1
|
Liu S, Faitg J, Tissot C, Konstantopoulos D, Laws R, Bourdier G, Andreux PA, Davey T, Gallart-Ayala H, Ivanisevic J, Singh A, Rinsch C, Marcinek DJ, D’Amico D. Urolithin A provides cardioprotection and mitochondrial quality enhancement preclinically and improves human cardiovascular health biomarkers. iScience 2025; 28:111814. [PMID: 40034121 PMCID: PMC11875685 DOI: 10.1016/j.isci.2025.111814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/04/2024] [Accepted: 01/10/2025] [Indexed: 03/05/2025] Open
Abstract
Cardiovascular diseases (CVDs) remain the primary cause of global mortality. Nutritional interventions hold promise to reduce CVD risks in an increasingly aging population. However, few nutritional interventions are proven to support heart health and act mostly on blood lipid homeostasis rather than at cardiac cell level. Here, we show that mitochondrial quality dysfunctions are common hallmarks in human cardiomyocytes upon heart aging and in chronic conditions. Preclinically, the post-biotic and mitophagy activator, urolithin A (UA), reduced both systolic and diastolic cardiac dysfunction in models of natural aging and heart failure. At a cellular level, this was associated with a recovery of mitochondrial ultrastructural defects and mitophagy. In humans, UA supplementation for 4 months in healthy older adults significantly reduced plasma ceramides clinically validated to predict CVD risks. These findings extend and translate UA's benefits to heart health, making UA a promising nutritional intervention to support cardiovascular function as we age.
Collapse
Affiliation(s)
- Sophia Liu
- Department of Radiology, University of Washington Medical Center, Box 358050, Seattle, WA 98109, USA
| | - Julie Faitg
- Amazentis, EPFL Innovation Park, Lausanne, Switzerland
| | | | | | - Ross Laws
- Electron Microscopy Research Services, Newcastle University, Newcastle, UK
| | | | | | - Tracey Davey
- Electron Microscopy Research Services, Newcastle University, Newcastle, UK
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Anurag Singh
- Amazentis, EPFL Innovation Park, Lausanne, Switzerland
| | - Chris Rinsch
- Amazentis, EPFL Innovation Park, Lausanne, Switzerland
| | - David J. Marcinek
- Department of Radiology, University of Washington Medical Center, Box 358050, Seattle, WA 98109, USA
| | | |
Collapse
|
2
|
Marx N, Ritter N, Disse P, Seebohm G, Busch KB. Detailed analysis of Mdivi-1 effects on complex I and respiratory supercomplex assembly. Sci Rep 2024; 14:19673. [PMID: 39187541 PMCID: PMC11347648 DOI: 10.1038/s41598-024-69748-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/08/2024] [Indexed: 08/28/2024] Open
Abstract
Several human diseases, including cancer and neurodegeneration, are associated with excessive mitochondrial fragmentation. In this context, mitochondrial division inhibitor (Mdivi-1) has been tested as a therapeutic to block the fission-related protein dynamin-like protein-1 (Drp1). Recent studies suggest that Mdivi-1 interferes with mitochondrial bioenergetics and complex I function. Here we show that the molecular mechanism of Mdivi-1 is based on inhibition of complex I at the IQ site. This leads to the destabilization of complex I, impairs the assembly of N- and Q-respirasomes, and is associated with increased ROS production and reduced efficiency of ATP generation. Second, the calcium homeostasis of cells is impaired, which for example affects the electrical activity of neurons. Given the results presented here, a potential therapeutic application of Mdivi-1 is challenging because of its potential impact on synaptic activity. Similar to the Complex I inhibitor rotenone, Mdivi-1 may lead to neurodegenerative effects in the long term.
Collapse
Affiliation(s)
- Nico Marx
- Department of Biology, Institute of Integrative Cell Biology and Physiology (IIZP), University of Münster, Schloßplatz 5, 48149, Münster, Germany
| | - Nadine Ritter
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, 48149, Münster, Germany
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Paul Disse
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, 48149, Münster, Germany
| | - Guiscard Seebohm
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, 48149, Münster, Germany
| | - Karin B Busch
- Department of Biology, Institute of Integrative Cell Biology and Physiology (IIZP), University of Münster, Schloßplatz 5, 48149, Münster, Germany.
| |
Collapse
|
3
|
Camacho-Encina M, Booth LK, Redgrave RE, Folaranmi O, Spyridopoulos I, Richardson GD. Cellular Senescence, Mitochondrial Dysfunction, and Their Link to Cardiovascular Disease. Cells 2024; 13:353. [PMID: 38391966 PMCID: PMC10886919 DOI: 10.3390/cells13040353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024] Open
Abstract
Cardiovascular diseases (CVDs), a group of disorders affecting the heart or blood vessels, are the primary cause of death worldwide, with an immense impact on patient quality of life and disability. According to the World Health Organization, CVD takes an estimated 17.9 million lives each year, where more than four out of five CVD deaths are due to heart attacks and strokes. In the decades to come, an increased prevalence of age-related CVD, such as atherosclerosis, coronary artery stenosis, myocardial infarction (MI), valvular heart disease, and heart failure (HF) will contribute to an even greater health and economic burden as the global average life expectancy increases and consequently the world's population continues to age. Considering this, it is important to focus our research efforts on understanding the fundamental mechanisms underlying CVD. In this review, we focus on cellular senescence and mitochondrial dysfunction, which have long been established to contribute to CVD. We also assess the recent advances in targeting mitochondrial dysfunction including energy starvation and oxidative stress, mitochondria dynamics imbalance, cell apoptosis, mitophagy, and senescence with a focus on therapies that influence both and therefore perhaps represent strategies with the most clinical potential, range, and utility.
Collapse
Affiliation(s)
- Maria Camacho-Encina
- Vascular Medicine and Biology Theme, Bioscience Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK; (R.E.R.); (O.F.); (G.D.R.)
| | - Laura K. Booth
- Vascular Medicine and Biology Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK; (L.K.B.); (I.S.)
| | - Rachael E. Redgrave
- Vascular Medicine and Biology Theme, Bioscience Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK; (R.E.R.); (O.F.); (G.D.R.)
| | - Omowumi Folaranmi
- Vascular Medicine and Biology Theme, Bioscience Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK; (R.E.R.); (O.F.); (G.D.R.)
| | - Ioakim Spyridopoulos
- Vascular Medicine and Biology Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK; (L.K.B.); (I.S.)
| | - Gavin D. Richardson
- Vascular Medicine and Biology Theme, Bioscience Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK; (R.E.R.); (O.F.); (G.D.R.)
| |
Collapse
|
4
|
Monasterio A, Osorio FA. Physicochemical Properties of Nanoliposomes Encapsulating Grape Seed Tannins Formed with Ultrasound Cycles. Foods 2024; 13:414. [PMID: 38338549 PMCID: PMC10855365 DOI: 10.3390/foods13030414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Grape seeds are an excellent source of flavonoids and tannins with powerful antioxidant properties. However, the astringency of tannins limits their direct incorporation into food. To overcome this challenge, we investigated the encapsulation of grape seed tannins within nanoliposomes formed by ultrasound cycling. We characterized the nanoliposomes' physicochemical properties, including encapsulation efficiency, antioxidant activity, stability, microstructure, and rheological properties. Our findings reveal that the nanoliposomes exhibited excellent stability under refrigerated conditions for up to 90 days with a mean particle size of 228 ± 26 nm, a polydispersity index of 0.598 ± 0.087, and a zeta potential of -41.6 ± 1.30 mV, maintaining a spherical multilamellar microstructure. Moreover, they displayed high antioxidant activity, with encapsulation efficiencies of 79% for epicatechin and 90% for catechin. This innovative approach demonstrates the potential of using ultrasound-assisted nanoliposome encapsulation to directly incorporate grape seed tannins into food matrices, providing a sustainable and efficient method for enhancing their bioavailability and functionality.
Collapse
Affiliation(s)
| | - Fernando A. Osorio
- Department of Food Science and Technology, Technological Faculty, University of Santiago—Chile, USACH, Av. El Belloto 3735, Estación Central, Santiago 9170022, Chile;
| |
Collapse
|
5
|
Adams RA, Liu Z, Hsieh C, Marko M, Lederer WJ, Jafri MS, Mannella C. Structural Analysis of Mitochondria in Cardiomyocytes: Insights into Bioenergetics and Membrane Remodeling. Curr Issues Mol Biol 2023; 45:6097-6115. [PMID: 37504301 PMCID: PMC10378267 DOI: 10.3390/cimb45070385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Mitochondria in mammalian cardiomyocytes display considerable structural heterogeneity, the significance of which is not currently understood. We use electron microscopic tomography to analyze a dataset of 68 mitochondrial subvolumes to look for correlations among mitochondrial size and shape, crista morphology and membrane density, and organelle location within rat cardiac myocytes. A tomographic analysis guided the definition of four classes of crista morphology: lamellar, tubular, mixed and transitional, the last associated with remodeling between lamellar and tubular cristae. Correlations include an apparent bias for mitochondria with lamellar cristae to be located in the regions between myofibrils and a two-fold larger crista membrane density in mitochondria with lamellar cristae relative to mitochondria with tubular cristae. The examination of individual cristae inside mitochondria reveals local variations in crista topology, such as extent of branching, alignment of fenestrations and progressive changes in membrane morphology and packing density. The findings suggest both a rationale for the interfibrillar location of lamellar mitochondria and a pathway for crista remodeling from lamellar to tubular morphology.
Collapse
Affiliation(s)
- Raquel A. Adams
- Krasnow Institute for Advanced Study and School of Systems Biology, George Mason University, Fairfax, VA 22030, USA;
| | - Zheng Liu
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA (M.M.)
| | - Chongere Hsieh
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA (M.M.)
| | - Michael Marko
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA (M.M.)
| | - W. Jonathan Lederer
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA;
- Center for Biomedical Engineering and Technology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - M. Saleet Jafri
- Krasnow Institute for Advanced Study and School of Systems Biology, George Mason University, Fairfax, VA 22030, USA;
- Center for Biomedical Engineering and Technology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Carmen Mannella
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA;
- Center for Biomedical Engineering and Technology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|