibited by s-Nitrosation: A New Crosstalk Mechanism between NO and H 2S. Antioxidants (Basel) 2021; 10:antiox10091391. [PMID: 34573023 PMCID: PMC8467691 DOI: 10.3390/antiox10091391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 01/01/2023] Open
Abstract
The ‘gasotransmitters’ hydrogen sulfide (H2S), nitric oxide (NO), and carbon monoxide (CO) act as second messengers in human physiology, mediating signal transduction via interaction with or chemical modification of protein targets, thereby regulating processes such as neurotransmission, blood flow, immunomodulation, or energy metabolism. Due to their broad reactivity and potential toxicity, the biosynthesis and breakdown of H2S, NO, and CO are tightly regulated. Growing evidence highlights the active role of gasotransmitters in their mutual cross-regulation. In human physiology, the transsulfuration enzymes cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) are prominent H2S enzymatic sources. While CBS is known to be inhibited by NO and CO, little is known about CSE regulation by gasotransmitters. Herein, we investigated the effect of s-nitrosation on CSE catalytic activity. H2S production by recombinant human CSE was found to be inhibited by the physiological nitrosating agent s-nitrosoglutathione (GSNO), while reduced glutathione had no effect. GSNO-induced inhibition was partially reverted by ascorbate and accompanied by the disappearance of one solvent accessible protein thiol. By combining differential derivatization procedures and mass spectrometry-based analysis with functional assays, seven out of the ten protein cysteine residues, namely Cys84, Cys109, Cys137, Cys172, Cys229, Cys307, and Cys310, were identified as targets of s-nitrosation. By generating conservative Cys-to-Ser variants of the identified s-nitrosated cysteines, Cys137 was identified as most significantly contributing to the GSNO-mediated CSE inhibition. These results highlight a new mechanism of crosstalk between gasotransmitters.
Collapse
|
11
|
Gautam K, Negi S, Saini V. Targeting endogenous gaseous signaling molecules as novel host-directed therapies against tuberculosis infection. Free Radic Res 2021; 55:655-670. [PMID: 33641567 DOI: 10.1080/10715762.2021.1892091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Tuberculosis (TB) is a chronic pulmonary disease caused by Mycobacterium tuberculosis which is a major cause of morbidity and mortality worldwide. Due to the complexity of disease and its continuous global spread, there is an urgent need to improvise the strategies for prevention, diagnosis, and treatment. The current anti-TB regimen lasts for months and warrants strict compliance to clear infection and to minimize the risk of development of multi drug-resistant tuberculosis. This underscores the need to have new and improved therapeutics for TB treatment. Several studies have highlighted the unique ability of Mycobacterium tuberculosis to exploit host factors to support its survival inside the intracellular environment. One of the key players to mycobacterial disease susceptibility and infection are endogenous gases such as oxygen, nitric oxide, carbon monoxide and hydrogen sulfide. Nitric oxide and carbon monoxide as the physiological gaseous messengers are considered important to the outcome of Mycobacterium tuberculosis infection. The role of hydrogen sulfide in human tuberculosis is yet not fully elucidated, but this gas has been shown to play a significant role in bacterial respiration, growth and pathogenesis. This review will focus on the host factors majorly endogenous gaseous signaling molecules which contributes to Mycobacterium tuberculosis survival inside the intracellular environment and highlight the potential therapeutic targets.
Collapse
Affiliation(s)
- Kamini Gautam
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Sheetal Negi
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Vikram Saini
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
12
|
Fox BC, Slade L, Torregrossa R, Pacitti D, Szabo C, Etheridge T, Whiteman M. The mitochondria-targeted hydrogen sulfide donor AP39 improves health and mitochondrial function in a C. elegans primary mitochondrial disease model. J Inherit Metab Dis 2021; 44:367-375. [PMID: 33325042 DOI: 10.1002/jimd.12345] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022]
Abstract
Primary mitochondrial diseases (PMD) are inherited diseases that cause dysfunctional mitochondrial oxidative phosphorylation, leading to diverse multisystem diseases and substantially impaired quality of life. PMD treatment currently comprises symptom management, with an unmet need for therapies targeting the causative mitochondrial defects. Molecules which selective target mitochondria have been proposed as potential treatment options in PMD but have met with limited success. We have previously shown in animal models that mitochondrial dysfunction caused by the disease process could be prevented and/or reversed by selective targeting of the "gasotransmitter" hydrogen sulfide (H2 S) to mitochondria using a novel compound, AP39. Therefore, in this study we investigated whether AP39 could also restore mitochondrial function in PMD models where mitochondrial dysfunction was the cause of the disease pathology using C. elegans. We characterised several PMD mutant C. elegans strains for reduced survival, movement and impaired cellular bioenergetics and treated each with AP39. In animals with widespread electron transport chain deficiency (gfm-1[ok3372]), AP39 (100 nM) restored ATP levels, but had no effect on survival or movement. However, in a complex I mutant (nuo-4[ok2533]), a Leigh syndrome orthologue, AP39 significantly reversed the decline in ATP levels, preserved mitochondrial membrane potential and increased movement and survival. For the first time, this study provides proof-of-principle evidence suggesting that selective targeting of mitochondria with H2 S could represent a novel drug discovery approach to delay, prevent and possibly reverse mitochondrial decline in PMD and related disorders.
Collapse
Affiliation(s)
| | - Luke Slade
- University of Exeter Medical School, Exeter, UK
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | | | | - Csaba Szabo
- Department of Pharmacology, University of Fribourg, Fribourg, Switzerland
| | - Timothy Etheridge
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | |
Collapse
|
13
|
Huang YQ, Jin HF, Zhang H, Tang CS, Du JB. Interaction among Hydrogen Sulfide and Other Gasotransmitters in Mammalian Physiology and Pathophysiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1315:205-236. [PMID: 34302694 DOI: 10.1007/978-981-16-0991-6_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hydrogen sulfide (H2S), nitric oxide (NO), carbon monoxide (CO), and sulfur dioxide (SO2) were previously considered as toxic gases, but now they are found to be members of mammalian gasotransmitters family. Both H2S and SO2 are endogenously produced in sulfur-containing amino acid metabolic pathway in vivo. The enzymes catalyzing the formation of H2S are mainly CBS, CSE, and 3-MST, and the key enzymes for SO2 production are AAT1 and AAT2. Endogenous NO is produced from L-arginine under catalysis of three isoforms of NOS (eNOS, iNOS, and nNOS). HO-mediated heme catabolism is the main source of endogenous CO. These four gasotransmitters play important physiological and pathophysiological roles in mammalian cardiovascular, nervous, gastrointestinal, respiratory, and immune systems. The similarity among these four gasotransmitters can be seen from the same and/or shared signals. With many studies on the biological effects of gasotransmitters on multiple systems, the interaction among H2S and other gasotransmitters has been gradually explored. H2S not only interacts with NO to form nitroxyl (HNO), but also regulates the HO/CO and AAT/SO2 pathways. Here, we review the biosynthesis and metabolism of the gasotransmitters in mammals, as well as the known complicated interactions among H2S and other gasotransmitters (NO, CO, and SO2) and their effects on various aspects of cardiovascular physiology and pathophysiology, such as vascular tension, angiogenesis, heart contractility, and cardiac protection.
Collapse
Affiliation(s)
- Ya-Qian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hong-Fang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China.
| | - Heng Zhang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Chao-Shu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing, China
| | - Jun-Bao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China.
| |
Collapse
|
14
|
Ali A, Wang Y, Wu L, Yang G. Gasotransmitter signaling in energy homeostasis and metabolic disorders. Free Radic Res 2020; 55:83-105. [PMID: 33297784 DOI: 10.1080/10715762.2020.1862827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gasotransmitters are small molecules of gases, including nitric oxide (NO), hydrogen sulfide (H2S), and carbon monoxide (CO). These three gasotransmitters can be endogenously produced and regulate a wide range of pathophysiological processes by interacting with specific targets upon diffusion in the biological media. By redox and epigenetic regulation of various physiological functions, NO, H2S, and CO are critical for the maintenance of intracellular energy homeostasis. Accumulated evidence has shown that these three gasotransmitters control ATP generation, mitochondrial biogenesis, glucose metabolism, insulin sensitivity, lipid metabolism, and thermogenesis, etc. Abnormal generation and metabolism of NO, H2S, and/or CO are involved in various abnormal metabolic diseases, including obesity, diabetes, and dyslipidemia. In this review, we summarized the roles of NO, H2S, and CO in the regulation of energy homeostasis as well as their involvements in the metabolism of dysfunction-related diseases. Understanding the interaction among these gasotransmitters and their specific molecular targets are very important for therapeutic applications.
Collapse
Affiliation(s)
- Amr Ali
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Yuehong Wang
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Lingyun Wu
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada.,School of Human Kinetics, Laurentian University, Sudbury, Canada.,Health Science North Research Institute, Sudbury, Canada
| | - Guangdong Yang
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| |
Collapse
|
15
|
The multifaceted roles of sulfane sulfur species in cancer-associated processes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148338. [PMID: 33212042 DOI: 10.1016/j.bbabio.2020.148338] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023]
Abstract
Sulfane sulfur species comprise a variety of biologically relevant hydrogen sulfide (H2S)-derived species, including per- and poly-sulfidated low molecular weight compounds and proteins. A growing body of evidence suggests that H2S, currently recognized as a key signaling molecule in human physiology and pathophysiology, plays an important role in cancer biology by modulating cell bioenergetics and contributing to metabolic reprogramming. This is accomplished through functional modulation of target proteins via H2S binding to heme iron centers or H2S-mediated reversible per- or poly-sulfidation of specific cysteine residues. Since sulfane sulfur species are increasingly viewed not only as a major source of H2S but also as key mediators of some of the biological effects commonly attributed to H2S, the multifaceted role of these species in cancer biology is reviewed here with reference to H2S, focusing on their metabolism, signaling function, impact on cell bioenergetics and anti-tumoral properties.
Collapse
|
16
|
Zuhra K, Augsburger F, Majtan T, Szabo C. Cystathionine-β-Synthase: Molecular Regulation and Pharmacological Inhibition. Biomolecules 2020; 10:E697. [PMID: 32365821 PMCID: PMC7277093 DOI: 10.3390/biom10050697] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Cystathionine-β-synthase (CBS), the first (and rate-limiting) enzyme in the transsulfuration pathway, is an important mammalian enzyme in health and disease. Its biochemical functions under physiological conditions include the metabolism of homocysteine (a cytotoxic molecule and cardiovascular risk factor) and the generation of hydrogen sulfide (H2S), a gaseous biological mediator with multiple regulatory roles in the vascular, nervous, and immune system. CBS is up-regulated in several diseases, including Down syndrome and many forms of cancer; in these conditions, the preclinical data indicate that inhibition or inactivation of CBS exerts beneficial effects. This article overviews the current information on the expression, tissue distribution, physiological roles, and biochemistry of CBS, followed by a comprehensive overview of direct and indirect approaches to inhibit the enzyme. Among the small-molecule CBS inhibitors, the review highlights the specificity and selectivity problems related to many of the commonly used "CBS inhibitors" (e.g., aminooxyacetic acid) and provides a comprehensive review of their pharmacological actions under physiological conditions and in various disease models.
Collapse
Affiliation(s)
- Karim Zuhra
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| | - Fiona Augsburger
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| | - Tomas Majtan
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| |
Collapse
|
17
|
Jensen B, Fago A. A Novel Possible Role for Met Hemoglobin as Carrier of Hydrogen Sulfide in the Blood. Antioxid Redox Signal 2020; 32:258-265. [PMID: 31530173 DOI: 10.1089/ars.2019.7877] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Significance: Along with other gasotransmitters nitric oxide (NO) and carbon monoxide, hydrogen sulfide (H2S) has recently emerged as an important signaling molecule with a particularly complex metabolism. Endogenous H2S reacts with multiple cellular targets, including protein ferric heme groups, to elicit physiological responses, such as regulation of local blood flow. Recent Advances: Recent in vitro evidence suggests that H2S at low physiological concentrations is carried in the blood as bound to the small fraction of oxidized ferric hemoglobin (metHb). A relatively stable metHb-sulfide complex forms when H2S and purified metHb react in vitro, with an affinity within the in vivo physiological range of sulfide in the blood. Formation and subsequent redox metabolism of metHb-sulfide complex have also been confirmed in isolated intact red blood cells (RBCs) containing enhanced metHb levels. Thus, H2S may function as an endocrine signaling molecule and elicit responses at sites away from the site of production. In addition, metHb, considered as an inert or pathological hemoglobin derivative, may have a novel potential physiological role in the transport of H2S in the blood. Critical Issues: The transport of H2S in the blood mediated by metHb would represent an O2-independent pH-dependent mechanism for the blood-mediated control of blood flow and as such it is critical to understand the in vivo significance of this transport. Future Directions: Major challenges must be resolved to understand how metHb may carry H2S in the RBCs, in particular determination of metHb-sulfide levels in the blood and identification of targets in the vasculature.
Collapse
Affiliation(s)
- Birgitte Jensen
- Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Angela Fago
- Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
18
|
Giuffrè A, Tomé CS, Fernandes DGF, Zuhra K, Vicente JB. Hydrogen Sulfide Metabolism and Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:335-353. [PMID: 32130707 DOI: 10.1007/978-3-030-34025-4_17] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hydrogen sulfide (H2S), while historically perceived merely as a toxicant, has progressively emerged as a key regulator of numerous processes in mammalian physiology, exerting its signaling function essentially through interaction with and/or modification of proteins, targeting mainly cysteine residues and metal centers. As a gaseous signaling molecule that freely diffuses across aqueous and hydrophobic biological milieu, it has been designated the third 'gasotransmitter' in mammalian physiology. H2S is synthesized and detoxified by specialized endogenous enzymes that operate under a tight regulation, ensuring homeostatic levels of this otherwise toxic molecule. Indeed, imbalances in H2S levels associated with dysfunctional H2S metabolism have been growingly correlated with various human pathologies, from cardiovascular and neurodegenerative diseases to cancer. Several cancer cell lines and specimens have been shown to naturally overexpress one or more of the H2S-synthesizing enzymes. The resulting increased H2S levels have been proposed to promote cancer development through the regulation of various cancer-related processes, which led to the interest in pharmacological targeting of H2S metabolism. Herein are summarized some of the key observations that place H2S metabolism and signaling pathways at the forefront of the cellular mechanisms that support the establishment and development of a tumor within its complex and challenging microenvironment. Special emphasis is given to the mechanisms whereby H2S helps shaping cancer cell bioenergetic metabolism and affords resistance and adaptive mechanisms to hypoxia.
Collapse
Affiliation(s)
| | - Catarina S Tomé
- Instituto de Tecnologia Química e Biológica António Xavier, NOVA University of Lisbon, Oeiras, Portugal
| | - Dalila G F Fernandes
- Instituto de Tecnologia Química e Biológica António Xavier, NOVA University of Lisbon, Oeiras, Portugal
| | - Karim Zuhra
- CNR Institute of Molecular Biology and Pathology, Rome, Italy
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - João B Vicente
- Instituto de Tecnologia Química e Biológica António Xavier, NOVA University of Lisbon, Oeiras, Portugal.
| |
Collapse
|
19
|
Damba T, Zhang M, Buist-Homan M, van Goor H, Faber KN, Moshage H. Hydrogen sulfide stimulates activation of hepatic stellate cells through increased cellular bio-energetics. Nitric Oxide 2019; 92:26-33. [PMID: 31401106 DOI: 10.1016/j.niox.2019.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 12/28/2022]
Abstract
Hepatic fibrosis is caused by chronic inflammation and characterized as the excessive accumulation of extracellular matrix (ECM) by activated hepatic stellate cells (HSCs). Gasotransmitters like NO and CO are known to modulate inflammation and fibrosis, however, little is known about the role of the gasotransmitter hydrogen sulfide (H2S) in liver fibrogenesis and stellate cell activation. Endogenous H2S is produced by the enzymes cystathionine β-synthase (CBS), cystathionine γ-lyase (CTH) and 3-mercaptopyruvate sulfur transferase (MPST) [1]. The aim of this study was to elucidate the role of endogenously produced and/or exogenously administered H2S on rat hepatic stellate cell activation and fibrogenesis. Primary rat HSCs were culture-activated for 7 days and treated with different H2S releasing donors (slow releasing donor GYY4137, fast releasing donor NaHS) or inhibitors of the H2S producing enzymes CTH and CBS (DL-PAG, AOAA). The main message of our study is that mRNA and protein expression level of H2S synthesizing enzymes are low in HSCs compared to hepatocytes and Kupffer cells. However, H2S promotes hepatic stellate cell activation. This conclusion is based on the fact that production of H2S and mRNA and protein expression of its producing enzyme CTH are increased during hepatic stellate cell activation. Furthermore, exogenous H2S increased HSC proliferation while inhibitors of endogenous H2S production reduce proliferation and fibrotic makers of HSCs. The effect of H2S on stellate cell activation correlated with increased cellular bioenergetics. Our results indicate that the H2S generation in hepatic stellate cells is a target for anti-fibrotic intervention and that systemic interventions with H2S should take into account cell-specific effects of H2S.
Collapse
Affiliation(s)
- Turtushikh Damba
- Dept. Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Mengfan Zhang
- Dept. Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Manon Buist-Homan
- Dept. Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Dept. Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Harry van Goor
- Dept. Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Klaas Nico Faber
- Dept. Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Dept. Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Han Moshage
- Dept. Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Dept. Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
20
|
Zuhra K, Tomé CS, Masi L, Giardina G, Paulini G, Malagrinò F, Forte E, Vicente JB, Giuffrè A. N-Acetylcysteine Serves as Substrate of 3-Mercaptopyruvate Sulfurtransferase and Stimulates Sulfide Metabolism in Colon Cancer Cells. Cells 2019; 8:cells8080828. [PMID: 31382676 PMCID: PMC6721681 DOI: 10.3390/cells8080828] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 12/12/2022] Open
Abstract
Hydrogen sulfide (H2S) is an endogenously produced signaling molecule. The enzymes 3-mercaptopyruvate sulfurtransferase (MST), partly localized in mitochondria, and the inner mitochondrial membrane-associated sulfide:quinone oxidoreductase (SQR), besides being respectively involved in the synthesis and catabolism of H2S, generate sulfane sulfur species such as persulfides and polysulfides, currently recognized as mediating some of the H2S biological effects. Reprogramming of H2S metabolism was reported to support cellular proliferation and energy metabolism in cancer cells. As oxidative stress is a cancer hallmark and N-acetylcysteine (NAC) was recently suggested to act as an antioxidant by increasing intracellular levels of sulfane sulfur species, here we evaluated the effect of prolonged exposure to NAC on the H2S metabolism of SW480 colon cancer cells. Cells exposed to NAC for 24 h displayed increased expression and activity of MST and SQR. Furthermore, NAC was shown to: (i) persist at detectable levels inside the cells exposed to the drug for up to 24 h and (ii) sustain H2S synthesis by human MST more effectively than cysteine, as shown working on the isolated recombinant enzyme. We conclude that prolonged exposure of colon cancer cells to NAC stimulates H2S metabolism and that NAC can serve as a substrate for human MST.
Collapse
Affiliation(s)
- Karim Zuhra
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
- CNR Institute of Molecular Biology and Pathology, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Catarina S Tomé
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Avenida da República (EAN), 2780-157 Oeiras, Portugal
| | - Letizia Masi
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Giorgio Giardina
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Giulia Paulini
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Francesca Malagrinò
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy.
| | - João B Vicente
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Avenida da República (EAN), 2780-157 Oeiras, Portugal.
| | - Alessandro Giuffrè
- CNR Institute of Molecular Biology and Pathology, Piazzale Aldo Moro 5, I-00185 Rome, Italy.
| |
Collapse
|
21
|
Jensen B, Pardue S, Kevil CG, Fago A. Tissue-dependent variation of hydrogen sulfide homeostasis in anoxic freshwater turtles. ACTA ACUST UNITED AC 2019; 222:jeb.203976. [PMID: 31109970 DOI: 10.1242/jeb.203976] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/14/2019] [Indexed: 12/27/2022]
Abstract
Hydrogen sulfide (H2S) controls numerous physiological responses. To understand its proposed role in metabolic suppression, we measured free H2S and bound sulfane sulfur (BSS) in tissues of the freshwater turtle Trachemys scripta elegans, a species undergoing strong metabolic suppression when cold and anoxic. In warm normoxic turtles, free H2S was higher in red blood cells (RBCs) and kidney (∼9-10 µmol l-1) than in brain, liver and lung (∼1-2 µmol l-1). These values overall aligned with the tissue H2S-generating enzymatic activity. BSS levels were similar in all tissues (∼0.5 µmol l-1) but ∼100-fold higher in RBCs, which have a high thiol content, suggesting that RBCs function as a circulating H2S reservoir. Cold acclimation caused significant changes in free and bound H2S in liver, brain and RBCs, but anoxia had no further effect, except in the brain. These results show tissue-dependent sulfide signaling with a potential role in brain metabolic suppression during anoxia in turtles.
Collapse
Affiliation(s)
- Birgitte Jensen
- Department of Bioscience, Aarhus University, DK-8000 Aarhus C, Denmark.,Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Sibile Pardue
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Christopher G Kevil
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Angela Fago
- Department of Bioscience, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
22
|
Vigorito C, Anishchenko E, Mele L, Capolongo G, Trepiccione F, Zacchia M, Lombari P, Capasso R, Ingrosso D, Perna AF. Uremic Toxin Lanthionine Interferes with the Transsulfuration Pathway, Angiogenetic Signaling and Increases Intracellular Calcium. Int J Mol Sci 2019; 20:E2269. [PMID: 31071929 PMCID: PMC6539355 DOI: 10.3390/ijms20092269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 01/08/2023] Open
Abstract
(1) The beneficial effects of hydrogen sulfide (H2S) on the cardiovascular and nervous system have recently been re-evaluated. It has been shown that lanthionine, a side product of H2S biosynthesis, previously used as a marker for H2S production, is dramatically increased in circulation in uremia, while H2S release is impaired. Thus, lanthionine could be classified as a novel uremic toxin. Our research was aimed at defining the mechanism(s) for lanthionine toxicity. (2) The effect of lanthionine on H2S release was tested by a novel lead acetate strip test (LAST) in EA.hy926 cell cultures. Effects of glutathione, as a redox agent, were assayed. Levels of sulfane sulfur were evaluated using the SSP4 probe and flow cytometry. Protein content and glutathionylation were analyzed by Western Blotting and immunoprecipitation, respectively. Gene expression and miRNA levels were assessed by qPCR. (3) We demonstrated that, in endothelial cells, lanthionine hampers H2S release; reduces protein content and glutathionylation of transsulfuration enzyme cystathionine-β-synthase; modifies the expression of miR-200c and miR-423; lowers expression of vascular endothelial growth factor VEGF; increases Ca2+ levels. (4) Lanthionine-induced alterations in cell cultures, which involve both sulfur amino acid metabolism and calcium homeostasis, are consistent with uremic dysfunctional characteristics and further support the uremic toxin role of this amino acid.
Collapse
Affiliation(s)
- Carmela Vigorito
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," 80131 Naples, Italy.
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli," 80138 Naples, Italy.
| | - Evgeniya Anishchenko
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," 80131 Naples, Italy.
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli," 80138 Naples, Italy.
| | - Luigi Mele
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," 80138 Naples, Italy.
| | - Giovanna Capolongo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," 80131 Naples, Italy.
| | - Francesco Trepiccione
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," 80131 Naples, Italy.
- Biogem A. C. S. R. L. Contrada Camporeale, 83031 Ariano Irpino AV, Italy.
| | - Miriam Zacchia
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," 80131 Naples, Italy.
| | - Patrizia Lombari
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," 80131 Naples, Italy.
| | - Rosanna Capasso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli," 80138 Naples, Italy.
| | - Diego Ingrosso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli," 80138 Naples, Italy.
| | - Alessandra F Perna
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," 80131 Naples, Italy.
| |
Collapse
|
23
|
Mun J, Kang HM, Jung J, Park C. Role of hydrogen sulfide in cerebrovascular alteration during aging. Arch Pharm Res 2019; 42:446-454. [DOI: 10.1007/s12272-019-01135-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/19/2019] [Indexed: 01/06/2023]
|
24
|
Hydrogen Sulfide Oxidation: Adaptive Changes in Mitochondria of SW480 Colorectal Cancer Cells upon Exposure to Hypoxia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8102936. [PMID: 30838088 PMCID: PMC6374825 DOI: 10.1155/2019/8102936] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023]
Abstract
Hydrogen sulfide (H2S), a known inhibitor of cytochrome c oxidase (CcOX), plays a key signaling role in human (patho)physiology. H2S is synthesized endogenously and mainly metabolized by a mitochondrial sulfide-oxidizing pathway including sulfide:quinone oxidoreductase (SQR), whereby H2S-derived electrons are injected into the respiratory chain stimulating O2 consumption and ATP synthesis. Under hypoxic conditions, H2S has higher stability and is synthesized at higher levels with protective effects for the cell. Herein, working on SW480 colon cancer cells, we evaluated the effect of hypoxia on the ability of cells to metabolize H2S. The sulfide-oxidizing activity was assessed by high-resolution respirometry, measuring the stimulatory effect of sulfide on rotenone-inhibited cell respiration in the absence or presence of antimycin A. Compared to cells grown under normoxic conditions (air O2), cells exposed for 24 h to hypoxia (1% O2) displayed a 1.3-fold reduction in maximal sulfide-oxidizing activity and 2.7-fold lower basal O2 respiration. Based on citrate synthase activity assays, mitochondria of hypoxia-treated cells were 1.8-fold less abundant and displayed 1.4-fold higher maximal sulfide-oxidizing activity and 2.6-fold enrichment in SQR as evaluated by immunoblotting. We speculate that under hypoxic conditions mitochondria undergo these adaptive changes to protect cell respiration from H2S poisoning.
Collapse
|
25
|
Screening Pyridine Derivatives against Human Hydrogen Sulfide-synthesizing Enzymes by Orthogonal Methods. Sci Rep 2019; 9:684. [PMID: 30679627 PMCID: PMC6346012 DOI: 10.1038/s41598-018-36994-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 11/26/2018] [Indexed: 12/11/2022] Open
Abstract
Biosynthesis of hydrogen sulfide (H2S), a key signalling molecule in human (patho)physiology, is mostly accomplished by the human enzymes cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (MST). Several lines of evidence have shown a close correlation between increased H2S production and human diseases, such as several cancer types and amyotrophic lateral sclerosis. Identifying compounds selectively and potently inhibiting the human H2S-synthesizing enzymes may therefore prove beneficial for pharmacological applications. Here, the human enzymes CBS, CSE and MST were expressed and purified from Escherichia coli, and thirty-one pyridine derivatives were synthesized and screened for their ability to bind and inhibit these enzymes. Using differential scanning fluorimetry (DSF), surface plasmon resonance (SPR), circular dichroism spectropolarimetry (CD), and activity assays based on fluorimetric and colorimetric H2S detection, two compounds (C30 and C31) sharing structural similarities were found to weakly inhibit both CBS and CSE: 1 mM C30 inhibited these enzymes by approx. 50% and 40%, respectively, while 0.5 mM C31 accounted for CBS and CSE inhibition by approx. 40% and 60%, respectively. This work, while presenting a robust methodological platform for screening putative inhibitors of the human H2S-synthesizing enzymes, highlights the importance of employing complementary methodologies in compound screenings.
Collapse
|
26
|
Perna AF, Glorieux G, Zacchia M, Trepiccione F, Capolongo G, Vigorito C, Anishchenko E, Ingrosso D. The role of the intestinal microbiota in uremic solute accumulation: a focus on sulfur compounds. J Nephrol 2019; 32:733-740. [PMID: 30673975 DOI: 10.1007/s40620-019-00589-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/18/2019] [Indexed: 12/11/2022]
Abstract
The gut microbiota is considered to be a novel important factor to take into account in the pathogenesis of chronic kidney disease and uremia. Much attention has been paid to specific uremic retention solutes of microbial origin, such as indoxyl sulfate, p-cresyl sulfate, and trimethylamine-N-oxide. However, other novel less well studied compounds, such as hydrogen sulfide and related sulfur metabolites (sulfane sulfur, lanthionine, etc.), should be included in a more comprehensive appraisal of this topic, in light of the potential therapeutic opportunities for the future.
Collapse
Affiliation(s)
- Alessandra F Perna
- First Division of Nephrology, Department of Translational Medical Sciences, School of Medicine, University of Campania "Luigi Vanvitelli", Via Pansini 5, Bldg 17, 80131, Naples, Italy.
| | - Griet Glorieux
- Nephrology Section, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Miriam Zacchia
- First Division of Nephrology, Department of Translational Medical Sciences, School of Medicine, University of Campania "Luigi Vanvitelli", Via Pansini 5, Bldg 17, 80131, Naples, Italy
| | - Francesco Trepiccione
- First Division of Nephrology, Department of Translational Medical Sciences, School of Medicine, University of Campania "Luigi Vanvitelli", Via Pansini 5, Bldg 17, 80131, Naples, Italy
| | - Giovanna Capolongo
- First Division of Nephrology, Department of Translational Medical Sciences, School of Medicine, University of Campania "Luigi Vanvitelli", Via Pansini 5, Bldg 17, 80131, Naples, Italy
| | - Carmela Vigorito
- First Division of Nephrology, Department of Translational Medical Sciences, School of Medicine, University of Campania "Luigi Vanvitelli", Via Pansini 5, Bldg 17, 80131, Naples, Italy
| | - Evgeniya Anishchenko
- First Division of Nephrology, Department of Translational Medical Sciences, School of Medicine, University of Campania "Luigi Vanvitelli", Via Pansini 5, Bldg 17, 80131, Naples, Italy
| | - Diego Ingrosso
- Department of Precision Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Via Luigi de Crecchio 7, 80138, Naples, Italy
| |
Collapse
|
27
|
Bitar MS, Nader J, Al-Ali W, Al Madhoun A, Arefanian H, Al-Mulla F. Hydrogen Sulfide Donor NaHS Improves Metabolism and Reduces Muscle Atrophy in Type 2 Diabetes: Implication for Understanding Sarcopenic Pathophysiology. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6825452. [PMID: 30510624 PMCID: PMC6232794 DOI: 10.1155/2018/6825452] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/09/2018] [Accepted: 08/15/2018] [Indexed: 12/15/2022]
Abstract
Sarcopenia, a loss of muscle mass and functionality, constitutes a major contributor to disability in diabetes. Hydrogen sulfide (H2S) dynamics and muscle mass regulatory signaling were studied in GK rats, a model for type 2 diabetes (T2D). GK rats exhibited a number of features that are consistent with sarcopenia and T2D including loss of muscle mass and strength, in addition to glucose intolerance, insulin resistance, and impaired β-cell responsiveness to glucose. Mechanistically, activation levels of Akt, a key modulator of protein balance, were decreased in T2D. Consequently, we confirmed reduced activity of mTOR signaling components and higher expression of atrophy-related markers typified by FoxO1/atrogin-1/MuRF1 and myostatin-Smad2/3 signaling during the course of diabetes. We observed in GK rat reduced antioxidant capacity (↓GSH/GSSG) and increased expression and activity of NADPH oxidase in connection with augmented rate of oxidation of lipids, proteins, and DNA. H2S bioavailability and the expression of key enzymes involved in its synthesis were suppressed as a function of diabetes. Interestingly, GK rats receiving NaHS displayed increased muscle Akt/mTOR signaling and decreased expression of myostatin and the FoxO1/MuRF1/atrogin-dependent pathway. Moreover, diabetes-induced heightened state of oxidative stress was also ameliorated in response to NaHS therapy. Overall, the current data support the notion that a relationship exists between sarcopenia, heightened state of oxidative stress, and H2S deficiency at least in the context of diabetes. Moreover, treatment with a potent H2S donor at an early stage of diabetes is likely to mitigate the development of sarcopenia/frailty and predictably reduces its devastating sequelae of amputation.
Collapse
Affiliation(s)
- Milad S. Bitar
- Department of Pharmacology & Toxicology, Kuwait University, Faculty of Medicine, Kuwait
- Immunology Unit, Dasman Diabetes Institute, Kuwait
| | - Joelle Nader
- Department of Mathematics & Natural Sciences, American University of Kuwait, Kuwait
| | - Waleed Al-Ali
- Department of Pathology, Kuwait University, Faculty of Medicine, Kuwait
| | | | | | - Fahd Al-Mulla
- Functional Genomics Unit, Dasman Diabetes Institute, Kuwait
| |
Collapse
|
28
|
Hydrogen Sulfide Biochemistry and Interplay with Other Gaseous Mediators in Mammalian Physiology. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6290931. [PMID: 30050658 PMCID: PMC6040266 DOI: 10.1155/2018/6290931] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/13/2018] [Indexed: 01/06/2023]
Abstract
Hydrogen sulfide (H2S) has emerged as a relevant signaling molecule in physiology, taking its seat as a bona fide gasotransmitter akin to nitric oxide (NO) and carbon monoxide (CO). After being merely regarded as a toxic poisonous molecule, it is now recognized that mammalian cells are equipped with sophisticated enzymatic systems for H2S production and breakdown. The signaling role of H2S is mainly related to its ability to modify different protein targets, particularly by promoting persulfidation of protein cysteine residues and by interacting with metal centers, mostly hemes. H2S has been shown to regulate a myriad of cellular processes with multiple physiological consequences. As such, dysfunctional H2S metabolism is increasingly implicated in different pathologies, from cardiovascular and neurodegenerative diseases to cancer. As a highly diffusible reactive species, the intra- and extracellular levels of H2S have to be kept under tight control and, accordingly, regulation of H2S metabolism occurs at different levels. Interestingly, even though H2S, NO, and CO have similar modes of action and parallel regulatory targets or precisely because of that, there is increasing evidence of a crosstalk between the three gasotransmitters. Herein are reviewed the biochemistry, metabolism, and signaling function of hydrogen sulfide, as well as its interplay with the other gasotransmitters, NO and CO.
Collapse
|
29
|
Sousa FM, Pereira JG, Marreiros BC, Pereira MM. Taxonomic distribution, structure/function relationship and metabolic context of the two families of sulfide dehydrogenases: SQR and FCSD. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:742-753. [PMID: 29684324 DOI: 10.1016/j.bbabio.2018.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/28/2018] [Accepted: 04/15/2018] [Indexed: 12/26/2022]
Abstract
Hydrogen sulfide (H2S) is a versatile molecule with different functions in living organisms: it can work as a metabolite of sulfur and energetic metabolism or as a signaling molecule in higher Eukaryotes. H2S is also highly toxic since it is able to inhibit heme cooper oxygen reductases, preventing oxidative phosphorylation. Due to the fact that it can both inhibit and feed the respiratory chain, the immediate role of H2S on energy metabolism crucially relies on its bioavailability, meaning that studying the central players involved in the H2S homeostasis is key for understanding sulfide metabolism. Two different enzymes with sulfide oxidation activity (sulfide dehydrogenases) are known: flavocytochrome c sulfide dehydrogenase (FCSD), a sulfide:cytochrome c oxidoreductase; and sulfide:quinone oxidoreductase (SQR). In this work we performed a thorough bioinformatic study of SQRs and FCSDs and integrated all published data. We systematized several properties of these proteins: (i) nature of flavin binding, (ii) capping loops and (iii) presence of key amino acid residues. We also propose an update to the SQR classification system and discuss the role of these proteins in sulfur metabolism.
Collapse
Affiliation(s)
- Filipe M Sousa
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal
| | - Juliana G Pereira
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal
| | - Bruno C Marreiros
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal; University of Lisbon, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8, 1749-016 Lisboa, Portugal.
| |
Collapse
|
30
|
Nonylphenol and Octylphenol Differently Affect Cell Redox Balance by Modulating the Nitric Oxide Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1684827. [PMID: 29805728 PMCID: PMC5901947 DOI: 10.1155/2018/1684827] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/06/2018] [Indexed: 12/19/2022]
Abstract
Nonylphenol (NP) and octylphenol (OP) are pervasive environmental contaminants belonging to the broader class of compounds known as alkylphenols, with potential human toxic effects. Classified as “xenoestrogens,” NP and OP are able to interfere with the cell endocrine physiology via a direct interaction with the estrogen receptors. Here, using HepG2 cells in culture, the changes of the cell redox balance and mitochondrial activity induced by OP and NP have been investigated at μM concentrations, largely below those provoking acute toxicity, as those typical of environmental contaminants. Following 24 h cell exposure to both OP and NP, ROS production appeared significantly increased (p ≤ 0.01), together with the production of higher NO oxides (p = 0.003) and peroxynitrated protein-derivatives (NP versus CTR, p = 0.003). The mitochondrial proton electrochemical potential gradient instead was decreased (p ≤ 0.05), as the oxygen consumption by complex IV, particularly following incubation with NP (NP versus CTR, p = 0.017). Consistently, the RT-PCR and Western blot analyses proved that the OP and NP can modulate to a different extent the expression of the inducible NOS (NP versus CTR, p ≤ 0.01) and the endothelial NOS (OP versus CTR, p ≤ 0.05), with a significant variation of the coupling efficiency of the latter (NP versus CTR, p ≤ 0.05), a finding that may provide a novel clue to understand the specific xenoestrogenic properties of OP and NP.
Collapse
|
31
|
Bird RP. The Emerging Role of Vitamin B6 in Inflammation and Carcinogenesis. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 83:151-194. [PMID: 29477221 DOI: 10.1016/bs.afnr.2017.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Vitamin B6 serves as a coenzyme catalyzing more than 150 enzymes regulating metabolism and synthesis of proteins, carbohydrates, lipids, heme, and important bioactive metabolites. For several years vitamin B6 and its vitamers (B6) were recognized as antioxidant and antiinflammatory and in modulating immunity and gene expression. During the last 10 years, there were growing reports implicating B6 in inflammation and inflammation-related chronic illnesses including cancer. It is unclear if the deficiency of B6 or additional intake of B6, above the current requirement, should be the focus. Whether the current recommended daily intake for B6 is adequate should be revisited, since B6 is important to human health beyond its role as a coenzyme and its status is affected by many factors including but not limited to age, obesity, and inflammation associated with chronic illnesses. A link between inflammation B6 status and carcinogenesis is not yet completely understood. B6-mediated synthesis of H2S, a gasotransmitter, and taurine in health and disease, especially in maintaining mitochondrial integrity and biogenesis and inflammation, remains an important area to be explored. Recent developments in the molecular role of B6 and its direct interaction with inflammasomes, and nuclear receptor corepressor and coactivator, receptor-interacting protein 140, provide a strong impetus to further explore the multifaceted role of B6 in carcinogenesis and human health.
Collapse
Affiliation(s)
- Ranjana P Bird
- School of Health Sciences, University of Northern British Columbia, Prince George, BC, Canada.
| |
Collapse
|
32
|
Lee SR, Nilius B, Han J. Gaseous Signaling Molecules in Cardiovascular Function: From Mechanisms to Clinical Translation. Rev Physiol Biochem Pharmacol 2018; 174:81-156. [PMID: 29372329 DOI: 10.1007/112_2017_7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carbon monoxide (CO), hydrogen sulfide (H2S), and nitric oxide (NO) constitute endogenous gaseous molecules produced by specific enzymes. These gases are chemically simple, but exert multiple effects and act through shared molecular targets to control both physiology and pathophysiology in the cardiovascular system (CVS). The gases act via direct and/or indirect interactions with each other in proteins such as heme-containing enzymes, the mitochondrial respiratory complex, and ion channels, among others. Studies of the major impacts of CO, H2S, and NO on the CVS have revealed their involvement in controlling blood pressure and in reducing cardiac reperfusion injuries, although their functional roles are not limited to these conditions. In this review, the basic aspects of CO, H2S, and NO, including their production and effects on enzymes, mitochondrial respiration and biogenesis, and ion channels are briefly addressed to provide insight into their biology with respect to the CVS. Finally, potential therapeutic applications of CO, H2S, and NO with the CVS are addressed, based on the use of exogenous donors and different types of delivery systems.
Collapse
Affiliation(s)
- Sung Ryul Lee
- Department of Convergence Biomedical Science, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Busan, Republic of Korea
| | - Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea.
| |
Collapse
|
33
|
VLDL Induced Modulation of Nitric Oxide Signalling and Cell Redox Homeostasis in HUVEC. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2697364. [PMID: 29085553 PMCID: PMC5632467 DOI: 10.1155/2017/2697364] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/31/2017] [Accepted: 08/15/2017] [Indexed: 12/25/2022]
Abstract
High levels of circulating lipoprotein constitute a risk factor for cardiovascular diseases, and in this context, the specific role of the very-low-density lipoproteins (VLDL) is poorly understood. The response of human umbilical vein endothelial cells (HUVEC) to VLDL exposure was studied, especially focusing on the pathways involved in alteration of redox homeostasis and nitric oxide (NO) bioavailability. The results obtained by the analysis of the expression level of genes implicated in the NO metabolism and oxidative stress response indicated a strong activation of inducible NO synthase (iNOS) upon 24 h exposure to VLDL, particularly if these have been preventively oxidised. Simultaneously, both mRNA and protein expression of endothelial NO synthase (eNOS) were decreased and its phosphorylation pattern, at the key residues Tyr495 and Ser1177, strongly suggested the occurrence of the eNOS uncoupling. The results are consistent with the observed increased production of nitrites and nitrates (NOx), reactive oxygen species (ROS), 3-nitrotyrosine (3-NT), and, at mitochondrial level, a deficit in mitochondrial O2 consumption. Altogether, these data suggest that the VLDL, particularly if oxidised, when allowed to persist in contact with endothelial cells, strongly alter NO bioavailability, affecting redox homeostasis and mitochondrial function.
Collapse
|
34
|
Abstract
Cytochrome bd is a unique prokaryotic respiratory terminal oxidase that does not belong to the extensively investigated family of haem-copper oxidases (HCOs). The enzyme catalyses the four-electron reduction of O2 to 2H2O, using quinols as physiological reducing substrates. The reaction is electrogenic and cytochrome bd therefore sustains bacterial energy metabolism by contributing to maintain the transmembrane proton motive force required for ATP synthesis. As compared to HCOs, cytochrome bd displays several distinctive features in terms of (i) metal composition (it lacks Cu and harbours a d-type haem in addition to two haems b), (ii) overall three-dimensional structure, that only recently has been solved, and arrangement of the redox cofactors, (iii) lesser energetic efficiency (it is not a proton pump), (iv) higher O2 affinity, (v) higher resistance to inhibitors such as cyanide, nitric oxide (NO) and hydrogen sulphide (H2S) and (vi) ability to efficiently metabolize potentially toxic reactive oxygen and nitrogen species like hydrogen peroxide (H2O2) and peroxynitrite (ONOO-). Compelling evidence suggests that, beyond its bioenergetic role, cytochrome bd plays multiple functions in bacterial physiology and affords protection against oxidative and nitrosative stress. Relevant to human pathophysiology, thanks to its peculiar properties, the enzyme has been shown to promote virulence in several bacterial pathogens, being currently recognized as a target for the development of new antibiotics. This review aims to give an update on our current understanding of bd-type oxidases with a focus on their reactivity with gaseous ligands and its potential impact on bacterial physiology and human pathophysiology.
Collapse
|
35
|
A Clinically Relevant Variant of the Human Hydrogen Sulfide-Synthesizing Enzyme Cystathionine β-Synthase: Increased CO Reactivity as a Novel Molecular Mechanism of Pathogenicity? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8940321. [PMID: 28421128 PMCID: PMC5381205 DOI: 10.1155/2017/8940321] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/10/2017] [Accepted: 01/16/2017] [Indexed: 12/21/2022]
Abstract
The human disease classical homocystinuria results from mutations in the gene encoding the pyridoxal 5′-phosphate- (PLP-) dependent cystathionine β-synthase (CBS), a key enzyme in the transsulfuration pathway that controls homocysteine levels, and is a major source of the signaling molecule hydrogen sulfide (H2S). CBS activity, contributing to cellular redox homeostasis, is positively regulated by S-adenosyl-L-methionine (AdoMet) but fully inhibited upon CO or NO• binding to a noncatalytic heme moiety. Despite extensive studies, the molecular basis of several pathogenic CBS mutations is not yet fully understood. Here we found that the ferrous heme of the reportedly mild p.P49L CBS variant has altered spectral properties and markedly increased affinity for CO, making the protein much more prone than wild type (WT) CBS to inactivation at physiological CO levels. The higher CO affinity could result from the slightly higher flexibility in the heme surroundings revealed by solving at 2.80-Å resolution the crystallographic structure of a truncated p.P49L. Additionally, we report that p.P49L displays impaired H2S-generating activity, fully rescued by PLP supplementation along the purification, despite a minor responsiveness to AdoMet. Altogether, the results highlight how increased propensity to CO inactivation of an otherwise WT-like variant may represent a novel pathogenic mechanism in classical homocystinuria.
Collapse
|
36
|
Rose P, Moore PK, Zhu YZ. H 2S biosynthesis and catabolism: new insights from molecular studies. Cell Mol Life Sci 2016; 74:1391-1412. [PMID: 27844098 PMCID: PMC5357297 DOI: 10.1007/s00018-016-2406-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/07/2016] [Accepted: 11/01/2016] [Indexed: 02/06/2023]
Abstract
Hydrogen sulfide (H2S) has profound biological effects within living organisms and is now increasingly being considered alongside other gaseous signalling molecules, such as nitric oxide (NO) and carbon monoxide (CO). Conventional use of pharmacological and molecular approaches has spawned a rapidly growing research field that has identified H2S as playing a functional role in cell-signalling and post-translational modifications. Recently, a number of laboratories have reported the use of siRNA methodologies and genetic mouse models to mimic the loss of function of genes involved in the biosynthesis and degradation of H2S within tissues. Studies utilising these systems are revealing new insights into the biology of H2S within the cardiovascular system, inflammatory disease, and in cell signalling. In light of this work, the current review will describe recent advances in H2S research made possible by the use of molecular approaches and genetic mouse models with perturbed capacities to generate or detoxify physiological levels of H2S gas within tissues.
Collapse
Affiliation(s)
- Peter Rose
- School of Life Science, University of Lincoln, Brayford Pool, Lincoln, Lincolnshire, LN6 7TS, UK. .,State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China.
| | - Philip K Moore
- Department of Pharmacology, National University of Singapore, Lee Kong Chian Wing, UHL #05-02R, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| |
Collapse
|
37
|
Bernardi P. 19th European Bioenergetics Conference-Preface. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1023-1026. [PMID: 27137407 DOI: 10.1016/j.bbabio.2016.04.281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Paolo Bernardi
- Consiglio Nazionale delle Ricerche Neuroscience Institute and Department of Biomedical Sciences, University of Padova, Padova, Italy.
| |
Collapse
|