1
|
Oliver TJ, Elias E, Croce R. Acclimation to white light in a far-red light specialist: insights from Acaryochloris marina MBIC11017. THE NEW PHYTOLOGIST 2025. [PMID: 40325848 DOI: 10.1111/nph.70188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/02/2025] [Indexed: 05/07/2025]
Abstract
The Chl d-containing cyanobacterium, Acaryochloris marina MBIC11017, is constitutively adapted to far-red light (FRL). However, it occasionally encounters white light (WL) in its natural habitat. Using biochemical and spectroscopic techniques, we investigated how this organism acclimates to WL and analysed the excitation energy trapping dynamics of its photosystems and complex antenna system, comprised of both membrane-embedded and soluble antenna. When grown in WL, A. marina MBIC11017 doubles its Photosystem I/Photosystem II (PSI/PSII) ratio and increases its phycobilisome content compared with FRL, without altering their composition, while the number of membrane-embedded antennae decreases. Under both light conditions, phycobilisomes primarily transfer excitation energy to PSII, but a smaller fraction transfers to PSI. The PSI trapping time is fast (35 ps), confirming the absence of red-shifted forms. By contrast, PSII trapping is slower, with two components of c. 115 and c. 480 ps. Simulations based on the PSII structure suggest that this slow trapping arises mainly from the PSII antenna arrangement rather than from the use of Chld as a primary donor. These results reveal how A. marina MBIC11017 dynamically adjusts photosystem ratios and antenna composition to changes in light quality, offering insights into the ecological and functional implications of Chld-driven photosynthesis and chromatic acclimation.
Collapse
Affiliation(s)
- Thomas J Oliver
- Department of Physics and Astronomy, Faculty of Sciences, Institute for Lasers, Life and Biophotonics, Vrije Universiteit Amsterdam, de Boelelaan 1100, Amsterdam, HZ, 1081, the Netherlands
| | - Eduard Elias
- Department of Physics and Astronomy, Faculty of Sciences, Institute for Lasers, Life and Biophotonics, Vrije Universiteit Amsterdam, de Boelelaan 1100, Amsterdam, HZ, 1081, the Netherlands
| | - Roberta Croce
- Department of Physics and Astronomy, Faculty of Sciences, Institute for Lasers, Life and Biophotonics, Vrije Universiteit Amsterdam, de Boelelaan 1100, Amsterdam, HZ, 1081, the Netherlands
| |
Collapse
|
2
|
Noji T, Saito K, Ishikita H. How the Electron-Transfer Cascade is Maintained in Chlorophyll- d Containing Photosystem I. Biochemistry 2025; 64:203-212. [PMID: 39656068 PMCID: PMC11716663 DOI: 10.1021/acs.biochem.4c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
Abstract
Photosystem I (PSI) from Acaryochloris marina utilizes chlorophyll d (Chld) with a formyl group as its primary pigment, which is more red-shifted than chlorophyll a (Chla) in PSI from Thermosynechococcus elongatus. Using the cryo-electron microscopy structure and solving the linear Poisson-Boltzmann equation, here we report the redox potential (Em) values in A. marina PSI. The Em(Chld) values at the paired chlorophyll site, [PAPB], are nearly identical to the corresponding Em(Chla) values in T. elongatus PSI, despite Chld having a 200 mV lower reduction power. The accessory chlorophyll site, A-1, in the B branch exhibits an extensive H-bond network with its ligand water molecule, contributing to Em(A-1B) being lower than Em(A-1A). The substitution of pheophytin a (Pheoa) with Chla at the electron acceptor site, A0, decreases Em(A0), resulting in an uphill electron transfer from A-1. The impact of the A-1 formyl group on Em(A0) is offset by the reorientation of the A0 ester group. It seems likely that Pheoa is necessary for A. marina PSI to maintain the overall electron-transfer cascade characteristic of PSI in its unique light environment.
Collapse
Affiliation(s)
- Tomoyasu Noji
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Keisuke Saito
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroshi Ishikita
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
3
|
Agostini A, Calcinoni A, Petrova AA, Bortolus M, Casazza AP, Carbonera D, Santabarbara S. An unusual triplet population pathway in the Reaction Centre of the Chlorophyll-d binding Photosystem I of A. marina, as revealed by a combination of TR-EPR and ODMR spectroscopies. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149515. [PMID: 39349288 DOI: 10.1016/j.bbabio.2024.149515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/03/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024]
Abstract
Photo-induced Chlorophyll (Chl) triplet states in the isolated Photosystem I (PSI) of Acaryochloris marina, that harbours Chl d as its main pigment, were investigated by Optically Detected Magnetic Resonance (ODMR) and Time-Resolved Electron Paramagnetic Resonance (TR-EPR), and as a function of pre-illumination of the sample under reducing redox poising. Fluorescence Detected Magnetic Resonance (FDMR) allowed resolving four Chl d triplet (3Chl d) populations (T1-T4) both in untreated and illuminated samples in the presence of ascorbate and N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD). The FDMR signals increased following the pre-illumination treatment, particularly for the T3 and T4 populations, which are therefore sensitive to the redox state of PSI cofactors. Microwave-induced Triplet minus Singlet (TmS) spectra were detected in the |D|-|E| resonance window of the T3 and T4 triplets. These showed a broad singlet bleaching centred at 740 nm and also displayed complex spectral structure with several derivative-like features, indicating that both the T3 and T43Chl d populations are associated with the PSI reaction centre (RC) triplet, P3740. Parallel measurements by TR-EPR demonstrated that triplet signals observed under all conditions investigated are dominated by an electron spin polarisation (esp), which is typical of intersystem crossing, differently from what expected for recombination triplet states formed from a radical pair precursor. Moreover, stronger reductant conditions obtained by pre-illumination of the samples in the presence of dithionite and 5-methylphenazinium methyl sulfate (PMS) did not lead to a recombination triplet state esp, but rather to a decrease of the whole signal intensity. The energetics of A. marina PSI and the possible occurrence of distributions of cofactors redox properties are discussed in order to address the unexpected P3740 esp.
Collapse
Affiliation(s)
- Alessandro Agostini
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Andrea Calcinoni
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Anastasia A Petrova
- Photosynthesis Research Unit, Centro Studi sulla Biologia Cellulare e Molecolare delle Piante, Consiglio Nazionale delle Ricerche, Via Celoria 26, 20133 Milano, Italy; A. N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, 119992 Leninskye Gory 1 building, 40 Moscow, Russia
| | - Marco Bortolus
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Anna Paola Casazza
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via A. Corti 12, 20133 Milano, Italy
| | - Donatella Carbonera
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Stefano Santabarbara
- Photosynthesis Research Unit, Centro Studi sulla Biologia Cellulare e Molecolare delle Piante, Consiglio Nazionale delle Ricerche, Via Celoria 26, 20133 Milano, Italy; Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via A. Corti 12, 20133 Milano, Italy.
| |
Collapse
|
4
|
Cherepanov DA, Kurashov V, Gostev FE, Shelaev IV, Zabelin AA, Shen G, Mamedov MD, Aybush A, Shkuropatov AY, Nadtochenko VA, Bryant DA, Golbeck JH, Semenov AY. Femtosecond optical studies of the primary charge separation reactions in far-red photosystem II from Synechococcus sp. PCC 7335. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149044. [PMID: 38588942 DOI: 10.1016/j.bbabio.2024.149044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/26/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
Primary processes of light energy conversion by Photosystem II (PSII) were studied using femtosecond broadband pump-probe absorption difference spectroscopy. Transient absorption changes of core complexes isolated from the cyanobacterium Synechococcus sp. PCC 7335 grown under far-red light (FRL-PSII) were compared with the canonical Chl a containing spinach PSII core complexes upon excitation into the red edge of the Qy band. Absorption changes of FRL-PSII were monitored at 278 K in the 400-800 nm spectral range on a timescale of 0.1-500 ps upon selective excitation at 740 nm of four chlorophyll (Chl) f molecules in the light harvesting antenna, or of one Chl d molecule at the ChlD1 position in the reaction center (RC) upon pumping at 710 nm. Numerical analysis of absorption changes and assessment of the energy levels of the presumed ion-radical states made it possible to identify PD1+ChlD1- as the predominant primary charge-separated radical pair, the formation of which upon selective excitation of Chl d has an apparent time of ∼1.6 ps. Electron transfer to the secondary acceptor pheophytin PheoD1 has an apparent time of ∼7 ps with a variety of excitation wavelengths. The energy redistribution between Chl a and Chl f in the antenna occurs within 1 ps, whereas the energy migration from Chl f to the RC occurs mostly with lifetimes of 60 and 400 ps. Potentiometric analysis suggests that in canonical PSII, PD1+ChlD1- can be partially formed from the excited (PD1ChlD1)* state.
Collapse
Affiliation(s)
- Dmitry A Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina st., 4, 119991 Moscow, Russia; A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory, 1, building 40, 119992 Moscow, Russia.
| | - Vasily Kurashov
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, 16802, USA
| | - Fedor E Gostev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina st., 4, 119991 Moscow, Russia
| | - Ivan V Shelaev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina st., 4, 119991 Moscow, Russia
| | - Alexey A Zabelin
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Moscow Region, Russia
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, 16802, USA
| | - Mahir D Mamedov
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory, 1, building 40, 119992 Moscow, Russia
| | - Arseny Aybush
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina st., 4, 119991 Moscow, Russia
| | - Anatoly Ya Shkuropatov
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Moscow Region, Russia
| | - Victor A Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina st., 4, 119991 Moscow, Russia; Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory, 1, 119991 Moscow, Russia
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, 16802, USA
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, 16802, USA; Department of Chemistry, The Pennsylvania State University, University Park, 16802, USA
| | - Alexey Yu Semenov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina st., 4, 119991 Moscow, Russia; A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory, 1, building 40, 119992 Moscow, Russia.
| |
Collapse
|
5
|
Cherepanov DA, Petrova AA, Fadeeva MS, Gostev FE, Shelaev IV, Nadtochenko VA, Semenov AY. Specificity of Photochemical Energy Conversion in Photosystem I from the Green Microalga Chlorella ohadii. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1133-1145. [PMID: 38981706 DOI: 10.1134/s0006297924060129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 07/11/2024]
Abstract
Primary excitation energy transfer and charge separation in photosystem I (PSI) from the extremophile desert green alga Chlorella ohadii grown in low light were studied using broadband femtosecond pump-probe spectroscopy in the spectral range from 400 to 850 nm and in the time range from 50 fs to 500 ps. Photochemical reactions were induced by the excitation into the blue and red edges of the chlorophyll Qy absorption band and compared with similar processes in PSI from the cyanobacterium Synechocystis sp. PCC 6803. When PSI from C. ohadii was excited at 660 nm, the processes of energy redistribution in the light-harvesting antenna complex were observed within a time interval of up to 25 ps, while formation of the stable radical ion pair P700+A1- was kinetically heterogeneous with characteristic times of 25 and 120 ps. When PSI was excited into the red edge of the Qy band at 715 nm, primary charge separation reactions occurred within the time range of 7 ps in half of the complexes. In the remaining complexes, formation of the radical ion pair P700+A1- was limited by the energy transfer and occurred with a characteristic time of 70 ps. Similar photochemical reactions in PSI from Synechocystis 6803 were significantly faster: upon excitation at 680 nm, formation of the primary radical ion pairs occurred with a time of 3 ps in ~30% complexes. Excitation at 720 nm resulted in kinetically unresolvable ultrafast primary charge separation in 50% complexes, and subsequent formation of P700+A1- was observed within 25 ps. The photodynamics of PSI from C. ohadii was noticeably similar to the excitation energy transfer and charge separation in PSI from the microalga Chlamydomonas reinhardtii; however, the dynamics of energy transfer in C. ohadii PSI also included slower components.
Collapse
Affiliation(s)
- Dmitry A Cherepanov
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia.
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Anastasiya A Petrova
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Mariya S Fadeeva
- The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Fedor E Gostev
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Ivan V Shelaev
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Victor A Nadtochenko
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexey Yu Semenov
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia.
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
6
|
Elias E, Oliver TJ, Croce R. Oxygenic Photosynthesis in Far-Red Light: Strategies and Mechanisms. Annu Rev Phys Chem 2024; 75:231-256. [PMID: 38382567 DOI: 10.1146/annurev-physchem-090722-125847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Oxygenic photosynthesis, the process that converts light energy into chemical energy, is traditionally associated with the absorption of visible light by chlorophyll molecules. However, recent studies have revealed a growing number of organisms capable of using far-red light (700-800 nm) to drive oxygenic photosynthesis. This phenomenon challenges the conventional understanding of the limits of this process. In this review, we briefly introduce the organisms that exhibit far-red photosynthesis and explore the different strategies they employ to harvest far-red light. We discuss the modifications of photosynthetic complexes and their impact on the delivery of excitation energy to photochemical centers and on overall photochemical efficiency. Finally, we examine the solutions employed to drive electron transport and water oxidation using relatively low-energy photons. The findings discussed here not only expand our knowledge of the remarkable adaptation capacities of photosynthetic organisms but also offer insights into the potential for enhancing light capture in crops.
Collapse
Affiliation(s)
- Eduard Elias
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands;
| | - Thomas J Oliver
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands;
| | - Roberta Croce
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands;
| |
Collapse
|
7
|
Kimura A, Kitoh-Nishioka H, Kondo T, Oh-Oka H, Itoh S, Azai C. Experimental and Theoretical Mutation of Exciton States on the Smallest Type-I Photosynthetic Reaction Center Complex of a Green Sulfur Bacterium Chlorobaclum tepidum. J Phys Chem B 2024; 128:731-743. [PMID: 38198639 DOI: 10.1021/acs.jpcb.3c07424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The exciton states on the smallest type-I photosynthetic reaction center complex of a green sulfur bacterium Chlorobaculum tepidum (GsbRC) consisting of 26 bacteriochlorophylls a (BChl a) and four chlorophylls a (Chl a) located on the homodimer of two PscA reaction center polypeptides were investigated. This analysis involved the study of exciton states through a combination of theoretical modeling and the genetic removal of BChl a pigments at eight sites. (1) A theoretical model of the pigment assembly exciton state on GsbRC was constructed using Poisson TrESP (P-TrESP) and charge density coupling (CDC) methods based on structural information. The model reproduced the experimentally obtained absorption spectrum, circular dichroism spectrum, and excitation transfer dynamics, as well as explained the effects of mutation. (2) Eight BChl a molecules at different locations on the GsbRC were selectively removed by genetic exchange of the His residue, which ligates the central Mg atom of BChl a, with the Leu residue on either one or two PscAs in the RC. His locations are conserved among all type-I RC plant polypeptide, cyanobacteria, and bacteria amino acid sequences. (3) Purified mutant-GsbRCs demonstrated distinct absorption and fluorescence spectra at 77 K, which were different from each other, suggesting successful pigment removal. (4) The same mutations were applied to the constructed theoretical model to analyze the outcomes of these mutations. (5) The combination of theoretical predictions and experimental mutations based on structural information is a new tool for studying the function and evolution of photosynthetic reaction centers.
Collapse
Affiliation(s)
- Akihiro Kimura
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Hirotaka Kitoh-Nishioka
- Department of Energy and Materials, Faculty of Science and Engineering, Kindai University, Osaka 577-8502, Japan
| | - Toru Kondo
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Hirozo Oh-Oka
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Shigeru Itoh
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Chihiro Azai
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Tokyo 112-8551, Japan
| |
Collapse
|
8
|
Cherepanov DA, Neverov KV, Obukhov YN, Maleeva YV, Gostev FE, Shelaev IV, Aybush AV, Kritsky MS, Nadtochenko VA. Femtosecond Dynamics of Excited States of Chlorophyll Tetramer in Water-Soluble Chlorophyll-Binding Protein BoWSCP. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1580-1595. [PMID: 38105026 DOI: 10.1134/s0006297923100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 12/19/2023]
Abstract
The paper reports on the absorption dynamics of chlorophyll a in a symmetric tetrameric complex of the water-soluble chlorophyll-binding protein BoWSCP. It was measured by a broadband femtosecond laser pump-probe spectroscopy within the range from 400 to 750 nm and with a time resolution of 20 fs-200 ps. When BoWSCP was excited in the region of the Soret band at a wavelength of 430 nm, nonradiative intramolecular conversion S3→S1 was observed with a characteristic time of 83 ± 9 fs. When the complex was excited in the region of the Qy band at 670 nm, relaxation transition between two excitonic states of the chlorophyll dimer was observed in the range of 105 ± 10 fs. Absorption spectra of the excited singlet states S1 and S3 of chlorophyll a were obtained. The delocalization of the excited state between exciton-coupled Chl molecules in BoWSCP tetramer changed in time and depended on the excitation energy. When BoWSCP is excited in the Soret band region, an ultrafast photochemical reaction is observed. This could result from the reduction of tryptophan in the vicinity of chlorophyll.
Collapse
Affiliation(s)
- Dmitry A Cherepanov
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia.
- Belozersky Research Institute of Physical and Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Konstantin V Neverov
- Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Yuriy N Obukhov
- Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Yulia V Maleeva
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Feodor E Gostev
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Ivan V Shelaev
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
- Belozersky Research Institute of Physical and Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Arseny V Aybush
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Michail S Kritsky
- Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Victor A Nadtochenko
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia.
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|