1
|
Huang Y, Zhu Q, Sun Y. Glucose metabolism and endometrium decidualization. Front Endocrinol (Lausanne) 2025; 16:1546335. [PMID: 40034230 PMCID: PMC11872720 DOI: 10.3389/fendo.2025.1546335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
Prior to embryo implantation, the endometrial stromal cells (ESCs) during the menstrual cycle undergo a significant structural and functional transformation known as decidualization to support conception. During this process, glucose consumption and utilization by endometrial cells increase to meet energy demands. Abnormal glucose metabolism in the endometrium impairs decidualization, leading to pregnancy complications, including implantation failure and pregnancy loss. However, the mechanisms modulating glucose metabolism in endometrial stromal cells during decidualization are still unclear. In this review, we describe the functions and regulation of glucose transporters (GLUTs) involved in glucose uptake, as well as the modulation of key enzymes catalyzing glucose utilization. Moreover, we present recent findings on the role of glucose related metabolites in the decidualization of ESCs.
Collapse
Affiliation(s)
- Yunfei Huang
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Qinling Zhu
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yun Sun
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Espindola-Lozano M, Méndez-Tepepa M, Castillo-Romano M, Rojas-Juárez R, Nicolás-Toledo L, Rodríguez-Antolín J, Castelán F, Cuevas-Romero E. Methimazole-Induced Hypothyroidism Increases the Content of Glycogen and Changes the Expression of LDH, GLUT4, and Aromatase in the Pregnant Uterus of Rabbits. Metabolites 2025; 15:82. [PMID: 39997707 PMCID: PMC11857478 DOI: 10.3390/metabo15020082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/29/2024] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Objective: To determine the impact of hypothyroidism on uterine glycogen accumulation during pregnancy. Methods: Non-pregnant and pregnant (days 5, 10, and 20) rabbits were grouped into control and methimazole (MMI) groups. In rabbits, serum concentrations of thyroxine (T4), triiodothyronine, glucose, insulin, progesterone, and estradiol were quantified. In uterine inter- and implantation sites, the glycogen content and expression of lactate dehydrogenase (LDH), GLUT4, and aromatase were quantified via Western blot. Fetuses' characteristics at 20 days of pregnancy were analyzed. Two-way ANOVA was used to compare variables between groups. Results: Pregnancy reduced T4 concentrations but not T3. In virgin groups, MMI treatment significantly reduced the concentrations of T4 and T3 and increased the expression of GLUT4 and aromatase in the uterus compared to the control group. In pregnant groups, T4, T3, glucose, insulin, progesterone, and estradiol levels were similar between control and MMI-treated rabbits. Compared to controls, MMI treatment in pregnant rabbits (a) reduced GLUT4 expression on inter-implantation sites on day 5; (b) increased glycogen content on implantation sites but reduced GLUT4 expression on inter-and implantation sites on day 10; (c) increased glycogen content and LDH and aromatase expression but reduced GLUT4 on inter-implantation sites; and (d) increased glycogen content and the expression of LDH, GLUT4, and aromatase on day 20 on implantation sites. Moreover, the fetus characteristics were similar between groups. Conclusions: MMI-induced hypothyroidism is associated with changes in the uterine content of glycogen and the expression of LDH, GLUT4, and aromatase during pregnancy.
Collapse
Affiliation(s)
- Marlen Espindola-Lozano
- Ph.D. Program in Biological Sciences, Autonomous University of Tlaxcala, 90070 Tlaxcala, Mexico; (M.E.-L.); (M.M.-T.); (R.R.-J.)
| | - Maribel Méndez-Tepepa
- Ph.D. Program in Biological Sciences, Autonomous University of Tlaxcala, 90070 Tlaxcala, Mexico; (M.E.-L.); (M.M.-T.); (R.R.-J.)
| | - Marlenne Castillo-Romano
- Master Program in Biological Sciences, Autonomous University of Tlaxcala, 90070 Tlaxcala, Mexico;
| | - Rubicela Rojas-Juárez
- Ph.D. Program in Biological Sciences, Autonomous University of Tlaxcala, 90070 Tlaxcala, Mexico; (M.E.-L.); (M.M.-T.); (R.R.-J.)
| | - Leticia Nicolás-Toledo
- Center Tlaxcala of Behavior Biology, Autonomous University of Tlaxcala, 90070 Tlaxcala, Mexico; (L.N.-T.); (J.R.-A.); (F.C.)
| | - Jorge Rodríguez-Antolín
- Center Tlaxcala of Behavior Biology, Autonomous University of Tlaxcala, 90070 Tlaxcala, Mexico; (L.N.-T.); (J.R.-A.); (F.C.)
| | - Francisco Castelán
- Center Tlaxcala of Behavior Biology, Autonomous University of Tlaxcala, 90070 Tlaxcala, Mexico; (L.N.-T.); (J.R.-A.); (F.C.)
- Department of Cellular and Physiology, Institute of Biomedical Research, Autonomous Nacional University of Mexico, CP 04510 Mexico City, Mexico
| | - Estela Cuevas-Romero
- Center Tlaxcala of Behavior Biology, Autonomous University of Tlaxcala, 90070 Tlaxcala, Mexico; (L.N.-T.); (J.R.-A.); (F.C.)
| |
Collapse
|
3
|
Wang M, Yang N, Guo W, Yang Y, Bao B, Zhang X, Zhang D. RNAi-mediated glucose transporter 4 (Glut4) silencing inhibits ovarian development and enhances deltamethrin-treated energy depletion in Locusta migratoria. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:106014. [PMID: 39084805 DOI: 10.1016/j.pestbp.2024.106014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/22/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024]
Abstract
Energy metabolism is essential for insect development, reproduction and detoxification. Insects often reallocate energy and resources to manage external stress, balancing the demands of detoxification and reproduction. Glucose transport 4 (Glut4), a glucose transporter, is involved in glucose and lipid metabolism. However, the specific molecular mechanism of Glut4 in insect reproduction, and its role in the response to insecticide-induced oxidative stress remain unclear. In this study, LmGlut4 was identified and analyzed in Locusta migratoria. Silencing of LmGlut4 significantly reduced vitellogenin (Vg) biosynthesis in the fat body and Vg absorption by oocytes, ultimately hindering ovarian development and oocyte maturation. Knockdown of LmGlut4 also inhibited the biosynthesis of key insect hormones, such as juvenile hormone (JH), 20-hydroxyecdysone (20E) and insulin. Furthermore, LmGlut4 knockdown led to reduced triglyceride (TG) and glycogen content in the fat body and ovary, as well as decreased capacity for trehalose biosynthesis in adipocytes. Additionally, dsLmGlut4-treated locusts showed heightened sensitivity to deltamethrin, leading to increased triglyceride depletion during detoxification. This study sheds light on the biological function of LmGlut4 in the ovary and provides potential target genes for exploring biological pest management strategies.
Collapse
Affiliation(s)
- Mingjun Wang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Ningxin Yang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Wenhui Guo
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Yong Yang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Bowen Bao
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Xiaohong Zhang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071002, China.
| | - Daochuan Zhang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071002, China; Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China.
| |
Collapse
|
4
|
Liu J, Zhao Y, Chen L, Li R, Ning Y, Zhu X. Role of metformin in functional endometrial hyperplasia and polycystic ovary syndrome involves the regulation of MEG3/miR‑223/GLUT4 and SNHG20/miR‑4486/GLUT4 signaling. Mol Med Rep 2022; 26:218. [PMID: 35552758 PMCID: PMC9175273 DOI: 10.3892/mmr.2022.12734] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 12/17/2021] [Indexed: 12/02/2022] Open
Abstract
Metformin (MET) can effectively treat endometrial hyperplasia (EH), and the expression of glucose transporter type 4 insulin-responsive (GLUT4) is closely associated with the development of EH. The present study aimed to verify the effect of MET in functional EH and polycystic ovary syndrome (PCOS). H&E staining was performed to analyze the severity of EH, and immunohistochemistry was performed to evaluate the expression of GLUT4 in the endometrium of PCOS rats. Reverse transcription-quantitative PCR was used to calculate the expression of long non-coding (lnc)RNA-maternally expressed gene 3 (MEG3), lncRNA-small nucleolar RNA host gene 20 (SNHG20), GLUT4 mRNA, microRNA (miR)-223 and miR-4486. Sequence analysis and luciferase assays were performed to explore the regulatory relationship among certain lncRNAs, miRNAs and target genes. EH in PCOS rats was efficiently inhibited by MET administration. The increased expression of GLUT4 in PCOS rats was attenuated by MET treatment. Moreover, the expression levels of lncRNA-MEG3 and lncRNA-SNHG20 were significantly inhibited in the endometrium of PCOS rats. MET treatment also showed remarkable efficiency in restoring the expression of lncRNA-MEG3 and lncRNA-SNHG20. Meanwhile, the expression levels of miR-223 and miR-4486 were notably elevated in the endometrium of PCOS rats, while MET treatment reduced the expression of miR-223 and miR-4486 in PCOS rats. Furthermore, a luciferase assay confirmed the inhibitory relationship between miR-223 and lncRNA-MEG3/GLUT4 expression, as well as between miR-4486 and lncRNA-SNHG20/GLUT4 expression. GLUT4 knockdown restored the decreased viability of HCC-94 cells induced by overexpression of lncRNA-MEG3. To conclude, MET exhibited a therapeutic effect in the treatment of EH by modulating the lncRNA-MEG3/miR-223/GLUT4 and lncRNA-SNHG20/miR-4486/GLUT4 signaling pathways. This work provides mechanistic insight into the development of EH.
Collapse
Affiliation(s)
- Jie Liu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, P.R. China
| | - Yangchun Zhao
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, P.R. China
| | - Long Chen
- PCR Laboratory, Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, P.R. China
| | - Ruilan Li
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, P.R. China
| | - Yumei Ning
- Department of Gynecology, Zhejiang Maternal and Child Health and Reproductive Health Center, Hangzhou, Zhejiang 310000, P.R. China
| | - Xiuzhi Zhu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
5
|
Silva RS, Mattoso Miskulin Cardoso AP, Giometti IC, D'Aprile L, Garcia Santos FA, Maruyama AS, Medeiros de Carvalho Sousa LM, Unniappan S, Kowalewski MP, de Carvalho Papa P. Insulin induces steroidogenesis in canine luteal cells via PI3K-MEK-MAPK. Mol Cell Endocrinol 2022; 540:111518. [PMID: 34808277 DOI: 10.1016/j.mce.2021.111518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/25/2021] [Accepted: 11/17/2021] [Indexed: 11/26/2022]
Abstract
Glucose uptake increases in canine luteal cells under insulin treatment. We hypothesize that insulin also increases luteal cell steroidogenesis. Dogs underwent elective ovariohysterectomy from days 10-60 post ovulation and their corpora lutea (CL) and blood samples were collected. Deep RNA sequencing determined differentially expressed genes in CL; those related to insulin signaling and steroidogenesis were validated in vivo by qPCR and their respective proteins by Western blotting and immunofluorescence. Next, luteal cell cultures were stimulated with insulin with or without inhibition of MAPK14, MAP2K1 and PI3K. Studied proteins except P450 aromatase showed the same expression pattern of coding genes in vivo. The expression of HSD3B and CYP19A1 was higher in insulin-treated cells (P < 0.005). Following respective pathway blockades, the culture medium had decreased concentrations of progesterone (P4) and 17b-estradiol (E2) (P < 0.01). Our results indicate that insulin increases HSD3B and CYP19A1 expression via MAPK and PI3K, and contributes to the regulation of P4 and E2 production in canine luteal cells.
Collapse
Affiliation(s)
- Renata Santos Silva
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil; FAMESP, Faculdade Método de São Paulo, Sao Paulo, Brazil
| | | | | | - Loren D'Aprile
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | - Arnaldo Shindi Maruyama
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Depart. of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Paula de Carvalho Papa
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil; Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Vrhovac Madunić I, Karin-Kujundžić V, Madunić J, Šola IM, Šerman L. Endometrial Glucose Transporters in Health and Disease. Front Cell Dev Biol 2021; 9:703671. [PMID: 34552924 PMCID: PMC8450505 DOI: 10.3389/fcell.2021.703671] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022] Open
Abstract
Pregnancy loss is a frequent occurrence during the peri-implantation period, when there is high glucose demand for embryonic development and endometrial decidualization. Glucose is among the most essential uterine fluid components required for those processes. Numerous studies associate abnormal glucose metabolism in the endometrium with a higher risk of adverse pregnancy outcomes. The endometrium is incapable of synthesizing glucose, which thus must be delivered into the uterine lumen by glucose transporters (GLUTs) and/or the sodium-dependent glucose transporter 1 (SGLT1). Among the 26 glucose transporters (14 GLUTs and 12 SGLTs) described, 10 (9 GLUTs and SGLT1) are expressed in rodents and 8 (7 GLUTs and SGLT1) in the human uterus. This review summarizes present knowledge on the most studied glucose transporters in the uterine endometrium (GLUT1, GLUT3, GLUT4, and GLUT8), whose data regarding function and regulation are still lacking. We present the recently discovered SGLT1 in the mouse and human endometrium, responsible for controlling glycogen accumulation essential for embryo implantation. Moreover, we describe the epigenetic regulation of endometrial GLUTs, as well as signaling pathways included in uterine GLUT’s expression. Further investigation of the GLUTs function in different endometrial cells is of high importance, as numerous glucose transporters are associated with infertility, polycystic ovary syndrome, and gestational diabetes.
Collapse
Affiliation(s)
- Ivana Vrhovac Madunić
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Valentina Karin-Kujundžić
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia.,Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Josip Madunić
- Biochemistry and Organic Analytical Chemistry Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Ida Marija Šola
- Department of Gynecology and Obstetrics, Sisters of Charity University Hospital, Zagreb, Croatia
| | - Ljiljana Šerman
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia.,Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
7
|
Hu M, Zhang Y, Li X, Cui P, Li J, Brännström M, Shao LR, Billig H. Alterations of endometrial epithelial-mesenchymal transition and MAPK signalling components in women with PCOS are partially modulated by metformin in vitro. Mol Hum Reprod 2021; 26:312-326. [PMID: 32202622 DOI: 10.1093/molehr/gaaa023] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
Growing evidence suggests that epithelial-mesenchymal transition (EMT) and its regulator mitogen-activated protein kinase (MAPK) contribute to endometria-related reproductive disorders. However, the regulation of EMT and MAPK signalling components in the endometrium from polycystic ovary syndrome (PCOS) patients has not been systematically investigated and remains elusive. In humans, how metformin induces molecular alterations in the endometrial tissues under PCOS conditions is not completely clear. Here, we recruited 7 non-PCOS patients during the proliferative phase (nPCOS), 7 non-PCOS patients with endometrial hyperplasia (nPCOSEH), 14 PCOS patients during the proliferative phase (PCOS) and 3 PCOS patients with endometrial hyperplasia (PCOSEH). Our studies demonstrated that compared with nPCOS, PCOS patients showed decreased Claudin 1 and increased Vimentin and Slug proteins. Similar to increased Slug protein, nPCOSEH and PCOSEH patients showed increased N-cadherin protein. Western blot and immunostaining revealed increased epithelial phosphorylated Cytokeratin 8 (p-CK 8) expression and an increased p-CK 8:CK 8 ratio in PCOS, nPCOSEH and PCOSEH patients compared to nPCOS patients. Although nPCOSEH and PCOSEH patients showed increased p-ERK1/2 and/or p38 protein levels, the significant increase in p-ERK1/2 expression and p-ERK1/2:ERK1/2 ratio was only found in PCOS patients compared to nPCOS patients. A significant induction of the membrane ERβ immunostaining was observed in the epithelial cells of PCOS and PCOSEH patients compared to nPCOS and nPCOSEH patients. While in vitro treatment with metformin alone increased Snail and decreased Claudin 1, N-cadherin and α-SMA proteins, concomitant treatment with metformin and E2 increased the expression of CK 8 and Snail proteins and decreased the expression of Claudin 1, ZO-1, Slug and α-SMA proteins. Our findings suggest that the EMT contributes to the switch from a healthy state to a PCOS state in the endometrium, which might subsequently drive endometrial injury and dysfunction. We also provide evidence that metformin differentially modulates EMT protein expression in PCOS patients depending on oestrogenic stimulation.
Collapse
Affiliation(s)
- Min Hu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, 510120 Guangzhou, China.,Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Yuehui Zhang
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150040 Harbin, China
| | - Xin Li
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden.,Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 200011 Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, 200011 Shanghai, China
| | - Peng Cui
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Juan Li
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, 510120 Guangzhou, China.,Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, 41345 Gothenburg, Sweden
| | - Linus R Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Håkan Billig
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| |
Collapse
|
8
|
Long Y, Wang YC, Yuan DZ, Dai XH, Liao LC, Zhang XQ, Zhang LX, Ma YD, Lei Y, Cui ZH, Zhang JH, Nie L, Yue LM. GLUT4 in Mouse Endometrial Epithelium: Roles in Embryonic Development and Implantation. Front Physiol 2021; 12:674924. [PMID: 34248664 PMCID: PMC8267529 DOI: 10.3389/fphys.2021.674924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/23/2021] [Indexed: 12/21/2022] Open
Abstract
GLUT4 is involved in rapid glucose uptake among various kinds of cells to contribute to glucose homeostasis. Prior data have reported that aberrant glucose metabolism by GLUT4 dysfunction in the uterus could be responsible for infertility and increased miscarriage. However, the expression and precise functions of GLUT4 in the endometrium under physiological conditions remain unknown or controversial. In this study, we observed that GLUT4 exhibits a spatiotemporal expression in mouse uterus on pregnant days 1–4; its expression especially increased on pregnant day 4 during the window of implantation. We also determined that estrogen, in conjunction with progesterone, promotes the expression of GLUT4 in the endometrial epithelium in vivo or in vitro. GLUT4 is an important transporter that mediates glucose transport in endometrial epithelial cells (EECs) in vitro or in vivo. In vitro, glucose uptake decreased in mouse EECs when the cells were treated with GLUT4 small interfering RNA (siRNA). In vivo, the injection of GLUT4-siRNA into one side of the mouse uterine horns resulted in an increased glucose concentration in the uterine fluid on pregnant day 4, although it was still lower than in blood, and impaired endometrial receptivity by inhibiting pinopode formation and the expressions of leukemia inhibitory factor (LIF) and integrin ανβ3, finally affecting embryonic development and implantation. Overall, the obtained results indicate that GLUT4 in the endometrial epithelium affects embryo development by altering glucose concentration in the uterine fluid. It can also affect implantation by impairing endometrial receptivity due to dysfunction of GLUT4.
Collapse
Affiliation(s)
- Yun Long
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China.,Department of Physiology, Chongqing Three Gorges Medical College, Chongqing, China
| | - Yi-Cheng Wang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Dong-Zhi Yuan
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xin-Hua Dai
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Lin-Chuan Liao
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xue-Qin Zhang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Li-Xue Zhang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yong-Dan Ma
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yi Lei
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Zhi-Hui Cui
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jin-Hu Zhang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Li Nie
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Li-Min Yue
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Hu M, Zhang Y, Li X, Cui P, Sferruzzi-Perri AN, Brännström M, Shao LR, Billig H. TLR4-Associated IRF-7 and NFκB Signaling Act as a Molecular Link Between Androgen and Metformin Activities and Cytokine Synthesis in the PCOS Endometrium. J Clin Endocrinol Metab 2021; 106:1022-1040. [PMID: 33382900 DOI: 10.1210/clinem/dgaa951] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Indexed: 12/19/2022]
Abstract
CONTEXT Low-grade chronic inflammation is commonly seen in polycystic ovary syndrome (PCOS) patients with elevated levels of inflammatory cytokines in the endometrium. OBJECTIVE This work aimed to increase the limited understanding of the mechanisms underlying cytokine synthesis and increased endometrial inflammation in PCOS patients. METHODS Endometrial biopsy samples were collected from non-PCOS (n = 17) and PCOS (n = 22) patients either during the proliferative phase of the menstrual cycle or with hyperplasia. Endometrial explants were prepared from PCOS patients and underwent pharmacological manipulation in vitro. The expression and localization of toll-like receptor 2 (TLR2)/4, key elements of innate immune signal transduction and nuclear factor κB (NFκB) signaling pathways, and multiple cytokines were comprehensively evaluated by Western blotting, immunohistochemistry, and immunofluorescence in endometrial tissues. RESULTS We demonstrated the distribution of protein expression and localization associated with the significantly increased androgen receptor, TLR2, and TLR4-mediated activation of interferon regulatory factor-7 (IRF-7) and NFκB signaling, cytokine production, and endometrial inflammation in PCOS patients compared to non-PCOS patients with and without endometrial hyperplasia. In vitro experiments showed that 5-dihydrotestosterone (DHT) enhanced androgen receptor, TLR4, IRF-7, and p-NFκB p65 protein expression along with increased interferon α (IFNα) and IFNɣ abundance. The effects of DHT on IRF-7, p-NFκB p65, and IFN abundance were abolished by flutamide, an antiandrogen. Although 17β-estradiol (E2) decreased p-IRF-7 expression with little effect on TLR-mediated IRF7 and NFκB signaling or on cytokine protein levels, exposure to metformin alone or in combination with E2 suppressed interleukin-1 receptor-associated kinase 4 (IRAK4), p-IRF-7, IRF-7, IκB kinase α (IKKα), p-NFκB p65, IFNɣ, and tumor necrosis factor α protein expression. CONCLUSION Cytokine synthesis and increased endometrial inflammation in PCOS patients are coupled to androgen-induced TLR4/IRF-7/NFκB signaling, which is inhibited by metformin treatment.
Collapse
Affiliation(s)
- Min Hu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yuehui Zhang
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xin Li
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Peng Cui
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Amanda Nancy Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Linus R Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Håkan Billig
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
10
|
Hu M, Zhang Y, Egecioglu E, Li X, Shao LR, Billig H. Uterine glycolytic enzyme expression is affected by knockout of different estrogen receptor subtypes. Biomed Rep 2019; 11:135-144. [PMID: 31565219 PMCID: PMC6759582 DOI: 10.3892/br.2019.1234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022] Open
Abstract
The estrogen signaling pathway via nuclear estrogen receptors (ER) α and β is considered to be the master regulator of the cellular glucose metabolism in the uterus. While in vivo animal studies have demonstrated that 17β-estradiol (E2) treatment increases the expression levels and activities of several glycolytic enzymes in the uterus, the specific ER subtype-dependent regulation of key glycolytic enzymes in the uterus has not been experimentally verified. In this study, the localization of ERα and ERβ in human and mouse endometria were evaluated using immunohistology. Given that ERα and ERβ are not functionally equivalent, ERα, ERβ and ERαβ knockout (ERα-/-, ERβ-/- and ERαβ-/-) mice were utilized to determine the expression pattern of glycolytic enzymes in the uterus. It was found that the level of ERα was higher than that of ERβ in the human and mouse endometrial epithelial and stromal cells, and both receptors were downregulated by E2 treatment in the mouse uterus. The expression of the hexokinase 1 and GAPDH was increased in ERα-/- and ERβ-/- mice compared with wild-type controls. Increased phosphofructokinase expression was observed in ERα-/- and ERαβ-/- mice, whereas increased pyruvate kinase isozyme M2 and pyruvate dehydrogenase expression was observed in ERβ-/- and ERαβ-/- mice. The findings indicated for the first time that while estrogen regulates ERα and ERβ expression in the uterus, ERα and ERβ selectively regulate uterine glycolytic enzyme expression during glycolysis. Additionally, the link between endometrial ER subtypes and glycolysis in women with polycystic ovary syndrome (PCOS) is discussed. The findings suggested that the E2-dependent ER-mediated regulation of glycolysis may be involved in the disturbance of the glucose metabolism in patients with PCOS with endometrial dysfunction.
Collapse
Affiliation(s)
- Min Hu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China.,Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Yuehui Zhang
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Emil Egecioglu
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Xin Li
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden.,Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, P.R. China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai 200011, P.R. China
| | - Linus R Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Håkan Billig
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| |
Collapse
|
11
|
Wang T, Zhang J, Hu M, Zhang Y, Cui P, Li X, Li J, Vestin E, Brännström M, Shao LR, Billig H. Differential Expression Patterns of Glycolytic Enzymes and Mitochondria-Dependent Apoptosis in PCOS Patients with Endometrial Hyperplasia, an Early Hallmark of Endometrial Cancer, In Vivo and the Impact of Metformin In Vitro. Int J Biol Sci 2019; 15:714-725. [PMID: 30745857 PMCID: PMC6367580 DOI: 10.7150/ijbs.31425] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 12/23/2018] [Indexed: 12/21/2022] Open
Abstract
The underlying mechanisms of polycystic ovarian syndrome (PCOS)-induced endometrial dysfunction are not fully understood, and although accumulating evidence shows that the use of metformin has beneficial effects in PCOS patients, the precise regulatory mechanisms of metformin on endometrial function under PCOS conditions have only been partially explored. To address these clinical challenges, this study aimed to assess the protein expression patterns of glycolytic enzymes, estrogen receptor (ER), and androgen receptor (AR) along with differences in mitochondria-dependent apoptosis in PCOS patients with and without endometrial hyperplasia in vivo and to investigate the effects of metformin in PCOS patients with endometrial hyperplasia in vitro. Here, we showed that compared to non-PCOS patients and PCOS patients without hyperplasia, the endometria from PCOS patients with hyperplasia had a distinct protein expression pattern of glycolytic enzymes, including pyruvate kinase isozyme M2 isoform (PKM2) and pyruvate dehydrogenase (PDH), and mitochondrial transcription factor A (TFAM). In PCOS patients with endometrial hyperplasia, increased glandular epithelial cell secretion and infiltrated stromal cells in the glands were associated with decreased PDH immunoreactivity in the epithelial cells. Using endometrial tissues from PCOS patients with hyperplasia, we found that in response to metformin treatment in vitro, hexokinase 2 (HK2) expression was decreased, whereas phosphofructokinase (PFK), PKM2, and lactate dehydrogenase A (LDHA) expression was increased compared to controls. Although there was no change in PDH expression, metformin treatment increased the expression of TFAM and cleaved caspase-3. Moreover, our in vivo study showed that while endometrial ERβ expression was no different between non-PCOS and PCOS patients regardless of whether or not hyperplasia was present, ERα and AR protein expression was gradually increased in women with PCOS following the onset of endometrial hyperplasia. Our in vitro study showed that treatment with metformin inhibited ERα expression without affecting ERβ expression. Our findings suggest that decreased glycolysis and increased mitochondrial activity might contribute to the onset of ERα-dependent endometrial hyperplasia and that metformin might directly reverse impaired glycolysis and normalize mitochondrial function in PCOS patients with endometrial hyperplasia.
Collapse
Affiliation(s)
- Tao Wang
- The School of Basic Medical Science, Heilongjiang University of Chinese Medicine, 150040 Harbin, China.,Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150040 Harbin, China
| | - Jiao Zhang
- Department of Acupuncture and Moxibustion, Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150040 Harbin, China
| | - Min Hu
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden.,Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, 510120 Guangzhou, China.,Institute of Integrated Traditional Chinese Medicine and Western Medicine, Guangzhou Medical University, 510120 Guangzhou, China
| | - Yuehui Zhang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150040 Harbin, China.,Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Peng Cui
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Xin Li
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden.,Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 200011 Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, 200011 Shanghai, China
| | - Juan Li
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden.,Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, 510120 Guangzhou, China
| | - Edvin Vestin
- The School of Basic Medical Science, Heilongjiang University of Chinese Medicine, 150040 Harbin, China
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, 41345 Gothenburg, Sweden
| | - Linus R Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Håkan Billig
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| |
Collapse
|
12
|
Hu M, Li J, Zhang Y, Li X, Brännström M, Shao LR, Billig H. Endometrial progesterone receptor isoforms in women with polycystic ovary syndrome. Am J Transl Res 2018; 10:2696-2705. [PMID: 30210706 PMCID: PMC6129510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
CONTEXT Polycystic ovary syndrome (PCOS) affects approximately 4%-18% of all reproductive-aged women and is often accompanied by endometrial progesterone (P4) resistance. Endometrial cells from PCOS patients display increased progesterone receptor (PGR) expression; however, in vivo knockout studies and in vitro experiments indicate the two PGR isoforms are not functionally equivalent. OBJECTIVE We aimed to compare endometrial PGR isoform expression between non-PCOS and PCOS patients during the proliferative phase. DESIGN A case-control study. The expression of PGR isoforms (PGRA and PGRB), estrogen receptor alpha (ERα), and markers of cell proliferation was determined by qRT-PCR, Western blot, immunohistochemistry, and immunofluorescence assays. PATIENT(S) Patients were recruited and diagnosed with PCOS according to the Rotterdam criteria provided by the American Society for Reproductive Medicine and the European Society for Human Reproduction and Embryology. Endometrial biopsy samples were collected from non-PCOS patients with regular menstrual cycles or with hyperplasia (n = 11) and from PCOS patients with or without hyperplasia (n = 14). RESULT(S) Although the alteration of PGRB mRNA and protein expression was different, we found that PGRA mRNA and protein expression was higher in PCOS patients than non-PCOS patients. PGRA/B and PGRB were localized in both epithelial and stromal cells, with notable changes in the nuclei of epithelial and stromal cells. A similar expression pattern of ERα, vimentin and Ki-67, in association with an increased PGR expression, was observed in PCOS patients. CONCLUSION(S) These results demonstrated that elevated both PGR isoform expression depends on the presence of PCOS, and our data suggest that abnormal regulation of PGR isoforms is a pathological outcome of defective endometrium in PCOS patients.
Collapse
Affiliation(s)
- Min Hu
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of GothenburgGothenburg 40530, Sweden
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou 510120, China
| | - Juan Li
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of GothenburgGothenburg 40530, Sweden
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou 510120, China
| | - Yuehui Zhang
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of GothenburgGothenburg 40530, Sweden
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese MedicineHarbin 150040, China
| | - Xin Li
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of GothenburgGothenburg 40530, Sweden
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan UniversityShanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, China
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Sahlgrenska Academy, University of GothenburgGothenburg 41345, Sweden
| | - Linus R Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of GothenburgGothenburg 40530, Sweden
| | - Håkan Billig
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of GothenburgGothenburg 40530, Sweden
| |
Collapse
|
13
|
Tamadon A, Hu W, Cui P, Ma T, Tong X, Zhang F, Li X, Shao LR, Feng Y. How to choose the suitable animal model of polycystic ovary syndrome? TRADITIONAL MEDICINE AND MODERN MEDICINE 2018. [DOI: 10.1142/s2575900018300047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a gynecological metabolic and endocrine disorder with uncertain etiology. To understand the etiology of PCOS or the evaluation of various therapeutic agents, different animal models have been introduced. Considering this fact that is difficult to develop an animal model that mimics all aspects of this syndrome, but, similarity of biological, anatomical, and/or biochemical features of animal model to the human PCOS phenotypes can increase its application. This review paper evaluates the recently researched animal models and introduced the best models for different research purposes in PCOS studies. During January 2013 to January 2017, 162 studies were identified which applied various kinds of animal models of PCOS including rodent, primate, ruminant and fish. Between these models, prenatal and pre-pubertal androgen rat models and then prenatal androgen mouse model have been studied in detail than others. The comparison of main features of these models with women PCOS demonstrates higher similarity of these three models to human conditions. Thereafter, letrozole models can be recommended for the investigation of various aspects of PCOS. Interestingly, similarity of PCOS features of post-pubertal insulin and human chorionic gonadotropin rat models with women PCOS were considerable which can make it as a good choice for future investigations.
Collapse
Affiliation(s)
- Amin Tamadon
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai 200032, P. R. China
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Wei Hu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai 200032, P. R. China
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Peng Cui
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai 200032, P. R. China
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Tong Ma
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai 200032, P. R. China
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Xiaoyu Tong
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai 200032, P. R. China
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Feifei Zhang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P. R. China
| | - Xin Li
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P. R. China
| | - Linus R. Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Yi Feng
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai 200032, P. R. China
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
14
|
Zhang Y, Sun X, Sun X, Meng F, Hu M, Li X, Li W, Wu XK, Brännström M, Shao R, Billig H. Molecular characterization of insulin resistance and glycolytic metabolism in the rat uterus. Sci Rep 2016; 6:30679. [PMID: 27461373 PMCID: PMC4962087 DOI: 10.1038/srep30679] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/07/2016] [Indexed: 12/29/2022] Open
Abstract
Peripheral insulin resistance and hyperandrogenism are the primary features of polycystic ovary syndrome (PCOS). However, how insulin resistance and hyperandrogenism affect uterine function and contribute to the pathogenesis of PCOS are open questions. We treated rats with insulin alone or in combination with human chorionic gonadotropin (hCG) and showed that peripheral insulin resistance and hyperandrogenism alter uterine morphology, cell phenotype, and cell function, especially in glandular epithelial cells. These defects are associated with an aberration in the PI3K/Akt signaling pathway that is used as an indicator for the onset of insulin resistance in classical metabolic tissues. Concomitantly, increased GSK3β (Ser-9) phosphorylation and decreased ERK1/2 phosphorylation in rats treated with insulin and hCG were also observed. We also profiled the expression of glucose transporter (Glut) isoform genes in the uterus under conditions of insulin resistance and/or hyperandrogenism. Finally, we determined the expression pattern of glycolytic enzymes and intermediates during insulin resistance and hyperandrogenism in the uterus. These findings suggest that the PI3K/Akt and MAPK/ERK signaling pathways play a role in the onset of uterine insulin resistance, and they also suggest that changes in specific Glut isoform expression and alterations to glycolytic metabolism contribute to the endometrial dysfunction observed in PCOS patients.
Collapse
Affiliation(s)
- Yuehui Zhang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150040 Harbin, China.,Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Xue Sun
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150040 Harbin, China
| | - Xiaoyan Sun
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150040 Harbin, China
| | - Fanci Meng
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150040 Harbin, China
| | - Min Hu
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Xin Li
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden.,Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 200011 Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, 200011 Shanghai, China
| | - Wei Li
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150040 Harbin, China
| | - Xiao-Ke Wu
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150040 Harbin, China
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital at Sahlgrenska Academy, University of Gothenburg, 41345 Gothenburg, Sweden
| | - Ruijin Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Håkan Billig
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| |
Collapse
|
15
|
Li X, Pishdari B, Cui P, Hu M, Yang HP, Guo YR, Jiang HY, Feng Y, Billig H, Shao R. Regulation of Androgen Receptor Expression Alters AMPK Phosphorylation in the Endometrium: In Vivo and In Vitro Studies in Women with Polycystic Ovary Syndrome. Int J Biol Sci 2015; 11:1376-89. [PMID: 26681917 PMCID: PMC4671995 DOI: 10.7150/ijbs.13109] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/12/2015] [Indexed: 11/05/2022] Open
Abstract
The failure of reproductive success in polycystic ovary syndrome (PCOS) patients could be in part due to endometrial dysfunction. However, no studies have investigated any causality between androgen, androgen receptor (AR) expression, and adenosine monophosphate activated protein kinase (AMPK) activation in the endometrium under physiological and pathological conditions. In the present study, we show that 1) endometrial AR expression levels fluctuate in non-PCOS and PCOS patients during the menstrual cycle; 2) the menstrual phase-dependent alteration of p-AMPKα expression occurs in non-PCOS patients but not in PCOS patients; 3) AR expression is higher in PCOS patients than non-PCOS patients during hyperplasia while AMPKα activation (indicated by the ratio of p-AMPKα to AMPKα); and 4) co-localization of AR and Ki-67 in epithelial cell nuclei is observed in endometrial hyperplasia. Importantly, using in vitro human tissue culture and an in vivo 5α-dihydrotestosterone-treated rat model, we show that the action of androgen on AMPKα activation is likely mediated through nuclear AR, especially in epithelial cells. Collectively, we present evidence that AR expression and AMPKα activation depend on menstrual cycle phase and the presence of PCOS, and the data suggest that AR-mediated regulation of AMPKα activation might play a role in the development of endometrial hyperplasia.
Collapse
Affiliation(s)
- Xin Li
- 1. Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. ; 2. Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China; ; 3. Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Bano Pishdari
- 1. Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peng Cui
- 4. Department of Integrative Medicine and Neurobiology, State Key Lab of Medical Neurobiology, Shanghai Medical College and Institute of Acupuncture Research (WHO Collaborating Center for Traditional Medicine), Institute of Brain Science, Fudan University, Shanghai, China
| | - Min Hu
- 1. Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hong-Ping Yang
- 2. Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China; ; 3. Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yan-Rong Guo
- 2. Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China; ; 3. Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Hong-Yuan Jiang
- 2. Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China; ; 3. Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yi Feng
- 1. Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. ; 4. Department of Integrative Medicine and Neurobiology, State Key Lab of Medical Neurobiology, Shanghai Medical College and Institute of Acupuncture Research (WHO Collaborating Center for Traditional Medicine), Institute of Brain Science, Fudan University, Shanghai, China
| | - Håkan Billig
- 1. Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ruijin Shao
- 1. Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|