1
|
Lupacchini S, Stauder R, Opel F, Klähn S, Schmid A, Bühler B, Toepel J. Co-expression of auxiliary genes enhances the activity of a heterologous O 2-tolerant hydrogenase in the cyanobacterium Synechocystis sp. PCC 6803. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:41. [PMID: 40156067 PMCID: PMC11954184 DOI: 10.1186/s13068-025-02634-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/03/2025] [Indexed: 04/01/2025]
Abstract
Cyanobacteria bear great biotechnological potential as photosynthetic cell factories. In particular, hydrogenases are promising with respect to light-driven H2 production as well as H2-driven redox biocatalysis. Their utilization relies on effective strain design as well as a balanced synthesis and maturation of heterologous enzymes. In a previous study, the soluble O2-tolerant hydrogenase complex from Cupriavidus necator (CnSH) could be introduced into the model cyanobacterium Synechocystis sp. PCC 6803. Due to its O2-tolerance, it was indeed active under photoautotrophic growth conditions. However, the specific activity was rather low indicating that further engineering is required, for which we followed a two-step approach. First, we optimized the CnSH multigene expression in Synechocystis by applying different regulatory elements. Although corresponding protein levels and specific CnSH activity increased, the apparent rise in enzyme levels did not fully translate into activity increase. Second, the entire set of hyp genes, encoding CnSH maturases, was co-expressed in Synechocystis to investigate, if CnSH maturation was limiting. Indeed, the native CnSH maturation apparatus promoted functional CnSH synthesis, enabling a threefold higher H2 oxidation activity compared to the parental strain. Our results suggest that a fine balance between heterologous hydrogenase and maturase expression is required to ensure high specific activity over an extended time period.
Collapse
Affiliation(s)
- Sara Lupacchini
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Ron Stauder
- Department of Solar Materials Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Franz Opel
- Department of Solar Materials Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Stephan Klähn
- Department of Solar Materials Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Andreas Schmid
- Department of Solar Materials Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Bruno Bühler
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Jörg Toepel
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, 04318, Leipzig, Germany.
| |
Collapse
|
2
|
Liu X, Cai F, Zhang Y, Luo X, Yuan L, Ma H, Yang M, Ge F. Interactome Analysis of ClpX Reveals Its Regulatory Role in Metabolism and Photosynthesis in Cyanobacteria. J Proteome Res 2024; 23:1174-1187. [PMID: 38427982 DOI: 10.1021/acs.jproteome.3c00610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Protein homeostasis is essential for cyanobacteria to maintain proper cellular function under adverse and fluctuating conditions. The AAA+ superfamily of proteolytic complexes in cyanobacteria plays a critical role in this process, including ClpXP, which comprises a hexameric ATPase ClpX and a tetradecameric peptidase ClpP. Despite the physiological effects of ClpX on growth and photosynthesis, its potential substrates and underlying mechanisms in cyanobacteria remain unknown. In this study, we employed a streptavidin-biotin affinity pull-down assay coupled with label-free proteome quantitation to analyze the interactome of ClpX in the model cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis). We identified 503 proteins as potential ClpX-binding targets, many of which had novel interactions. These ClpX-binding targets were found to be involved in various biological processes, with particular enrichment in metabolic processes and photosynthesis. Using protein-protein docking, GST pull-down, and biolayer interferometry assays, we confirmed the direct association of ClpX with the photosynthetic proteins, ferredoxin-NADP+ oxidoreductase (FNR) and phycocyanin subunit (CpcA). Subsequent functional investigations revealed that ClpX participates in the maintenance of FNR homeostasis and functionality in Synechocystis grown under different light conditions. Overall, our study provides a comprehensive understanding of the extensive functions regulated by ClpX in cyanobacteria to maintain protein homeostasis and adapt to environmental challenges.
Collapse
Affiliation(s)
- Xin Liu
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Fangfang Cai
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yumeng Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Department of Basic Research, Research-And-Development Center, Sinopharm Animal Health Corporation Ltd., Wuhan 430074, China
| | - Xuan Luo
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Li Yuan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Haiyan Ma
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Mingkun Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Feng Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
3
|
Tüllinghoff A, Toepel J, Bühler B. Enlighting Electron Routes In Oxyfunctionalizing Synechocystis sp. PCC 6803. Chembiochem 2024; 25:e202300475. [PMID: 37994522 DOI: 10.1002/cbic.202300475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 11/24/2023]
Abstract
Phototrophic microorganisms, like cyanobacteria, are gaining attention as host organisms for biocatalytic processes with light as energy source and water as electron source. Redox enzymes, especially oxygenases, can profit from in-situ supply of co-substrates, i. e., reduction equivalents and O2 , by the photosynthetic light reaction. The electron transfer downstream of PS I to heterologous electron consuming enzymes in principle can involve NADPH, NADH, and/or ferredoxin, whereas most direct and efficient transfer is desirable. Here, we use the model organism Synechocystis sp. PCC 6803 to investigate, to what extent host and/or heterologous constituents are involved in electron transfer to a heterologous cytochrome P450 monooxygenase from Acidovorax sp. CHX100. Interestingly, in this highly active light-fueled cycloalkane hydroxylating biocatalyst, host-intrinsic enzymes were found capable of completely substituting the function of the Acidovorax ferredoxin reductase. To a certain extent (20 %), this also was true for the Acidovorax ferredoxin. These results indicate the presence of a versatile set of electron carriers in cyanobacteria, enabling efficient and direct coupling of electron consuming reactions to photosynthetic water oxidation. This will both simplify and promote the use of phototrophic microorganisms for sustainable production processes.
Collapse
Affiliation(s)
- Adrian Tüllinghoff
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318, Leipzig, Germany
| | - Jörg Toepel
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318, Leipzig, Germany
| | - Bruno Bühler
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318, Leipzig, Germany
| |
Collapse
|
4
|
Malihan‐Yap L, Grimm HC, Kourist R. Recent Advances in Cyanobacterial Biotransformations. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202200077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lenny Malihan‐Yap
- Graz University of Technology Institute of Molecular Biotechnology NAWI Graz 8010 Graz Austria
| | - Hanna C. Grimm
- Graz University of Technology Institute of Molecular Biotechnology NAWI Graz 8010 Graz Austria
| | - Robert Kourist
- Graz University of Technology Institute of Molecular Biotechnology NAWI Graz 8010 Graz Austria
- ACIB GmbH 8010 Graz Austria
| |
Collapse
|
5
|
Theodosiou E, Tüllinghoff A, Toepel J, Bühler B. Exploitation of Hetero- and Phototrophic Metabolic Modules for Redox-Intensive Whole-Cell Biocatalysis. Front Bioeng Biotechnol 2022; 10:855715. [PMID: 35497353 PMCID: PMC9043136 DOI: 10.3389/fbioe.2022.855715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
The successful realization of a sustainable manufacturing bioprocess and the maximization of its production potential and capacity are the main concerns of a bioprocess engineer. A main step towards this endeavor is the development of an efficient biocatalyst. Isolated enzyme(s), microbial cells, or (immobilized) formulations thereof can serve as biocatalysts. Living cells feature, beside active enzymes, metabolic modules that can be exploited to support energy-dependent and multi-step enzyme-catalyzed reactions. Metabolism can sustainably supply necessary cofactors or cosubstrates at the expense of readily available and cheap resources, rendering external addition of costly cosubstrates unnecessary. However, for the development of an efficient whole-cell biocatalyst, in depth comprehension of metabolic modules and their interconnection with cell growth, maintenance, and product formation is indispensable. In order to maximize the flux through biosynthetic reactions and pathways to an industrially relevant product and respective key performance indices (i.e., titer, yield, and productivity), existing metabolic modules can be redesigned and/or novel artificial ones established. This review focuses on whole-cell bioconversions that are coupled to heterotrophic or phototrophic metabolism and discusses metabolic engineering efforts aiming at 1) increasing regeneration and supply of redox equivalents, such as NAD(P/H), 2) blocking competing fluxes, and 3) increasing the availability of metabolites serving as (co)substrates of desired biosynthetic routes.
Collapse
Affiliation(s)
- Eleni Theodosiou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Adrian Tüllinghoff
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
| | - Jörg Toepel
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
| | - Bruno Bühler
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
| |
Collapse
|
6
|
Zheng S, Guo J, Cheng F, Gao Z, Du L, Meng C, Li S, Zhang X. Cytochrome P450s in algae: Bioactive natural product biosynthesis and light-driven bioproduction. Acta Pharm Sin B 2022; 12:2832-2844. [PMID: 35755277 PMCID: PMC9214053 DOI: 10.1016/j.apsb.2022.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/05/2022] [Accepted: 01/17/2022] [Indexed: 11/16/2022] Open
Abstract
Algae are a large group of photosynthetic organisms responsible for approximately half of the earth's total photosynthesis. In addition to their fundamental ecological roles as oxygen producers and as the food base for almost all aquatic life, algae are also a rich source of bioactive natural products, including several clinical drugs. Cytochrome P450 enzymes (P450s) are a superfamily of biocatalysts that are extensively involved in natural product biosynthesis by mediating various types of reactions. In the post-genome era, a growing number of P450 genes have been discovered from algae, indicating their important roles in algal life-cycle. However, the functional studies of algal P450s remain limited. Benefitting from the recent technical advances in algae cultivation and genetic manipulation, the researches on P450s in algal natural product biosynthesis have been approaching to a new stage. Moreover, some photoautotrophic algae have been developed into “photo-bioreactors” for heterologous P450s to produce high-value added pharmaceuticals and chemicals in a carbon-neutral or carbon-negative manner. Here, we comprehensively review these advances of P450 studies in algae from 2000 to 2021.
Collapse
Affiliation(s)
- Shanmin Zheng
- School of Life Sciences, Shandong University of Technology, Zibo 255000, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jiawei Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Fangyuan Cheng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Zhengquan Gao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Lei Du
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Chunxiao Meng
- School of Life Sciences, Shandong University of Technology, Zibo 255000, China
- Corresponding authors. Tel./fax: +86 532 58632496.
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Corresponding authors. Tel./fax: +86 532 58632496.
| | - Xingwang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Corresponding authors. Tel./fax: +86 532 58632496.
| |
Collapse
|
7
|
Improved photosynthetic capacity and photosystem I oxidation via heterologous metabolism engineering in cyanobacteria. Proc Natl Acad Sci U S A 2021; 118:2021523118. [PMID: 33836593 PMCID: PMC7980454 DOI: 10.1073/pnas.2021523118] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cyanobacteria have been increasingly explored as a biotechnological platform, although their economic feasibility relies in part on the capacity to maximize their photosynthetic, solar-to-biomass energy conversion efficiency. Here we show that cyanobacterial photosynthetic capacity can be increased by diverting cellular resources toward heterologous, energy-storing metabolic pathways and by reducing electron flow to photoprotective, but energy-dissipating, oxygen reduction reactions. We further show that these heterologous sinks can partially contribute to photosystem I (PSI) oxidation, suggesting an engineering strategy to improve both energy storage capacity and robustness by selective diversion of excess photosynthetic capacity to productive processes. Cyanobacteria must prevent imbalances between absorbed light energy (source) and the metabolic capacity (sink) to utilize it to protect their photosynthetic apparatus against damage. A number of photoprotective mechanisms assist in dissipating excess absorbed energy, including respiratory terminal oxidases and flavodiiron proteins, but inherently reduce photosynthetic efficiency. Recently, it has been hypothesized that some engineered metabolic pathways may improve photosynthetic performance by correcting source/sink imbalances. In the context of this subject, we explored the interconnectivity between endogenous electron valves, and the activation of one or more heterologous metabolic sinks. We coexpressed two heterologous metabolic pathways that have been previously shown to positively impact photosynthetic activity in cyanobacteria, a sucrose production pathway (consuming ATP and reductant) and a reductant-only consuming cytochrome P450. Sucrose export was associated with improved quantum yield of phtotosystem II (PSII) and enhanced electron transport chain flux, especially at lower illumination levels, while cytochrome P450 activity led to photosynthetic enhancements primarily observed under high light. Moreover, coexpression of these two heterologous sinks showed additive impacts on photosynthesis, indicating that neither sink alone was capable of utilizing the full “overcapacity” of the electron transport chain. We find that heterologous sinks may partially compensate for the loss of photosystem I (PSI) oxidizing mechanisms even under rapid illumination changes, although this compensation is incomplete. Our results provide support for the theory that heterologous metabolism can act as a photosynthetic sink and exhibit some overlapping functionality with photoprotective mechanisms, while potentially conserving energy within useful metabolic products that might otherwise be “lost.”
Collapse
|
8
|
Luu Trinh MD, Miyazaki D, Ono S, Nomata J, Kono M, Mino H, Niwa T, Okegawa Y, Motohashi K, Taguchi H, Hisabori T, Masuda S. The evolutionary conserved iron-sulfur protein TCR controls P700 oxidation in photosystem I. iScience 2021; 24:102059. [PMID: 33554065 PMCID: PMC7848650 DOI: 10.1016/j.isci.2021.102059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/08/2020] [Accepted: 01/08/2021] [Indexed: 11/21/2022] Open
Abstract
In natural habitats, plants have developed sophisticated regulatory mechanisms to optimize the photosynthetic electron transfer rate at the maximum efficiency and cope with the changing environments. Maintaining proper P700 oxidation at photosystem I (PSI) is the common denominator for most regulatory processes of photosynthetic electron transfers. However, the molecular complexes and cofactors involved in these processes and their function(s) have not been fully clarified. Here, we identified a redox-active chloroplast protein, the triplet-cysteine repeat protein (TCR). TCR shared similar expression profiles with known photosynthetic regulators and contained two triplet-cysteine motifs (CxxxCxxxC). Biochemical analysis indicated that TCR localizes in chloroplasts and has a [3Fe-4S] cluster. Loss of TCR limited the electron sink downstream of PSI during dark-to-light transition. Arabidopsis pgr5-tcr double mutant reduced growth significantly and showed unusual oxidation and reduction of plastoquinone pool. These results indicated that TCR is involved in electron flow(s) downstream of PSI, contributing to P700 oxidation. P700 oxidation at photosystem I is important for regulation of photosynthesis TCR is a redox active chloroplast protein harboring a 3Fe-4S iron-sulfur cluster TCR controls electron flow around photosystem I, contributing to P700 oxidation
Collapse
Affiliation(s)
- Mai Duy Luu Trinh
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Daichi Miyazaki
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Sumire Ono
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Jiro Nomata
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Masaru Kono
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyuki Mino
- Division of Materials Science (Physics), Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Tatsuya Niwa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Yuki Okegawa
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Ken Motohashi
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Hideki Taguchi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Toru Hisabori
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Shinji Masuda
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
- Corresponding author
| |
Collapse
|