1
|
Bruman SM, Zubareva VM, Shugaeva TE, Lapashina AS, Feniouk BA. Activation of Bacterial F-ATPase by LDAO: Deciphering the Molecular Mechanism. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:374-388. [PMID: 40367080 DOI: 10.1134/s0006297924602600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 12/06/2024] [Accepted: 01/29/2025] [Indexed: 05/16/2025]
Abstract
Proton FOF1 ATP synthase catalyzes the formation of ATP from ADP and inorganic phosphate coupled with transmembrane proton transfer using the energy of the protonmotive force (pmf). As pmf decreases, the direction of the reaction is reversed and the enzyme generates pmf, transferring protons across the membrane using the energy of ATP hydrolysis. ATPase activity of the enzyme can be suppressed by ADP in a non-competitive manner (ADP-inhibition), and in a number of bacteria, it can be inhibited by conformational changes in the regulatory C-terminal domain of the ε subunit. Lauryldimethylamine oxide (LDAO), a zwitterionic detergent, is known to attenuate both of these inhibitory mechanisms, significantly increasing the ATPase activity of the enzyme. For this reason, LDAO is sometimes used for semi-quantitative estimation of the enzyme's susceptibility to these regulatory mechanisms. However, the binding site of LDAO in ATP synthase remains unknown. The mechanism by which the detergent counteracts ADP-inhibition and the inhibition involving the ε subunit is also unclear. We performed molecular docking and predicted that LDAO binding might occur at the catalytic site of ATP synthase, whether empty or containing nucleotides. Molecular dynamics simulations showed that LDAO could affect the mobility of the loop in the β subunit (residues β404-415 in Escherichia coli ATP synthase) near the catalytic site. Mutagenesis of residue β409 in the E. coli enzyme and the corresponding β419 residue in the Bacillus subtilis ATP synthase revealed that the type of side chain of this residue indeed affects LDAO-dependent stimulation of ATPase activity. We also found that LDAO activates the enzyme more strongly in the presence of 100 mM sulfate compared to sulfate-free medium. This phenomenon is likely due to the enhancement of ADP-inhibition of the enzyme by sulfate.
Collapse
Affiliation(s)
- Sofya M Bruman
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Valeria M Zubareva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Tatiana E Shugaeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Anna S Lapashina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Boris A Feniouk
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
2
|
Zharova TV, Grivennikova VG. F o·F 1 ATP-synthase/ATPase of Paracoccus denitrificans: Mystery of Unidirectional Catalysis. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S86-S104. [PMID: 40164154 DOI: 10.1134/s000629792460399x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/24/2024] [Accepted: 10/16/2024] [Indexed: 04/02/2025]
Abstract
Fo·F1 ATP synthases/ATPases (Fo·F1) catalyze ATP synthesis by consuming energy of electrochemical potential of hydrogen ions (pmf), or ATP hydrolysis resulting in the pmf formation. It is generally accepted to consider Fo·F1 as a reversible chemomechanical-electrical molecular machine, however: (i) the mechanism of energy-dependent ATP synthesis is based only on the data on hydrolytic activity of the enzyme, (ii) Fo·F1 from a number of organisms effectively synthesize, but is unable to hydrolyze ATP, which indicates non-observance of the principle of microreversibility and requires development of a new hypotheses concerning the enzyme mechanism. Since 1980, the group of A. D. Vinogradov has been developing a concept according to which the elementary catalysis stages of ATP hydrolysis and ATP synthesis do not coincide, and there are two independently operating forms of Fo·F1 in the coupled membranes - pmf-generating ATPase and pmf-consuming ATP synthase. Fo·F1 of P. denitrificans as a natural model of an irreversibly functioning enzyme is a convenient object for experimental verification of the hypothesis of unidirectional energy conversion. The review considers modern concepts of the molecular mechanisms of regulation of Fo·F1 ATP synthase/ATPase of P. denitrificans and development of the hypothesis of two forms of Fo·F1.
Collapse
Affiliation(s)
- Tatiana V Zharova
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Vera G Grivennikova
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
3
|
Ciechanowska K, Szczepanska A, Szpotkowski K, Wojcik K, Urbanowicz A, Kurzynska-Kokorniak A. The human Dicer helicase domain is capable of ATP hydrolysis and single-stranded nucleic acid binding. BMC Biol 2024; 22:287. [PMID: 39695695 DOI: 10.1186/s12915-024-02082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Vertebrates have one Dicer ortholog that generates both microRNAs (miRNAs) and small interfering RNAs (siRNAs), in contrast to the multiple Dicer-like proteins found in flies and plants. Here, we focus on the functions of the human Dicer (hDicer) helicase domain. The helicase domain of hDicer is known to recognize pre-miRNA substrates through interactions with their apical loop regions. Besides interacting with canonical substrates, the hDicer helicase domain has also been suggested to bind many different cellular RNAs; however, a comprehensive study of the biochemical activities and substrate specificity of the hDicer helicase domain towards different nucleic acids has yet to be undertaken. RESULTS Here, we reveal that full-length hDicer, through its helicase domain, hydrolyzes ATP. The ATPase activity of hDicer can only be observed under low-turnover conditions. To the best of our knowledge, this is the first time this activity has been reported for vertebrate Dicers. We also show that the hDicer helicase domain binds single- but not double-stranded RNAs and DNAs and that this binding activity presumably is not nucleotide-dependent. Moreover, the hDicer helicase domain may influence the structure of the RNA to which it binds. CONCLUSIONS Preservation of ATPase activity by hDicer suggests that this enzyme performs many more functions in the cell than is currently assumed. Our findings open new avenues for future studies aimed at defining the cellular activities of hDicer that may be associated with these newly described biochemical properties: ATP hydrolysis and single-stranded nucleic acid binding activities.
Collapse
Affiliation(s)
- Kinga Ciechanowska
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, Zygmunta Noskowskiego 12/14, Poznan, 61-704, Poland
| | - Agnieszka Szczepanska
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, Zygmunta Noskowskiego 12/14, Poznan, 61-704, Poland
| | - Kamil Szpotkowski
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, Zygmunta Noskowskiego 12/14, Poznan, 61-704, Poland
| | - Klaudia Wojcik
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, Zygmunta Noskowskiego 12/14, Poznan, 61-704, Poland
| | - Anna Urbanowicz
- Laboratory of Protein Engineering, Institute of Bioorganic Chemistry Polish Academy of Sciences, Zygmunta Noskowskiego 12/14, Poznan, 61-704, Poland
| | - Anna Kurzynska-Kokorniak
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, Zygmunta Noskowskiego 12/14, Poznan, 61-704, Poland.
| |
Collapse
|
4
|
Brown RB, Bigelow P, Dubin JA, Neiterman E. Breast cancer, alcohol, and phosphate toxicity. J Appl Toxicol 2024; 44:17-27. [PMID: 37332052 DOI: 10.1002/jat.4504] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/20/2023]
Abstract
Alcohol consumption is associated with an increased risk of breast cancer, even at low alcohol intake levels, but public awareness of the breast cancer risk associated with alcohol intake is low. Furthermore, the causative mechanisms underlying alcohol's association with breast cancer are unknown. The present theoretical paper uses a modified grounded theory method to review the research literature and propose that alcohol's association with breast cancer is mediated by phosphate toxicity, the accumulation of excess inorganic phosphate in body tissue. Serum levels of inorganic phosphate are regulated through a network of hormones released from the bone, kidneys, parathyroid glands, and intestines. Alcohol burdens renal function, which may disturb the regulation of inorganic phosphate, impair phosphate excretion, and increase phosphate toxicity. In addition to causing cellular dehydration, alcohol is an etiologic factor in nontraumatic rhabdomyolysis, which ruptures cell membranes and releases inorganic phosphate into the serum, leading to hyperphosphatemia. Phosphate toxicity is also associated with tumorigenesis, as high levels of inorganic phosphate within the tumor microenvironment activate cell signaling pathways and promote cancer cell growth. Furthermore, phosphate toxicity potentially links cancer and kidney disease in onco-nephrology. Insights into the mediating role of phosphate toxicity may lead to future research and interventions that raise public health awareness of breast cancer risk and alcohol consumption.
Collapse
Affiliation(s)
- Ronald B Brown
- School of Public Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Philip Bigelow
- School of Public Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Joel A Dubin
- School of Public Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Elena Neiterman
- School of Public Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
5
|
Algieri C, Oppedisano F, Trombetti F, Fabbri M, Palma E, Nesci S. Selenite ameliorates the ATP hydrolysis of mitochondrial F 1F O-ATPase by changing the redox state of thiol groups and impairs the ADP phosphorylation. Free Radic Biol Med 2024; 210:333-343. [PMID: 38056573 DOI: 10.1016/j.freeradbiomed.2023.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/19/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
Selenite as an inorganic form of selenium can affect the redox state of mitochondria by modifying the thiol groups of cysteines. The F1FO-ATPase has been identified as a mitochondrial target of this compound. Indeed, the bifunctional mechanism of ATP turnover of F1FO-ATPase was differently modified by selenite. The activity of ATP hydrolysis was stimulated, whereas the ADP phosphorylation was inhibited. We ascertain that a possible new protein adduct identified as seleno-dithiol (-S-Se-S-) mercaptoethanol-sensitive caused the activation of F-ATPase activity and the oxidation of free -SH groups in mitochondria. Conversely, the inhibition of ATP synthesis by selenite might be irreversible. The kinetic analysis of the activation mechanism was an uncompetitive mixed type with respect to the ATP substrate. Selenite bound more selectively to the F1FO-ATPase loaded with the substrate by preferentially forming a tertiary (enzyme-ATP-selenite) complex. Otherwise, the selenite was a competitive mixed-type activator with respect to the Mg2+ cofactor. Thus, selenite more specifically bound to the free enzyme forming the complex enzyme-selenite. However, even if the selenite impaired the catalysis of F1FO-ATPase, the mitochondrial permeability transition pore phenomenon was unaffected. Therefore, the reversible energy transduction mechanism of F1FO-ATPase can be oppositely regulated by selenite.
Collapse
Affiliation(s)
- Cristina Algieri
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, 40064, Ozzano Emilia, Italy
| | - Francesca Oppedisano
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Græcia" of Catanzaro, 88100, Catanzaro, Italy
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, 40064, Ozzano Emilia, Italy
| | - Micaela Fabbri
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, 40064, Ozzano Emilia, Italy
| | - Ernesto Palma
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Græcia" of Catanzaro, 88100, Catanzaro, Italy
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, 40064, Ozzano Emilia, Italy.
| |
Collapse
|
6
|
Mendoza-Hoffmann F, Yang L, Buratto D, Brito-Sánchez J, Garduño-Javier G, Salinas-López E, Uribe-Álvarez C, Ortega R, Sotelo-Serrano O, Cevallos MÁ, Ramírez-Silva L, Uribe-Carvajal S, Pérez-Hernández G, Celis-Sandoval H, García-Trejo JJ. Inhibitory to non-inhibitory evolution of the ζ subunit of the F 1F O-ATPase of Paracoccus denitrificans and α-proteobacteria as related to mitochondrial endosymbiosis. Front Mol Biosci 2023; 10:1184200. [PMID: 37664184 PMCID: PMC10469736 DOI: 10.3389/fmolb.2023.1184200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction: The ζ subunit is a potent inhibitor of the F1FO-ATPase of Paracoccus denitrificans (PdF1FO-ATPase) and related α-proteobacteria different from the other two canonical inhibitors of bacterial (ε) and mitochondrial (IF1) F1FO-ATPases. ζ mimics mitochondrial IF1 in its inhibitory N-terminus, blocking the PdF1FO-ATPase activity as a unidirectional pawl-ratchet and allowing the PdF1FO-ATP synthase turnover. ζ is essential for the respiratory growth of P. denitrificans, as we showed by a Δζ knockout. Given the vital role of ζ in the physiology of P. denitrificans, here, we assessed the evolution of ζ across the α-proteobacteria class. Methods: Through bioinformatic, biochemical, molecular biology, functional, and structural analyses of several ζ subunits, we confirmed the conservation of the inhibitory N-terminus of ζ and its divergence toward its C-terminus. We reconstituted homologously or heterologously the recombinant ζ subunits from several α-proteobacteria into the respective F-ATPases, including free-living photosynthetic, facultative symbiont, and intracellular facultative or obligate parasitic α-proteobacteria. Results and discussion: The results show that ζ evolved, preserving its inhibitory function in free-living α-proteobacteria exposed to broad environmental changes that could compromise the cellular ATP pools. However, the ζ inhibitory function was diminished or lost in some symbiotic α-proteobacteria where ζ is non-essential given the possible exchange of nutrients and ATP from hosts. Accordingly, the ζ gene is absent in some strictly parasitic pathogenic Rickettsiales, which may obtain ATP from the parasitized hosts. We also resolved the NMR structure of the ζ subunit of Sinorhizobium meliloti (Sm-ζ) and compared it with its structure modeled in AlphaFold. We found a transition from a compact ordered non-inhibitory conformation into an extended α-helical inhibitory N-terminus conformation, thus explaining why the Sm-ζ cannot exert homologous inhibition. However, it is still able to inhibit the PdF1FO-ATPase heterologously. Together with the loss of the inhibitory function of α-proteobacterial ε, the data confirm that the primary inhibitory function of the α-proteobacterial F1FO-ATPase was transferred from ε to ζ and that ζ, ε, and IF1 evolved by convergent evolution. Some key evolutionary implications on the endosymbiotic origin of mitochondria, as most likely derived from α-proteobacteria, are also discussed.
Collapse
Affiliation(s)
- Francisco Mendoza-Hoffmann
- Departamento de Biología, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de México, México
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Lingyun Yang
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Damiano Buratto
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Jorge Brito-Sánchez
- Departamento de Biología, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de México, México
| | - Gilberto Garduño-Javier
- Departamento de Biología, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de México, México
| | - Emiliano Salinas-López
- Departamento de Biología, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de México, México
| | - Cristina Uribe-Álvarez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de México, México
| | - Raquel Ortega
- Departamento de Biología, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de México, México
| | - Oliver Sotelo-Serrano
- Departamento de Biología, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de México, México
| | - Miguel Ángel Cevallos
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de México, México
| | - Leticia Ramírez-Silva
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de México, México
| | - Salvador Uribe-Carvajal
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de México, México
| | - Gerardo Pérez-Hernández
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Ciudad de México, México
| | - Heliodoro Celis-Sandoval
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de México, México
| | - José J. García-Trejo
- Departamento de Biología, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de México, México
| |
Collapse
|
7
|
Brown RB. Phosphate toxicity and SERCA2a dysfunction in sudden cardiac arrest. FASEB J 2023; 37:e23030. [PMID: 37302010 DOI: 10.1096/fj.202300414r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Almost half of the people who die from sudden cardiac arrest have no detectable heart disease. Among children and young adults, the cause of approximately one-third of deaths from sudden cardiac arrest remains unexplained after thorough examination. Sudden cardiac arrest and related sudden cardiac death are attributed to dysfunctional cardiac ion-channels. The present perspective paper proposes a pathophysiological mechanism by which phosphate toxicity from cellular accumulation of dysregulated inorganic phosphate interferes with normal calcium handling in the heart, leading to sudden cardiac arrest. During cardiac muscle relaxation following contraction, SERCA2a pumps actively transport calcium ions into the sarcoplasmic reticulum, powered by ATP hydrolysis that produces ADP and inorganic phosphate end products. Reviewed evidence supports the proposal that end-product inhibition of SERCA2a occurs as increasing levels of inorganic phosphate drive up phosphate toxicity and bring cardiac function to a sudden and unexpected halt. The paper concludes that end-product inhibition from ATP hydrolysis is the mediating factor in the association of sudden cardiac arrest with phosphate toxicity. However, current technology lacks the ability to directly measure this pathophysiological mechanism in active myocardium, and further research is needed to confirm phosphate toxicity as a risk factor in individuals with sudden cardiac arrest. Moreover, phosphate toxicity may be reduced through modification of dietary phosphate intake, with potential for employing low-phosphate dietary interventions to reduce the risk of sudden cardiac arrest.
Collapse
Affiliation(s)
- Ronald B Brown
- School of Public Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
8
|
F1·Fo ATP Synthase/ATPase: Contemporary View on Unidirectional Catalysis. Int J Mol Sci 2023; 24:ijms24065417. [PMID: 36982498 PMCID: PMC10049701 DOI: 10.3390/ijms24065417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
F1·Fo-ATP synthases/ATPases (F1·Fo) are molecular machines that couple either ATP synthesis from ADP and phosphate or ATP hydrolysis to the consumption or production of a transmembrane electrochemical gradient of protons. Currently, in view of the spread of drug-resistant disease-causing strains, there is an increasing interest in F1·Fo as new targets for antimicrobial drugs, in particular, anti-tuberculosis drugs, and inhibitors of these membrane proteins are being considered in this capacity. However, the specific drug search is hampered by the complex mechanism of regulation of F1·Fo in bacteria, in particular, in mycobacteria: the enzyme efficiently synthesizes ATP, but is not capable of ATP hydrolysis. In this review, we consider the current state of the problem of “unidirectional” F1·Fo catalysis found in a wide range of bacterial F1·Fo and enzymes from other organisms, the understanding of which will be useful for developing a strategy for the search for new drugs that selectively disrupt the energy production of bacterial cells.
Collapse
|
9
|
Jarman OD, Hirst J. Membrane-domain mutations in respiratory complex I impede catalysis but do not uncouple proton pumping from ubiquinone reduction. PNAS NEXUS 2022; 1:pgac276. [PMID: 36712358 PMCID: PMC9802314 DOI: 10.1093/pnasnexus/pgac276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/01/2022] [Indexed: 12/05/2022]
Abstract
Respiratory complex I [NADH:ubiquinone (UQ) oxidoreductase] captures the free energy released from NADH oxidation and UQ reduction to pump four protons across an energy-transducing membrane and power ATP synthesis. Mechanisms for long-range energy coupling in complex I have been proposed from structural data but not yet evaluated by robust biophysical and biochemical analyses. Here, we use the powerful bacterial model system Paracoccus denitrificans to investigate 14 mutations of key residues in the membrane-domain Nqo13/ND4 subunit, defining the rates and reversibility of catalysis and the number of protons pumped per NADH oxidized. We reveal new insights into the roles of highly conserved charged residues in lateral energy transduction, confirm the purely structural role of the Nqo12/ND5 transverse helix, and evaluate a proposed hydrated channel for proton uptake. Importantly, even when catalysis is compromised the enzyme remains strictly coupled (four protons are pumped per NADH oxidized), providing no evidence for escape cycles that circumvent blocked proton-pumping steps.
Collapse
Affiliation(s)
- Owen D Jarman
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Judy Hirst
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
10
|
Cofas-Vargas LF, Mendoza-Espinosa P, Avila-Barrientos LP, Prada-Gracia D, Riveros-Rosas H, García-Hernández E. Exploring the druggability of the binding site of aurovertin, an exogenous allosteric inhibitor of FOF1-ATP synthase. Front Pharmacol 2022; 13:1012008. [PMID: 36313289 PMCID: PMC9615146 DOI: 10.3389/fphar.2022.1012008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
In addition to playing a central role in the mitochondria as the main producer of ATP, FOF1-ATP synthase performs diverse key regulatory functions in the cell membrane. Its malfunction has been linked to a growing number of human diseases, including hypertension, atherosclerosis, cancer, and some neurodegenerative, autoimmune, and aging diseases. Furthermore, inhibition of this enzyme jeopardizes the survival of several bacterial pathogens of public health concern. Therefore, FOF1-ATP synthase has emerged as a novel drug target both to treat human diseases and to combat antibiotic resistance. In this work, we carried out a computational characterization of the binding sites of the fungal antibiotic aurovertin in the bovine F1 subcomplex, which shares a large identity with the human enzyme. Molecular dynamics simulations showed that although the binding sites can be described as preformed, the inhibitor hinders inter-subunit communications and exerts long-range effects on the dynamics of the catalytic site residues. End-point binding free energy calculations revealed hot spot residues for aurovertin recognition. These residues were also relevant to stabilize solvent sites determined from mixed-solvent molecular dynamics, which mimic the interaction between aurovertin and the enzyme, and could be used as pharmacophore constraints in virtual screening campaigns. To explore the possibility of finding species-specific inhibitors targeting the aurovertin binding site, we performed free energy calculations for two bacterial enzymes with experimentally solved 3D structures. Finally, an analysis of bacterial sequences was carried out to determine conservation of the aurovertin binding site. Taken together, our results constitute a first step in paving the way for structure-based development of new allosteric drugs targeting FOF1-ATP synthase sites of exogenous inhibitors.
Collapse
Affiliation(s)
- Luis Fernando Cofas-Vargas
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Mexico City, Mexico
| | - Paola Mendoza-Espinosa
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Mexico City, Mexico
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, Mexico
| | | | - Diego Prada-Gracia
- Unidad de Investigación en Biología Computacional y Diseño de Fármacos, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Héctor Riveros-Rosas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Mexico City, Mexico
| | - Enrique García-Hernández
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Mexico City, Mexico
- *Correspondence: Enrique García-Hernández,
| |
Collapse
|
11
|
Turina P. Modulation of the H +/ATP coupling ratio by ADP and ATP as a possible regulatory feature in the F-type ATP synthases. Front Mol Biosci 2022; 9:1023031. [PMID: 36275634 PMCID: PMC9583940 DOI: 10.3389/fmolb.2022.1023031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
F-type ATP synthases are transmembrane enzymes, which play a central role in the metabolism of all aerobic and photosynthetic cells and organisms, being the major source of their ATP synthesis. Catalysis occurs via a rotary mechanism, in which the free energy of a transmembrane electrochemical ion gradient is converted into the free energy of ATP phosphorylation from ADP and Pi, and vice versa. An ADP, tightly bound to one of the three catalytic sites on the stator head, is associated with catalysis inhibition, which is relieved by the transmembrane proton gradient and by ATP. By preventing wasteful ATP hydrolysis in times of low osmotic energy and low ATP/ADP ratio, such inhibition constitutes a classical regulatory feedback effect, likely to be an integral component of in vivo regulation. The present miniview focuses on an additional putative regulatory phenomenon, which has drawn so far little attention, consisting in a substrate-induced tuning of the H+/ATP coupling ratio during catalysis, which might represent an additional key to energy homeostasis in the cell. Experimental pieces of evidence in support of such a phenomenon are reviewed.
Collapse
Affiliation(s)
- Paola Turina
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
12
|
Iwamoto-Kihara A. Regulatory Mechanisms and Environmental Adaptation of the F-ATPase Family. Biol Pharm Bull 2022; 45:1412-1418. [PMID: 36184497 DOI: 10.1248/bpb.b22-00419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The F-type ATPase family of enzymes, including ATP synthases, are found ubiquitously in biological membranes. ATP synthesis from ADP and inorganic phosphate is driven by an electrochemical H+ gradient or H+ motive force, in which intramolecular rotation of F-type ATPase is generated with H+ transport across the membranes. Because this rotation is essential for energy coupling between catalysis and H+-transport, regulation of the rotation is important to adapt to environmental changes and maintain ATP concentration. Recently, a series of cryo-electron microscopy images provided detailed insights into the structure of the H+ pathway and the multiple subunit arrangement. However, the regulatory mechanism of the rotation has not been clarified. This review describes the inhibition mechanism of ATP hydrolysis in bacterial enzymes. In addition, properties of the F-type ATPase of Streptococcus mutans, which acts as a H+-pump in an acidic environment, are described. These findings may help in the development of novel antimicrobial agents.
Collapse
|
13
|
Mendoza-Hoffmann F, Zarco-Zavala M, Ortega R, Celis-Sandoval H, Torres-Larios A, García-Trejo JJ. Evolution of the Inhibitory and Non-Inhibitory ε, ζ, and IF 1 Subunits of the F 1F O-ATPase as Related to the Endosymbiotic Origin of Mitochondria. Microorganisms 2022; 10:microorganisms10071372. [PMID: 35889091 PMCID: PMC9317440 DOI: 10.3390/microorganisms10071372] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/03/2022] [Accepted: 07/03/2022] [Indexed: 12/10/2022] Open
Abstract
The F1FO-ATP synthase nanomotor synthesizes >90% of the cellular ATP of almost all living beings by rotating in the “forward” direction, but it can also consume the same ATP pools by rotating in “reverse.” To prevent futile F1FO-ATPase activity, several different inhibitory proteins or domains in bacteria (ε and ζ subunits), mitochondria (IF1), and chloroplasts (ε and γ disulfide) emerged to block the F1FO-ATPase activity selectively. In this study, we analyze how these F1FO-ATPase inhibitory proteins have evolved. The phylogeny of the α-proteobacterial ε showed that it diverged in its C-terminal side, thus losing both the inhibitory function and the ATP-binding/sensor motif that controls this inhibition. The losses of inhibitory function and the ATP-binding site correlate with an evolutionary divergence of non-inhibitory α-proteobacterial ε and mitochondrial δ subunits from inhibitory bacterial and chloroplastidic ε subunits. Here, we confirm the lack of inhibitory function of wild-type and C-terminal truncated ε subunits of P. denitrificans. Taken together, the data show that ζ evolved to replace ε as the primary inhibitor of the F1FO-ATPase of free-living α-proteobacteria. However, the ζ inhibitory function was also partially lost in some symbiotic α-proteobacteria and totally lost in some strictly parasitic α-proteobacteria such as the Rickettsiales order. Finally, we found that ζ and IF1 likely evolved independently via convergent evolution before and after the endosymbiotic origin mitochondria, respectively. This led us to propose the ε and ζ subunits as tracer genes of the pre-endosymbiont that evolved into the actual mitochondria.
Collapse
Affiliation(s)
- Francisco Mendoza-Hoffmann
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California (UABC)—Campus Tijuana, Tijuana C.P. 22390, Baja California, Mexico
- Correspondence: (F.M.-H.); (J.J.G.-T.)
| | - Mariel Zarco-Zavala
- Departamento de Biología, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de Mexico C.P. 04510, Coyoacan, Mexico
| | - Raquel Ortega
- Departamento de Biología, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de Mexico C.P. 04510, Coyoacan, Mexico
| | - Heliodoro Celis-Sandoval
- Instituto de Fisiología Celular (IFC), Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de Mexico C.P. 04510, Coyoacan, Mexico
| | - Alfredo Torres-Larios
- Instituto de Fisiología Celular (IFC), Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de Mexico C.P. 04510, Coyoacan, Mexico
| | - José J. García-Trejo
- Departamento de Biología, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de Mexico C.P. 04510, Coyoacan, Mexico
- Correspondence: (F.M.-H.); (J.J.G.-T.)
| |
Collapse
|
14
|
Jarman OD, Biner O, Wright JJ, Hirst J. Paracoccus denitrificans: a genetically tractable model system for studying respiratory complex I. Sci Rep 2021; 11:10143. [PMID: 33980947 PMCID: PMC8115037 DOI: 10.1038/s41598-021-89575-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/27/2021] [Indexed: 02/03/2023] Open
Abstract
Mitochondrial complex I (NADH:ubiquinone oxidoreductase) is a crucial metabolic enzyme that couples the free energy released from NADH oxidation and ubiquinone reduction to the translocation of four protons across the inner mitochondrial membrane, creating the proton motive force for ATP synthesis. The mechanism by which the energy is captured, and the mechanism and pathways of proton pumping, remain elusive despite recent advances in structural knowledge. Progress has been limited by a lack of model systems able to combine functional and structural analyses with targeted mutagenic interrogation throughout the entire complex. Here, we develop and present the α-proteobacterium Paracoccus denitrificans as a suitable bacterial model system for mitochondrial complex I. First, we develop a robust purification protocol to isolate highly active complex I by introducing a His6-tag on the Nqo5 subunit. Then, we optimize the reconstitution of the enzyme into liposomes, demonstrating its proton pumping activity. Finally, we develop a strain of P. denitrificans that is amenable to complex I mutagenesis and create a catalytically inactive variant of the enzyme. Our model provides new opportunities to disentangle the mechanism of complex I by combining mutagenesis in every subunit with established interrogative biophysical measurements on both the soluble and membrane bound enzymes.
Collapse
Affiliation(s)
- Owen D. Jarman
- grid.5335.00000000121885934The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Olivier Biner
- grid.5335.00000000121885934The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - John J. Wright
- grid.5335.00000000121885934The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Judy Hirst
- grid.5335.00000000121885934The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| |
Collapse
|