1
|
Naidu P, Das M, Hansda S, Prateeksha P, Howlader MSI, Siraj MA, Das H. Mechanisms of Ellagic Acid (EA)-Mediated Osteogenic Differentiation of Human Dental Pulp-Derived Stem Cells. ACS OMEGA 2025; 10:15229-15242. [PMID: 40290905 PMCID: PMC12019503 DOI: 10.1021/acsomega.4c10642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 04/30/2025]
Abstract
Ellagic acid (EA) is a potent antioxidant that reduces oxidative stress and promotes differentiation. By lowering the harmful levels of reactive oxygen species (ROS), EA fosters an environment conducive to the osteoblastic differentiation (OB) of stem cells. In addition, it promotes autophagy and mitophagy, which are vital for promoting differentiation. Effective autophagic activity recycles damaged organelles and proteins, meeting the energy required during differentiation and shielding from apoptosis. However, molecular mechanisms underlying the osteogenic differentiation of mesenchymal stem cells remain inadequately explored. Therefore, the current study aims to define the regulatory role of EA during the OB of dental pulp-derived stem cells (DPSC) and to study how autophagy and mitophagy are being modulated during this differentiation process. Herein, we showed that the expression level of osteoblast-specific markers, autophagy, and mitophagy-associated markers was significantly elevated during EA-mediated OB differentiation of DPSC. Moreover, we found that the EA induced the osteoblastic-specific markers through canonical BMP2 pathway molecules, reduced ROS in both basal and activated states, and induced autophagy and mitophagy molecules along with enhanced mitochondrial functions. Cell cycle analysis revealed that the G1 phase was arrested via phosphorylation of γ-H2AX, ATM, and CHK2 proteins. Furthermore, in silico analysis revealed that EA strongly binds with osteonectin, a crucial noncollagen protein involved in bone remodeling, and confirmed by Western blot analysis. These results support that EA could be a promising natural compound for bone repair and regeneration applications.
Collapse
Affiliation(s)
- Prathyusha Naidu
- Department
of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Manjusri Das
- Department
of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Surajit Hansda
- Department
of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Prateeksha Prateeksha
- Department
of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Md Sariful Islam Howlader
- Department
of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Md Afjalus Siraj
- Department
of Therapeutic Radiology, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, United States
| | - Hiranmoy Das
- Department
of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| |
Collapse
|
2
|
Azimnasab-Sorkhabi P, Soltani-Asl M, Soleiman Ekhtiyari M, Kfoury Junior JR. Landscape of unconventional γδ T cell subsets in cancer. Mol Biol Rep 2024; 51:238. [PMID: 38289417 DOI: 10.1007/s11033-024-09267-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
T cells are broadly categorized into two groups, namely conventional and unconventional T cells. Conventional T cells are the most prevalent and well-studied subset of T cells. On the other hand, unconventional T cells exhibit diverse functions shared between innate and adaptive immune cells. During recent decades, γδ T cells have received attention for their roles in cancer immunity. These cells can detect various molecules, such as lipids and metabolites. Also, they are known for their distinctive ability to recognize and target cancer cells in the tumor microenvironment (TME). This feature of γδ T cells could provide a unique therapeutic tool to fight against cancer. Understanding the role of γδ T cells in TME is essential to prepare the groundwork to use γδ T cells for clinical purposes. Here, we provide recent knowledge regarding the role γδ T cell subsets in different cancer types.
Collapse
Affiliation(s)
- Parviz Azimnasab-Sorkhabi
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| | - Maryam Soltani-Asl
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | | | - Jose Roberto Kfoury Junior
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
3
|
Padmaraju V, Sankla Y, Malla RR. Role of γδ T Cells in Cancer Progression and Therapy. Crit Rev Oncog 2023; 28:59-70. [PMID: 38050982 DOI: 10.1615/critrevoncog.2023050067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
γδ T cells signify a foundational group of immune cells that infiltrate tumors early on, engaging in combat against cancer cells. The buildup of γδ T cells as cancer advances underscores their significance. Initially, these cells infiltrate and enact cytotoxic effects within the tumor tissue. However, in later stages, the predominant phenotype of γδ T cells undergoes changes in numerous cancers, fostering tumor growth and metastasis. Different mechanisms induced by cancer cell suppress effector action of γδ T cells and even sometimes promote cancer progression. In the early stages, stopping this mechanism clears this challenge and enables γδ T cells to effectively remove cancer cells. Given this context, it becomes imperative to delve into the mechanisms of how γδ T cells function in tumor microenvironment. This review discusses γδ T cells' role across different cancer types.
Collapse
Affiliation(s)
- Vasudevaraju Padmaraju
- Department of Biochemistry and Bioinformatics, GITAM School of Science, Department of Biochemistry and Bioinformatics, GITAM School of Science (GSS), GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | - Yogitha Sankla
- Department of Biochemistry and Bioinformatics, GITAM School of Science, Department of Biochemistry and Bioinformatics, GITAM School of Science (GSS), GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | - Rama Rao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, Gandhi Institute of Technology and Management (GITAM) (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India; Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| |
Collapse
|
4
|
Nezhad Shamohammadi F, Yazdanifar M, Oraei M, Kazemi MH, Roohi A, Mahya Shariat Razavi S, Rezaei F, Parvizpour F, Karamlou Y, Namdari H. Controversial role of γδ T cells in pancreatic cancer. Int Immunopharmacol 2022; 108:108895. [PMID: 35729831 DOI: 10.1016/j.intimp.2022.108895] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 12/26/2022]
Abstract
γδ T cells are rare lymphocytes with cogent impact on immune responses. These cells are one of the earliest cells to be recruited in the sites of infection or tumors and play a critical role in coordinating innate and adaptive immune responses. The anti-tumor activity of γδ T cells have been numerously reported; nonetheless, there is controversy among published studies regarding their anti-tumor vs pro-tumor effect- especially in pancreatic cancer. A myriad of studies has confirmed that activated γδ T cells can potently lyse a broad variety of solid tumors and leukemia/lymphoma cells and produce an array of cytokines; however, early γδ T cell-based clinical trials did not lead to optimal efficacy, despite acceptable safety. Depending on the local micromilieu, γδ T cells can differentiate into tumor promoting or suppressing cells such as Th1-, Th2-, or Th17-like cells and produce prototypical cytokines such as interferon-γ (IFNγ) and interleukin (IL)-4/-10, IL-9, or IL-17. In an abstruse tumor such as pancreatic cancer- also known as immunologically cold tumor- γδ T cells are more likely to switch to their immunosuppressive phenotype. In this review we will adduce the accumulated knowledge on these two controversial aspects of γδ T cells in cancers- with a focus on solid tumors and pancreatic cancer. In addition, we propose strategies for enhancing the anti-tumor function of γδ T cells in cancers and discuss the potential future directions.
Collapse
Affiliation(s)
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Mona Oraei
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad H Kazemi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Roohi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Farhad Rezaei
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Parvizpour
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Yalda Karamlou
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Haideh Namdari
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Chen X, Shang W, Xu R, Wu M, Zhang X, Huang P, Wang F, Pan S. Distribution and functions of γδ T cells infiltrated in the ovarian cancer microenvironment. J Transl Med 2019; 17:144. [PMID: 31064389 PMCID: PMC6505080 DOI: 10.1186/s12967-019-1897-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/29/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The role of γδ T cells, innate-like lymphocytes with unrestrained MHC, in various malignancies has recently been extensively studied. However, there is limited research regarding γδ T cells in ovarian cancer (OC) patients. METHODS Here, we investigated the distribution patterns of γδ T cells and their main subsets in peripheral blood and tumor tissues among OC patients, benign ovarian tumor (BOT) patients, and age-matched healthy controls (HC) by flow cytometry, as well as the expression levels of IFN-γ and IL-17A secreted from γδ T cells. Immunohistochemical staining was utilized to detect the numbers of γδ T cells and their main subsets in different types of ovarian tumor tissues. Additionally, we also investigated chemotaxis effects on γδ T cells, as well as their cytotoxic activity and proliferation. RESULTS We found that the percentages of γδ T cells and Vδ1 T cells were significantly higher in OC tissues than BOT tissues and normal (N) ovarian tissues, while there were no obvious differences in peripheral blood. Meanwhile, higher numbers of γδ T cells and Vδ1 T cells were observed in OC tissues, and were positively related to advanced clinicopathological features of OC patients. Further, the levels of IFN-γ secreted by γδ T cells were relatively lower, while IL-17A was expressed at a high level in both the peripheral blood and tissues of OC patients. Chemotaxis assay revealed that supernatants derived from OC tissues possessed a stronger capacity to attract and recruit γδ T cells. However, γδ T cells sorted from OC tissues showed weakened cytotoxic activity against ovarian cancer cells, and γδ T cells cocultured with OC tissue supernatants could effectively inhibit the proliferative activity of naïve CD4+ T cells. CONCLUSIONS These data suggested that γδ T cells might have critical roles in OC progression and potential utilization in treatment approaches or prognosis prediction.
Collapse
Affiliation(s)
- Xian Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300 of Guangzhou Road, Nanjing, 210029, China.,National Key Clinical Department of Laboratory Medicine, No. 300 of Guangzhou Road, Nanjing, 210029, China
| | - Wenwen Shang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300 of Guangzhou Road, Nanjing, 210029, China.,National Key Clinical Department of Laboratory Medicine, No. 300 of Guangzhou Road, Nanjing, 210029, China
| | - Rui Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300 of Guangzhou Road, Nanjing, 210029, China.,National Key Clinical Department of Laboratory Medicine, No. 300 of Guangzhou Road, Nanjing, 210029, China
| | - Ming Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300 of Guangzhou Road, Nanjing, 210029, China.,National Key Clinical Department of Laboratory Medicine, No. 300 of Guangzhou Road, Nanjing, 210029, China
| | - Xiaojie Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300 of Guangzhou Road, Nanjing, 210029, China.,National Key Clinical Department of Laboratory Medicine, No. 300 of Guangzhou Road, Nanjing, 210029, China
| | - Peijun Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300 of Guangzhou Road, Nanjing, 210029, China.,National Key Clinical Department of Laboratory Medicine, No. 300 of Guangzhou Road, Nanjing, 210029, China
| | - Fang Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300 of Guangzhou Road, Nanjing, 210029, China. .,National Key Clinical Department of Laboratory Medicine, No. 300 of Guangzhou Road, Nanjing, 210029, China.
| | - Shiyang Pan
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300 of Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
6
|
Simões AE, Di Lorenzo B, Silva-Santos B. Molecular Determinants of Target Cell Recognition by Human γδ T Cells. Front Immunol 2018; 9:929. [PMID: 29755480 PMCID: PMC5934422 DOI: 10.3389/fimmu.2018.00929] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/16/2018] [Indexed: 12/22/2022] Open
Abstract
The unique capabilities of gamma-delta (γδ) T cells to recognize cells under stressed conditions, particularly infected or transformed cells, and killing them or regulating the immune response against them, paved the way to the development of promising therapeutic strategies for cancer and infectious diseases. From a mechanistic standpoint, numerous studies have unveiled a remarkable flexibility of γδ T cells in employing their T cell receptor and/or NK cell receptors for target cell recognition, even if the relevant ligands often remain uncertain. Here, we review the accumulated knowledge on the diverse mechanisms of target cell recognition by γδ T cells, focusing on human γδ T cells, to provide an integrated perspective of their therapeutic potential in cancer and infectious diseases.
Collapse
Affiliation(s)
- André E Simões
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - Biagio Di Lorenzo
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal.,Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Bruno Silva-Santos
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
7
|
Wang M, Liu G, Shan GP, Wang BB. In Vivo and In Vitro Effects of ATM/ATR Signaling Pathway on Proliferation, Apoptosis, and Radiosensitivity of Nasopharyngeal Carcinoma Cells. Cancer Biother Radiopharm 2017; 32:193-203. [PMID: 28820634 DOI: 10.1089/cbr.2017.2212] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Ming Wang
- Department of Otolaryngology Head and Neck Surgery, Tianjin Huanhu Hospital, Tianjin, People's Republic of China
| | - Gang Liu
- Department of Otolaryngology Head and Neck Surgery, Tianjin Huanhu Hospital, Tianjin, People's Republic of China
| | - Guo-Ping Shan
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, People's Republic of China
| | - Bing-Bing Wang
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, People's Republic of China
| |
Collapse
|
8
|
Legut M, Cole DK, Sewell AK. The promise of γδ T cells and the γδ T cell receptor for cancer immunotherapy. Cell Mol Immunol 2015; 12:656-68. [PMID: 25864915 PMCID: PMC4716630 DOI: 10.1038/cmi.2015.28] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 03/01/2015] [Indexed: 12/13/2022] Open
Abstract
γδ T cells form an important part of adaptive immune responses against infections and malignant transformation. The molecular targets of human γδ T cell receptors (TCRs) remain largely unknown, but recent studies have confirmed the recognition of phosphorylated prenyl metabolites, lipids in complex with CD1 molecules and markers of cellular stress. All of these molecules are upregulated on various cancer types, highlighting the potential importance of the γδ T cell compartment in cancer immunosurveillance and paving the way for the use of γδ TCRs in cancer therapy. Ligand recognition by the γδ TCR often requires accessory/co-stimulatory stress molecules on both T cells and target cells; this cellular stress context therefore provides a failsafe against harmful self-reactivity. Unlike αβ T cells, γδ T cells recognise their targets irrespective of HLA haplotype and therefore offer exciting possibilities for off-the-shelf, pan-population cancer immunotherapies. Here, we present a review of known ligands of human γδ T cells and discuss the promise of harnessing these cells for cancer treatment.
Collapse
MESH Headings
- Antigen Presentation
- Antigens, CD1/genetics
- Antigens, CD1/immunology
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Clinical Trials as Topic
- Gene Expression Regulation, Neoplastic/immunology
- Hemiterpenes/immunology
- Humans
- Immunotherapy/methods
- Ligands
- Models, Molecular
- Monitoring, Immunologic
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/pathology
- Neoplasms/therapy
- Organophosphorus Compounds/immunology
- Phosphorylation
- Protein Structure, Tertiary
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Signal Transduction
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- T-Lymphocytes/transplantation
Collapse
Affiliation(s)
- Mateusz Legut
- Division of Infection and Immunity and Systems Immunity University Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - David K Cole
- Division of Infection and Immunity and Systems Immunity University Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Andrew K Sewell
- Division of Infection and Immunity and Systems Immunity University Research Institute, Cardiff University School of Medicine, Cardiff, UK
| |
Collapse
|
9
|
Attaf M, Legut M, Cole DK, Sewell AK. The T cell antigen receptor: the Swiss army knife of the immune system. Clin Exp Immunol 2015; 181:1-18. [PMID: 25753381 PMCID: PMC4469151 DOI: 10.1111/cei.12622] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2015] [Indexed: 01/01/2023] Open
Abstract
The mammalian T cell receptor (TCR) orchestrates immunity by responding to many billions of different ligands that it has never encountered before and cannot adapt to at the protein sequence level. This remarkable receptor exists in two main heterodimeric isoforms: αβ TCR and γδ TCR. The αβ TCR is expressed on the majority of peripheral T cells. Most αβ T cells recognize peptides, derived from degraded proteins, presented at the cell surface in molecular cradles called major histocompatibility complex (MHC) molecules. Recent reports have described other αβ T cell subsets. These 'unconventional' T cells bear TCRs that are capable of recognizing lipid ligands presented in the context of the MHC-like CD1 protein family or bacterial metabolites bound to the MHC-related protein 1 (MR1). γδ T cells constitute a minority of the T cell pool in human blood, but can represent up to half of total T cells in tissues such as the gut and skin. The identity of the preferred ligands for γδ T cells remains obscure, but it is now known that this receptor can also functionally engage CD1-lipid, or immunoglobulin (Ig) superfamily proteins called butyrophilins in the presence of pyrophosphate intermediates of bacterial lipid biosynthesis. Interactions between TCRs and these ligands allow the host to discriminate between self and non-self and co-ordinate an attack on the latter. Here, we describe how cells of the T lymphocyte lineage and their antigen receptors are generated and discuss the various modes of antigen recognition by these extraordinarily versatile receptors.
Collapse
Affiliation(s)
- M Attaf
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - M Legut
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - D K Cole
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - A K Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| |
Collapse
|