1
|
Rai NK, Venugopal H, Rajesh R, Ancha P, Venkatesh S. Mitochondrial complex-1 as a therapeutic target for cardiac diseases. Mol Cell Biochem 2025; 480:869-890. [PMID: 39033212 DOI: 10.1007/s11010-024-05074-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Mitochondrial dysfunction is critical for the development and progression of cardiovascular diseases (CVDs). Complex-1 (CI) is an essential component of the mitochondrial electron transport chain that participates in oxidative phosphorylation and energy production. CI is the largest multisubunit complex (~ 1 Mda) and comprises 45 protein subunits encoded by seven mt-DNA genes and 38 nuclear genes. These subunits function as the enzyme nicotinamide adenine dinucleotide hydrogen (NADH): ubiquinone oxidoreductase. CI dysregulation has been implicated in various CVDs, including heart failure, ischemic heart disease, pressure overload, hypertrophy, and cardiomyopathy. Several studies demonstrated that impaired CI function contributes to increased oxidative stress, altered calcium homeostasis, and mitochondrial DNA damage in cardiac cells, leading to cardiomyocyte dysfunction and apoptosis. CI dysfunction has been associated with endothelial dysfunction, inflammation, and vascular remodeling, critical processes in developing atherosclerosis and hypertension. Although CI is crucial in physiological and pathological conditions, no potential therapeutics targeting CI are available to treat CVDs. We believe that a lack of understanding of CI's precise mechanisms and contributions to CVDs limits the development of therapeutic strategies. In this review, we comprehensively analyze the role of CI in cardiovascular health and disease to shed light on its potential therapeutic target role in CVDs.
Collapse
Affiliation(s)
- Neeraj Kumar Rai
- Department of Physiology, Pharmacology and Toxicology, School of Medicine, School of Medicine, West Virginia University, Morgantown, 26505, WV, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT, USA
| | - Harikrishnan Venugopal
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ritika Rajesh
- Department of Physiology, Pharmacology and Toxicology, School of Medicine, School of Medicine, West Virginia University, Morgantown, 26505, WV, USA
| | - Pranavi Ancha
- Department of Physiology, Pharmacology and Toxicology, School of Medicine, School of Medicine, West Virginia University, Morgantown, 26505, WV, USA
| | - Sundararajan Venkatesh
- Department of Physiology, Pharmacology and Toxicology, School of Medicine, School of Medicine, West Virginia University, Morgantown, 26505, WV, USA.
| |
Collapse
|
2
|
Balderas E, Lee SHJ, Rai NK, Mollinedo DM, Duron HE, Chaudhuri D. Mitochondrial Calcium Regulation of Cardiac Metabolism in Health and Disease. Physiology (Bethesda) 2024; 39:0. [PMID: 38713090 PMCID: PMC11460536 DOI: 10.1152/physiol.00014.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024] Open
Abstract
Oxidative phosphorylation is regulated by mitochondrial calcium (Ca2+) in health and disease. In physiological states, Ca2+ enters via the mitochondrial Ca2+ uniporter and rapidly enhances NADH and ATP production. However, maintaining Ca2+ homeostasis is critical: insufficient Ca2+ impairs stress adaptation, and Ca2+ overload can trigger cell death. In this review, we delve into recent insights further defining the relationship between mitochondrial Ca2+ dynamics and oxidative phosphorylation. Our focus is on how such regulation affects cardiac function in health and disease, including heart failure, ischemia-reperfusion, arrhythmias, catecholaminergic polymorphic ventricular tachycardia, mitochondrial cardiomyopathies, Barth syndrome, and Friedreich's ataxia. Several themes emerge from recent data. First, mitochondrial Ca2+ regulation is critical for fuel substrate selection, metabolite import, and matching of ATP supply to demand. Second, mitochondrial Ca2+ regulates both the production and response to reactive oxygen species (ROS), and the balance between its pro- and antioxidant effects is key to how it contributes to physiological and pathological states. Third, Ca2+ exerts localized effects on the electron transport chain (ETC), not through traditional allosteric mechanisms but rather indirectly. These effects hinge on specific transporters, such as the uniporter or the Na+/Ca2+ exchanger, and may not be noticeable acutely, contributing differently to phenotypes depending on whether Ca2+ transporters are acutely or chronically modified. Perturbations in these novel relationships during disease states may either serve as compensatory mechanisms or exacerbate impairments in oxidative phosphorylation. Consequently, targeting mitochondrial Ca2+ holds promise as a therapeutic strategy for a variety of cardiac diseases characterized by contractile failure or arrhythmias.
Collapse
Affiliation(s)
- Enrique Balderas
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Sandra H J Lee
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Neeraj K Rai
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - David M Mollinedo
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Hannah E Duron
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Dipayan Chaudhuri
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, Biochemistry, Biomedical Engineering, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
3
|
Bulthuis EP, Adjobo-Hermans MJW, de Potter B, Hoogstraten S, Wezendonk LHT, Tutakhel OAZ, Wintjes LT, van den Heuvel B, Willems PHGM, Kamsteeg EJ, Gozalbo MER, Sallevelt SCEH, Koudijs SM, Nicolai J, de Bie CI, Hoogendijk JE, Koopman WJH, Rodenburg RJ. SMDT1 variants impair EMRE-mediated mitochondrial calcium uptake in patients with muscle involvement. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166808. [PMID: 37454773 DOI: 10.1016/j.bbadis.2023.166808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/26/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Ionic calcium (Ca2+) is a key messenger in signal transduction and its mitochondrial uptake plays an important role in cell physiology. This uptake is mediated by the mitochondrial Ca2+ uniporter (MCU), which is regulated by EMRE (essential MCU regulator) encoded by the SMDT1 (single-pass membrane protein with aspartate rich tail 1) gene. This work presents the genetic, clinical and cellular characterization of two patients harbouring SMDT1 variants and presenting with muscle problems. Analysis of patient fibroblasts and complementation experiments demonstrated that these variants lead to absence of EMRE protein, induce MCU subcomplex formation and impair mitochondrial Ca2+ uptake. However, the activity of oxidative phosphorylation enzymes, mitochondrial morphology and membrane potential, as well as routine/ATP-linked respiration were not affected. We hypothesize that the muscle-related symptoms in the SMDT1 patients result from aberrant mitochondrial Ca2+ uptake.
Collapse
Affiliation(s)
- Elianne P Bulthuis
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Merel J W Adjobo-Hermans
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Bastiaan de Potter
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Saskia Hoogstraten
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands; Human and Animal Physiology, Wageningen University & Research, 6700 AH Wageningen, the Netherlands
| | - Lisanne H T Wezendonk
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Omar A Z Tutakhel
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Liesbeth T Wintjes
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Bert van den Heuvel
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Peter H G M Willems
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - M Estela Rubio Gozalbo
- Department of Pediatrics, Maastricht University Medical Centre, 6229 HX Maastricht, the Netherlands; Department of Clinical Genetics, Maastricht University Medical Centre, 6229 HX Maastricht, the Netherlands
| | - Suzanne C E H Sallevelt
- Department of Clinical Genetics, Maastricht University Medical Centre, 6229 HX Maastricht, the Netherlands
| | - Suzanne M Koudijs
- Department of Neurology, Maastricht University Medical Centre, 6229 HX Maastricht, the Netherlands
| | - Joost Nicolai
- Department of Neurology, Maastricht University Medical Centre, 6229 HX Maastricht, the Netherlands
| | - Charlotte I de Bie
- Department of Genetics, University Medical Centre Utrecht, 3508 AB Utrecht, the Netherlands
| | - Jessica E Hoogendijk
- Rudolf Magnus Institute of Neuroscience, University Medical Centre Utrecht, 3584 CG Utrecht, the Netherlands
| | - Werner J H Koopman
- Human and Animal Physiology, Wageningen University & Research, 6700 AH Wageningen, the Netherlands; Department of Pediatrics, Amalia Children's Hospital, Radboud Center for Mitochondrial Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands.
| | - Richard J Rodenburg
- Department of Pediatrics, Amalia Children's Hospital, Radboud Center for Mitochondrial Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands.
| |
Collapse
|
4
|
Mitochondrial calcium uniporter stabilization preserves energetic homeostasis during Complex I impairment. Nat Commun 2022; 13:2769. [PMID: 35589699 PMCID: PMC9120069 DOI: 10.1038/s41467-022-30236-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
Calcium entering mitochondria potently stimulates ATP synthesis. Increases in calcium preserve energy synthesis in cardiomyopathies caused by mitochondrial dysfunction, and occur due to enhanced activity of the mitochondrial calcium uniporter channel. The signaling mechanism that mediates this compensatory increase remains unknown. Here, we find that increases in the uniporter are due to impairment in Complex I of the electron transport chain. In normal physiology, Complex I promotes uniporter degradation via an interaction with the uniporter pore-forming subunit, a process we term Complex I-induced protein turnover. When Complex I dysfunction ensues, contact with the uniporter is inhibited, preventing degradation, and leading to a build-up in functional channels. Preventing uniporter activity leads to early demise in Complex I-deficient animals. Conversely, enhancing uniporter stability rescues survival and function in Complex I deficiency. Taken together, our data identify a fundamental pathway producing compensatory increases in calcium influx during Complex I impairment.
Collapse
|
5
|
Altered Expression Ratio of Actin-Binding Gelsolin Isoforms Is a Novel Hallmark of Mitochondrial OXPHOS Dysfunction. Cells 2020; 9:cells9091922. [PMID: 32824961 PMCID: PMC7563380 DOI: 10.3390/cells9091922] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/07/2020] [Accepted: 08/15/2020] [Indexed: 12/30/2022] Open
Abstract
Mitochondrial oxidative phosphorylation (OXPHOS) defects are the primary cause of inborn errors of energy metabolism. Despite considerable progress on their genetic basis, their global pathophysiological consequences remain undefined. Previous studies reported that OXPHOS dysfunction associated with complex III deficiency exacerbated the expression and mitochondrial location of cytoskeletal gelsolin (GSN) to promote cell survival responses. In humans, besides the cytosolic isoform, GSN presents a plasma isoform secreted to extracellular environments. We analyzed the interplay between both GSN isoforms in human cellular and clinical models of OXPHOS dysfunction. Regardless of its pathogenic origin, OXPHOS dysfunction induced the physiological upregulation of cytosolic GSN in the mitochondria (mGSN), in parallel with a significant downregulation of plasma GSN (pGSN) levels. Consequently, significantly high mGSN-to-pGSN ratios were associated with OXPHOS deficiency both in human cells and blood. In contrast, control cells subjected to hydrogen peroxide or staurosporine treatments showed no correlation between oxidative stress or cell death induction and the altered levels and subcellular location of GSN isoforms, suggesting their specificity for OXPHOS dysfunction. In conclusion, a high mitochondrial-to-plasma GSN ratio represents a useful cellular indicator of OXPHOS defects, with potential use for future research of a wide range of clinical conditions with mitochondrial involvement.
Collapse
|
6
|
Bergman O, Ben-Shachar D. Mitochondrial Oxidative Phosphorylation System (OXPHOS) Deficits in Schizophrenia: Possible Interactions with Cellular Processes. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2016; 61:457-69. [PMID: 27412728 PMCID: PMC4959648 DOI: 10.1177/0706743716648290] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondria are key players in the generation and regulation of cellular bioenergetics, producing the majority of adenosine triphosphate molecules by the oxidative phosphorylation system (OXPHOS). Linked to numerous signaling pathways and cellular functions, mitochondria, and OXPHOS in particular, are involved in neuronal development, connectivity, plasticity, and differentiation. Impairments in a variety of mitochondrial functions have been described in different general and psychiatric disorders, including schizophrenia (SCZ), a severe, chronic, debilitating illness that heavily affects the lives of patients and their families. This article reviews findings emphasizing the role of OXPHOS in the pathophysiology of SCZ. Evidence accumulated during the past few decades from imaging, transcriptomic, proteomic, and metabolomic studies points at OXPHOS deficit involvement in SCZ. Abnormalities have been reported in high-energy phosphates generated by the OXPHOS, in the activity of its complexes and gene expression, primarily of complex I (CoI). In addition, cellular signaling such as cAMP/protein kinase A (PKA) and Ca(+2), neuronal development, connectivity, and plasticity have been linked to OXPHOS function and are reported to be impaired in SCZ. Finally, CoI has been shown as a site of interaction for both dopamine (DA) and antipsychotic drugs, further substantiating its role in the pathology of SCZ. Understanding the role of mitochondria and the OXPHOS in particular may encourage new insights into the pathophysiology and etiology of this debilitating disorder.
Collapse
Affiliation(s)
- Oded Bergman
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Medical Center, Technion-IIT, Haifa, Israel B. Rappaport Faculty of Medicine, Technion-IIT, Haifa, Israel
| | - Dorit Ben-Shachar
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Medical Center, Technion-IIT, Haifa, Israel B. Rappaport Faculty of Medicine, Technion-IIT, Haifa, Israel
| |
Collapse
|
7
|
Mitochondrial complex I-linked disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:938-45. [DOI: 10.1016/j.bbabio.2016.02.012] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/16/2016] [Accepted: 02/18/2016] [Indexed: 11/22/2022]
|
8
|
Chung WK, Martin K, Jalas C, Braddock SR, Juusola J, Monaghan KG, Warner B, Franks S, Yudkoff M, Lulis L, Rhodes RH, Prasad V, Torti E, Cho MT, Shinawi M. Mutations inCOQ4, an essential component of coenzyme Q biosynthesis, cause lethal neonatal mitochondrial encephalomyopathy. J Med Genet 2015; 52:627-35. [DOI: 10.1136/jmedgenet-2015-103140] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/17/2015] [Indexed: 12/16/2022]
|
9
|
Salama M, Mohamed WM. NDUFA12L mitochondrial complex-I assembly factor: Implications for taupathies. Appl Transl Genom 2015; 5:37-9. [PMID: 26937358 PMCID: PMC4745364 DOI: 10.1016/j.atg.2015.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 05/29/2015] [Indexed: 12/02/2022]
Abstract
There is a strong correlation between taupathies and the development and progression of neurodegenerative disorders. Abnormal tau becomes hyperphosphorylated and dissociated from microtubules with the aggregation of intracellular tau aggregates within the patient's brain. The current review is divided into two broad sections. In the first section we discuss the molecular biology and the clinicopathologic features of taupathies. While in the second section we discuss the relationship between mitochondrial complex-I and taupathies. Polymorphism in NDUFA12L may be a crucial factor for development of neurodegenerative taupathies. Thus NDUFA12L screening may be an early biomarker for identifying risk groups for such disorders.
Collapse
Affiliation(s)
| | - Wael M.Y. Mohamed
- Clinical Pharmacology Dept, Menoufia Medical School, Menoufia University, Egypt
| |
Collapse
|
10
|
Rossignol R. Energy metabolism disorders in rare and common diseases. Toward bioenergetic modulation therapy and the training of a new generation of European scientists. Int J Biochem Cell Biol 2015; 63:2-9. [PMID: 25595463 DOI: 10.1016/j.biocel.2015.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Energy metabolism alterations are found in a large number of rare and common diseases of genetic or environmental origin. The number of patients that could benefit from bioenergetic modulation therapy (BIOMET) is therefore very important and includes individuals with pathologies as diverse as mitochondrial diseases, acute coronary syndrome, chronic kidney disease, asthma or even cancer. Although, the alteration of energy metabolism is disease specific and sometimes patient specific, the strategies for BIOMET could be common and target a series of bioenergetic regulatory mechanisms discussed in this article. An excellent training of scientists in the field of energy metabolism, related human diseases and drug discovery is also crucial to form a young generation of MDs, PHDs and Pharma or CRO-group leaders who will discover novel personalized bioenergetic medicines, through pharmacology, genetics, nutrition or adapted exercise training. The Mitochondrial European Educational Training (MEET) consortium was created to pursue this goal, and we dedicated here a special issue of Organelle in Focus (OiF) to highlight their objectives. A total of 10 OiFs articles constitute this Directed Issue on Mitochondrial Medicine. As part of this editorial article, we asked timely questions to the PR. Jan W. Smeitink, professor of Mitochondrial Medicine and CEO of Khondrion, a mitochondrial medicine company. He shared with us his objectives and strategies for the study of mitochondrial diseases and the identification of future treatments. This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies.
Collapse
Affiliation(s)
- Rodrigue Rossignol
- The International Journal of Biochemistry and Cell Biology, EA4576 MRGM, University of Bordeaux, CHU Pellegrin, Place Amélie-Raba Léon, 33076 Bordeaux Cedex, France.
| |
Collapse
|
11
|
Mitochondrial complex I inhibition as a possible mechanism of chlorpyrifos induced neurotoxicity. Ann Neurosci 2014; 21:85-9. [PMID: 25206071 PMCID: PMC4158778 DOI: 10.5214/ans.0972.7531.210303] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 05/23/2014] [Accepted: 07/07/2014] [Indexed: 12/29/2022] Open
Abstract
Background Organophosphates (OPs) represent the most widely used class of pesticides. Although perceived as low toxicity compounds compared to the previous organochlorines, they still possess neurotoxic effects both on acute and delayed levels. Delayed neurotoxic effects of OPs include OPIDN and OPICN. The mechanisms of these delayed effects have not been totally unraveled yet. One possible contributor for neurotoxicity is mitochondrial complex I (CI) inhibition. Purpose in the present study we evaluated the contributing role of (CI) inhibition in chlorpyrifos (CPF) induced delayed neuropathy in hens. Methods Experimented birds received 150 mg/kg of CPF, and evaluated behaviorally and biochemically. Results CPF treated hens received 150 mg/kg and developed signs of delayed neurotoxicity, which were verified by NTE inhibition. These effects were paralleled by CI inhibition and decrease in ATP level. Conclusions The data confirms the possible role of CI inhibition in CPF induced delayed neuropathy.
Collapse
|
12
|
Pepe S, Mentzer RM, Gottlieb RA. Cell-permeable protein therapy for complex I dysfunction. J Bioenerg Biomembr 2014; 46:337-45. [PMID: 25005682 DOI: 10.1007/s10863-014-9559-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 06/18/2014] [Indexed: 01/09/2023]
Abstract
Complex I deficiency is difficult to treat because of the size and complexity of the multi-subunit enzyme complex. Mutations or deletions in the mitochondrial genome are not amenable to gene therapy. However, animal studies have shown that yeast-derived internal NADH quinone oxidoreductase (Ndi1) can be delivered as a cell-permeable recombinant protein (Tat-Ndi1) that can functionally replace complex I damaged by ischemia/reperfusion. Current and future treatment of disorders affecting complex I are discussed, including the use of Tat-Ndi1.
Collapse
Affiliation(s)
- Salvatore Pepe
- Heart Research, Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Australia
| | | | | |
Collapse
|
13
|
Delmiro A, Rivera H, García-Silva MT, García-Consuegra I, Martín-Hernández E, Quijada-Fraile P, de Las Heras RS, Moreno-Izquierdo A, Martín MÁ, Arenas J, Martínez-Azorín F. Whole-exome sequencing identifies a variant of the mitochondrial MT-ND1 gene associated with epileptic encephalopathy: west syndrome evolving to Lennox-Gastaut syndrome. Hum Mutat 2013; 34:1623-7. [PMID: 24105702 DOI: 10.1002/humu.22445] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 09/09/2013] [Indexed: 11/08/2022]
Abstract
We describe a West syndrome (WS) patient with unidentified etiology that evolved to Lennox-Gastaut syndrome. The mitochondrial respiratory chain of the patient showed a simple complex I deficiency in fibroblasts. Whole-exome sequencing (WES) uncovered two heterozygous mutations in NDUFV2 gene that were reassigned to a pseudogene. With the WES data, it was possible to obtain whole mitochondrial DNA sequencing and to identify a heteroplasmic variant in the MT-ND1 (MTND1) gene (m.3946G>A, p.E214K). The expression of the gene in patient fibroblasts was not affected but the protein level was significantly reduced, suggesting that protein stability was affected by this mutation. The lower protein level also affected assembly of complex I and supercomplexes (I/III2 /IV and I/III2 ), leading to complex I deficiency. While ATP levels at steady state under stress conditions were not affected, the amount of ROS produced by complex I was significantly increased.
Collapse
Affiliation(s)
- Aitor Delmiro
- Laboratorio de Enfermedades Mitocondriales, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, E-28041, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, Madrid, E-28041, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Aravamudan B, Thompson MA, Pabelick CM, Prakash YS. Mitochondria in lung diseases. Expert Rev Respir Med 2013; 7:631-46. [PMID: 23978003 DOI: 10.1586/17476348.2013.834252] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mitochondria are autonomous cellular organelles that oversee a variety of functions such as metabolism, energy production, calcium buffering and cell fate determination. Regulation of their morphology and diverse activities beyond energy production are being recognized as playing major roles in cellular health and dysfunction. This review is aimed at summarizing what is known regarding mitochondrial contributions to pathogenesis of lung diseases. Emphasis is given to understanding the importance of structural and functional aspects of mitochondria in both normal cellular function (based on knowledge from other cell types) and in development and modulation of lung diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis and cancer. Emerging techniques that allow examination of mitochondria, and potential strategies to target mitochondria in the treatment of lung diseases are also discussed.
Collapse
Affiliation(s)
- Bharathi Aravamudan
- Departments of Anesthesiology, Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905 USA
| | | | | | | |
Collapse
|
15
|
Fluorescence imaging of mitochondria in cultured skin fibroblasts: a useful method for the detection of oxidative phosphorylation defects. Pediatr Res 2012; 72:232-40. [PMID: 22728747 DOI: 10.1038/pr.2012.84] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Protons are pumped from the mitochondrial matrix via oxidative phosphorylation (OXPHOS) into the intermembrane space, creating an electric membrane potential (ΔΨ) that is used for adenosine triphosphate (ATP) production. Defects in one or more of the OXPHOS complexes are associated with a variety of clinical symptoms, often making it difficult to pinpoint the causal mutation. METHODS In this article, a microscopic method for the quantitative evaluation of ΔΨ in cultured skin fibroblasts is described. The method using 5,5',6,6'-tetraethylbenzimidazolyl-carbocyanine iodide (JC-1) fluorescence staining was tested in a selection of OXPHOS-deficient cell lines. RESULTS A significant reduction of ΔΨ was found in the cell lines of patients with either an isolated defect in complex I, II, or IV or a combined defect (complex I + complex IV). ΔΨ was not reduced in the fibroblasts of two patients with severe complex V deficiency. Addition of the complex I inhibitor rotenone induced a significant reduction of ΔΨ and perinuclear relocalization of the mitochondria. In cells with a heteroplasmic mitochondrial DNA (mtDNA) defect, a more heterogeneous reduction of ΔΨ was detected. CONCLUSION Our data show that imaging of ΔΨ in cultured skin fibroblasts is a useful method for the evaluation of OXPHOS functioning in cultured cell lines.
Collapse
|
16
|
Transcriptional changes in OXPHOS complex I deficiency are related to anti-oxidant pathways and could explain the disturbed calcium homeostasis. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1161-8. [DOI: 10.1016/j.bbadis.2011.10.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 09/20/2011] [Accepted: 10/11/2011] [Indexed: 11/20/2022]
|
17
|
Roestenberg P, Manjeri GR, Valsecchi F, Smeitink JAM, Willems PHGM, Koopman WJH. Pharmacological targeting of mitochondrial complex I deficiency: the cellular level and beyond. Mitochondrion 2011; 12:57-65. [PMID: 21757032 DOI: 10.1016/j.mito.2011.06.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 01/20/2011] [Accepted: 06/25/2011] [Indexed: 12/20/2022]
Abstract
Complex I (CI) represents a major entry point of electrons in the mitochondrial electron transport chain (ETC). It consists of 45 different subunits, encoded by the mitochondrial (mtDNA) and nuclear DNA (nDNA). In humans, mutations in nDNA-encoded subunits cause severe neurodegenerative disorders like Leigh Syndrome with onset in early childhood. The pathophysiological mechanism of these disorders is still poorly understood. Here we summarize the current knowledge concerning the consequences of nDNA-encoded CI mutations in patient-derived cells, present mouse models for human CI deficiency, and discuss potential treatment strategies for CI deficiency.
Collapse
Affiliation(s)
- Peggy Roestenberg
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
18
|
Liu S, Lee YF, Chou S, Uno H, Li G, Brookes P, Massett MP, Wu Q, Chen LM, Chang C. Mice lacking TR4 nuclear receptor develop mitochondrial myopathy with deficiency in complex I. Mol Endocrinol 2011; 25:1301-10. [PMID: 21622535 DOI: 10.1210/me.2010-0455] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The estimated incidence of mitochondrial diseases in humans is approximately 1:5000 to 1:10,000, whereas the molecular mechanisms for more than 50% of human mitochondrial disease cases still remain unclear. Here we report that mice lacking testicular nuclear receptor 4 (TR4(-/-)) suffered mitochondrial myopathy, and histological examination of TR4(-/-) soleus muscle revealed abnormal mitochondrial accumulation. In addition, increased serum lactate levels, decreased mitochondrial ATP production, and decreased electron transport chain complex I activity were found in TR4(-/-) mice. Restoration of TR4 into TR4(-/-) myoblasts rescued mitochondrial ATP generation capacity and complex I activity. Further real-time PCR quantification and promoter studies found TR4 could modulate complex I activity via transcriptionally regulating the complex I assembly factor NDUFAF1, and restoration of NDUFAF1 level in TR4(-/-) myoblasts increased mitochondrial ATP generation capacity and complex I activity. Together, these results suggest that TR4 plays vital roles in mitochondrial function, which may help us to better understand the pathogenesis of mitochondrial myopathy, and targeting TR4 via its ligands/activators may allow us to develop better therapeutic approaches.
Collapse
Affiliation(s)
- Su Liu
- Department of Pathology, University of Rochester, Medical Center, Rochester, New York 14646, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Heeman B, Van den Haute C, Aelvoet SA, Valsecchi F, Rodenburg RJ, Reumers V, Debyser Z, Callewaert G, Koopman WJH, Willems PHGM, Baekelandt V. Depletion of PINK1 affects mitochondrial metabolism, calcium homeostasis and energy maintenance. J Cell Sci 2011; 124:1115-25. [DOI: 10.1242/jcs.078303] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Loss-of-function mutations in the gene encoding the mitochondrial PTEN-induced putative kinase 1 (PINK1) are a major cause of early-onset familial Parkinson's disease (PD). Recent studies have highlighted an important function for PINK1 in clearing depolarized mitochondria by mitophagy. However, the role of PINK1 in mitochondrial and cellular functioning in physiological conditions is still incompletely understood. Here, we investigate mitochondrial and cellular calcium (Ca2+) homeostasis in PINK1-knockdown and PINK1-knockout mouse cells, both in basal metabolic conditions and after physiological stimulation, using unbiased automated live single-cell imaging in combination with organelle-specific fluorescent probes. Our data reveal that depletion of PINK1 induces moderate fragmentation of the mitochondrial network, mitochondrial membrane depolarization and increased production of reactive oxygen species. This results in reduced uptake of Ca2+ by mitochondria after physiological stimulation. As a consequence, cells with knockdown or knockout of PINK1 display impaired mitochondrial ATP synthesis, which is exacerbated under conditions of increased ATP demand, thereby affecting cytosolic Ca2+ extrusion. The impairment in energy maintenance was confirmed in the brain of PINK1-knockout mice by in vivo bioluminescence imaging. Our findings demonstrate a key role for PINK1 in the regulation of mitochondrial homeostasis and energy metabolism under physiological conditions.
Collapse
Affiliation(s)
- Bavo Heeman
- Laboratory for Neurobiology and Gene Therapy, Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Flanders, Belgium
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Flanders, Belgium
| | - Sarah-Ann Aelvoet
- Laboratory for Neurobiology and Gene Therapy, Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Flanders, Belgium
| | - Federica Valsecchi
- Department of Biochemistry (286), Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 6500 Nijmegen, the Netherlands
- Department of Pediatrics, Nijmegen Centre for Mitochondrial Disorders, Radboud University Nijmegen Medical Centre, 6500 Nijmegen, the Netherlands
| | - Richard J. Rodenburg
- Department of Pediatrics, Nijmegen Centre for Mitochondrial Disorders, Radboud University Nijmegen Medical Centre, 6500 Nijmegen, the Netherlands
| | - Veerle Reumers
- Laboratory for Neurobiology and Gene Therapy, Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Flanders, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Molecular Medicine, Katholieke Universiteit Leuven and Interdisciplinary Research Centre, Katholieke Universiteit Leuven Campus Kortrijk, 8500 Kortrijk, Flanders, Belgium
| | - Geert Callewaert
- Research Group Neurodegeneration, Interdisciplinary Research Centre, Katholieke Universiteit Leuven Campus Kortrijk, 8500 Kortrijk, Flanders, Belgium
| | - Werner J. H. Koopman
- Department of Biochemistry (286), Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 6500 Nijmegen, the Netherlands
| | - Peter H. G. M. Willems
- Department of Biochemistry (286), Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 6500 Nijmegen, the Netherlands
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Flanders, Belgium
| |
Collapse
|
20
|
Koene S, Willems PHGM, Roestenberg P, Koopman WJH, Smeitink JAM. Mouse models for nuclear DNA-encoded mitochondrial complex I deficiency. J Inherit Metab Dis 2011; 34:293-307. [PMID: 20107904 DOI: 10.1007/s10545-009-9005-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 09/17/2009] [Accepted: 10/08/2009] [Indexed: 02/08/2023]
Abstract
Mitochondrial diseases are a group of heterogeneous pathologies with decreased cellular energy production as a common denominator. Defects in the oxidative phosphorylation (OXPHOS) system, the most frequent one in humans being isolated complex I deficiency (OMIM 252010), underlie this disturbed-energy generation. As biogenesis of OXPHOS complexes is under dual genetic control, with complex II being the sole exception, mutations in both nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) are found. Increasing knowledge is becoming available with respect to the pathophysiology and cellular consequences of OXPHOS dysfunction. This aids the rational design of new treatment strategies. Recently, the first successful treatment trials were carried out in patient-derived cell lines. In these studies chemical compounds were used that target cellular aberrations induced by complex I dysfunction. Before the field of human clinical trials is entered, it is necessary to study the effects of these compounds with respect to toxicity, pharmacokinetics and therapeutic potential in suitable animal models. Here, we discuss two recent mouse models for nDNA-encoded complex I deficiency and their tissue-specific knock-outs.
Collapse
Affiliation(s)
- Saskia Koene
- Department of Paediatrics, Nijmegen Centre for Mitochondrial Disorders, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
21
|
Koene S, Smeitink J. Metabolic manipulators: a well founded strategy to combat mitochondrial dysfunction. J Inherit Metab Dis 2011; 34:315-25. [PMID: 20668944 PMCID: PMC3063543 DOI: 10.1007/s10545-010-9162-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Revised: 06/11/2010] [Accepted: 06/23/2010] [Indexed: 01/27/2023]
Abstract
Whilst the pathophysiology and genetics of mitochondrial disease are slowly being unraveled, currently no effective remedy for mitochondrial disorders is available. One particular strategy in mitochondrial medicine presently under study is metabolic manipulation. This approach is aimed at counteracting the deranged cell biological homeostasis caused by mitochondrial dysfunction, using dietary modifications or small molecule therapy. Cell biological alterations caused by mitochondrial dysfunction include increased reactive oxygen species production, enhanced lipid peroxidation and altered cellular calcium homeostasis. This review covers the five principles of metabolic manipulation: (1) prevention of oxidative damage by reactive oxygen species, (2) amelioration of lipid peroxidation, (3) correction of altered membrane potential, (4) restoration of calcium homeostasis, and (5) transcription regulation interference. We hypothesize that a combination of compounds targeting different metabolic pathways will abolish cellular disturbance arising as a consequences of mitochondrial dysfunction, and thereby improve or stabilize clinical features. However, only a handful of compounds have reached efficacy testing in mammals, and it remains unknown to what extent metabolic manipulation will affect the whole organism. Until a potent remedy is found, patients will remain dependent on supportive, not curative, interventions.
Collapse
Affiliation(s)
- Saskia Koene
- Nijmegen Centre for Mitochondrial Disorders, Radboud University Nijmegen Medical Centre, Geert Grooteplein 10, 6500 HB PO BOX 9101, Nijmegen, The Netherlands
| | - Jan Smeitink
- Nijmegen Centre for Mitochondrial Disorders, Radboud University Nijmegen Medical Centre, Geert Grooteplein 10, 6500 HB PO BOX 9101, Nijmegen, The Netherlands
| |
Collapse
|
22
|
Wilmer MJ, Kluijtmans LAJ, van der Velden TJ, Willems PH, Scheffer PG, Masereeuw R, Monnens LA, van den Heuvel LP, Levtchenko EN. Cysteamine restores glutathione redox status in cultured cystinotic proximal tubular epithelial cells. Biochim Biophys Acta Mol Basis Dis 2011; 1812:643-51. [PMID: 21371554 DOI: 10.1016/j.bbadis.2011.02.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 01/28/2011] [Accepted: 02/22/2011] [Indexed: 11/28/2022]
Abstract
Recent evidence implies that impaired metabolism of glutathione has a role in the pathogenesis of nephropathic cystinosis. This recessive inherited disorder is characterized by lysosomal cystine accumulation and results in renal Fanconi syndrome progressing to end stage renal disease in the majority of patients. The most common treatment involves intracellular cystine depletion by cysteamine, delaying the development of end stage renal disease by a yet elusive mechanism. However, cystine depletion does not arrest the disease nor cures Fanconi syndrome in patients, indicating involvement of other yet unknown pathologic pathways. Using a newly developed proximal tubular epithelial cell model from cystinotic patients, we investigate the effect of cystine accumulation and cysteamine on both glutathione and ATP metabolism. In addition to the expected increase in cystine and defective sodium-dependent phosphate reabsorption, we observed less negative glutathione redox status and decreased intracellular ATP levels. No differences between control and cystinosis cell lines were observed with respect to protein turnover, albumin uptake, cytosolic and mitochondrial ATP production, total glutathione levels, protein oxidation and lipid peroxidation. Cysteamine treatment increased total glutathione in both control and cystinotic cells and normalized cystine levels and glutathione redox status in cystinotic cells. However, cysteamine did not improve decreased sodium-dependent phosphate uptake. Our data implicate that cysteamine increases total glutathione and restores glutathione redox status in cystinosis, which is a positive side-effect of this agent next to cystine depletion. This beneficial effect points to a potential role of cysteamine as anti-oxidant for other renal disorders associated with enhanced oxidative stress.
Collapse
Affiliation(s)
- Martijn J Wilmer
- Laboratory of Genetic Endocrine and Metabolic Diseases, Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Valsecchi F, Koopman WJ, Manjeri GR, Rodenburg RJ, Smeitink JA, Willems PH. Complex I disorders: Causes, mechanisms, and development of treatment strategies at the cellular level. ACTA ACUST UNITED AC 2010; 16:175-82. [DOI: 10.1002/ddrr.107] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Koopman WJH, Nijtmans LGJ, Dieteren CEJ, Roestenberg P, Valsecchi F, Smeitink JAM, Willems PHGM. Mammalian mitochondrial complex I: biogenesis, regulation, and reactive oxygen species generation. Antioxid Redox Signal 2010; 12:1431-70. [PMID: 19803744 DOI: 10.1089/ars.2009.2743] [Citation(s) in RCA: 308] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Virtually every mammalian cell contains mitochondria. These double-membrane organelles continuously change shape and position and contain the complete metabolic machinery for the oxidative conversion of pyruvate, fatty acids, and amino acids into ATP. Mitochondria are crucially involved in cellular Ca2+ and redox homeostasis and apoptosis induction. Maintenance of mitochondrial function and integrity requires an inside-negative potential difference across the mitochondrial inner membrane. This potential is sustained by the electron-transport chain (ETC). NADH:ubiquinone oxidoreductase or complex I (CI), the first and largest protein complex of the ETC, couples the oxidation of NADH to the reduction of ubiquinone. During this process, electrons can escape from CI and react with ambient oxygen to produce superoxide and derived reactive oxygen species (ROS). Depending on the balance between their production and removal by antioxidant systems, ROS may function as signaling molecules or induce damage to a variety of biomolecules or both. The latter ultimately leads to a loss of mitochondrial and cellular function and integrity. In this review, we discuss (a) the role of CI in mitochondrial functioning; (b) the composition, structure, and biogenesis of CI; (c) regulation of CI function; (d) the role of CI in ROS generation; and (e) adaptive responses to CI deficiency.
Collapse
Affiliation(s)
- Werner J H Koopman
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|