Chatterjee A, Rai R, Raj A, Rai LC. Deciphering the early responses for the cross talk between primary and secondary stressor in diazotrophic cyanobacteria Anabaena sp. PCC 7120.
PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025;
221:109552. [PMID:
39946906 DOI:
10.1016/j.plaphy.2025.109552]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 12/08/2024] [Accepted: 01/23/2025] [Indexed: 03/11/2025]
Abstract
The present study aims to unlock the cross-protection mechanism of the diazotrophic cyanobacterium Anabaena sp. PCC 7120. Heat pre-treatment elicited a beneficial response against subsequent cadmium stress as revealed by integrated morphological, physiological, biochemical, transcript, and proteomics analyses under four sets of experimental conditions: control (C), heat (HS), cadmium (Cd), and heat + cadmium (HS + Cd). Outcomes of the present study suggested a better survival strategy shown by Anabaena sp. PCC 7120 under HS + Cd compared to Cd. According to comparative proteomics, protochlorophyllide reductase, CO2 hydration protein, and NAD(P)H quinone oxidoreductase work in concert to support the light and dark reactions of photosynthesis. Furthermore, in cross protection involvement of enzymes from pentose phosphate pathway and glycolysis for fulfilling cellular energy demand; antioxidants and antioxidant enzymes in scavenging ROS, cellular detoxification, and Cd chelation, chaperons and proteases in proper protein folding and synthesis; signaling and transporters to generate cross talk and Cd efflux were found. Increased accumulation of vegetative to heterocyst connection protein (FraH) in HS + Cd compared to Cd may be envisioned to manage better nitrogen fixation.
Collapse