1
|
Ostini A, Kléber AG, Rudy Y, Saffitz JE, Kucera JP. Computational Modeling of Effects of PKP2 Gene Therapy on Ventricular Conduction Properties in Arrhythmogenic Cardiomyopathy. Circ Arrhythm Electrophysiol 2025:e013658. [PMID: 40201954 DOI: 10.1161/circep.124.013658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/25/2025] [Indexed: 04/10/2025]
Abstract
BACKGROUND Patients with arrhythmogenic cardiomyopathy due to pathogenic variants in PKP2, the gene for the desmosomal protein plakophilin-2, are being enrolled in gene therapy trials designed to replace the defective allele via adeno-associated viral transduction of cardiac myocytes. Evidence from experimental systems and patients indicates that ventricular myocytes in PKP2 arrhythmogenic cardiomyopathy have greatly reduced electrical coupling at gap junctions and reduced Na+ current density. In previous adeno-associated viral gene therapy trials, <50% of ventricular myocytes have generally been transduced. METHODS We used established computational models of ventricular cell electrophysiology to define the effects of varying levels of successful gene therapy on conduction in patients with PKP2 arrhythmogenic cardiomyopathy. Conduction velocity and development of conduction block were analyzed in tissue constructs composed of cells with levels of electrical coupling and Na+ current density observed in experimental studies. RESULTS We observed a nonlinear relationship between conduction velocity and the proportion of transduced cells. Conduction velocity increased only modestly when up to 40% of myocytes were transduced. Conduction block did not occur in tissue constructs with moderate levels of uncoupling (0.10 or 0.15 of normal) as this degree of coupling was sufficient to allow electrotonic current to pass through diseased cells. Thus, low levels of transduction, likely to occur in phase 1 clinical trials, do not seem to pose a major safety concern. However, our models did not incorporate the potential effects of fibrosis and inflammation, both of which are presumably present in PKP2 arrhythmogenic cardiomyopathy patients undergoing gene therapy and could impact arrhythmogenesis. CONCLUSIONS The extent of successful ventricular myocyte transduction anticipated to be achieved in PKP2 adeno-associated viral gene therapy trials will likely not restore conduction velocity to levels sufficient to decrease the risk of reentrant arrhythmias. Transduction efficiency of 60% to 80% would be required to restore conduction velocity to 50% of normal.
Collapse
Affiliation(s)
- Alessio Ostini
- Department of Physiology, University of Bern, Switzerland. (A.O., J.P.K.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland. (A.O.)
| | - André G Kléber
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA (A.G.K.)
| | - Yoram Rudy
- Department of Biomedical Engineering, Washington University, St. Louis, MO (Y.R.)
| | - Jeffrey E Saffitz
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (J.E.S.)
| | - Jan P Kucera
- Department of Physiology, University of Bern, Switzerland. (A.O., J.P.K.)
| |
Collapse
|
2
|
Xue C, Chu Q, Shi Q, Zeng Y, Lu J, Li L. Wnt signaling pathways in biology and disease: mechanisms and therapeutic advances. Signal Transduct Target Ther 2025; 10:106. [PMID: 40180907 PMCID: PMC11968978 DOI: 10.1038/s41392-025-02142-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/13/2024] [Accepted: 12/29/2024] [Indexed: 04/05/2025] Open
Abstract
The Wnt signaling pathway is critically involved in orchestrating cellular functions such as proliferation, migration, survival, and cell fate determination during development. Given its pivotal role in cellular communication, aberrant Wnt signaling has been extensively linked to the pathogenesis of various diseases. This review offers an in-depth analysis of the Wnt pathway, detailing its signal transduction mechanisms and principal components. Furthermore, the complex network of interactions between Wnt cascades and other key signaling pathways, such as Notch, Hedgehog, TGF-β, FGF, and NF-κB, is explored. Genetic mutations affecting the Wnt pathway play a pivotal role in disease progression, with particular emphasis on Wnt signaling's involvement in cancer stem cell biology and the tumor microenvironment. Additionally, this review underscores the diverse mechanisms through which Wnt signaling contributes to diseases such as cardiovascular conditions, neurodegenerative disorders, metabolic syndromes, autoimmune diseases, and cancer. Finally, a comprehensive overview of the therapeutic progress targeting Wnt signaling was given, and the latest progress in disease treatment targeting key components of the Wnt signaling pathway was summarized in detail, including Wnt ligands/receptors, β-catenin destruction complexes, and β-catenin/TCF transcription complexes. The development of small molecule inhibitors, monoclonal antibodies, and combination therapy strategies was emphasized, while the current potential therapeutic challenges were summarized. This aims to enhance the current understanding of this key pathway.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
3
|
Noort RJ, Salman W, Fuchs C, Braun U, Pace D, Hodgkinson KA, Esseltine JL. GSK3 inhibition ameliorates the abnormal contractility of Newfoundland ACM patient iPSC-cardiomyocytes. Am J Physiol Cell Physiol 2025; 328:C1206-C1219. [PMID: 40055648 DOI: 10.1152/ajpcell.01025.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/15/2025] [Accepted: 02/19/2025] [Indexed: 04/01/2025]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is clinically characterized by ventricular arrhythmias causing sudden cardiac death and fibrofatty replacement of the myocardium, leading to heart failure. One form of ACM is highly prevalent in the Canadian Province of Newfoundland and Labrador (NL) and has earned the moniker, "The Newfoundland Curse". ACM in NL is often caused by a fully penetrant heterozygous missense pathogenic variant in the TMEM43 gene (TMEM43 c.1073C>T; TMEM43 p.S358L). Although the causative variant has been identified, little is known about the function of the TMEM43 protein in cardiomyocytes, how the TMEM43 p.S358L mutation contributes to the development of arrhythmias, or why the disease is more severe in males than in females. To explore the role of TMEM43 in cardiomyocyte function, we generated induced pluripotent stem cells (iPSCs) from two severely affected male Newfoundland patients with ACM (TMEM43 p.S358L). CRISPR-Cas9 was used to genetically "repair" the heterozygous TMEM43 variant in ACM patient iPSCs. ACM patient iPSC-cardiomyocytes (iPSC-CMs) with the TMEM43 p.S358L variant display pro-arrhythmogenic phenotypes in vitro with significantly elevated contraction rates and altered calcium handling, although no obvious gross abnormalities were observed across several major intracellular organelles. GSK3 inhibition significantly increased the protein expression of β-catenin as well as Lamin A/C and ameliorated the proarrhythmic tendencies of ACM patient iPSC-CMs.NEW & NOTEWORTHY This is the first characterization of induced pluripotent stem cell-cardiomyocytes (iPSC-CMs) from Newfoundland patients with ACM. We find that ACM iPSC-CMs exhibit extreme proarrhythmic tendencies that can be normalized with GSK3 inhibition. Importantly, GSK3 inhibition is accompanied by a significant increase in key proteins, such as β-catenin and Lamin A/C, pointing toward a possible mechanism both for disease pathogenesis and therapy via GSK3 inhibitors.
Collapse
Affiliation(s)
- Rebecca J Noort
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Wesam Salman
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Camila Fuchs
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Ursula Braun
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - David Pace
- Discipline of Surgery, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Kathleen A Hodgkinson
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
- Division of Population Health and Applied Health Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Jessica L Esseltine
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
4
|
E.S K, A.K Z, M.Yu S, K.I P, N.L R, E.G N, K.S S, A.A K, T.L V, A.S M, E.N M, T.M P, E.S V, A.A K. Distinct molecular features of FLNC mutations, associated with different clinical phenotypes. Cytoskeleton (Hoboken) 2025; 82:158-174. [PMID: 39315490 PMCID: PMC11904857 DOI: 10.1002/cm.21922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024]
Abstract
Filamin С is a key an actin-binding protein of muscle cells playing a critical role in maintaining structural integrity and sarcomere organization. FLNC mutations contribute to various types of cardiomyopathies and myopathies through potentially different molecular mechanisms. Here, we described the impact of two clinically distinct FLNC variants (R1267Q associated with arrhythmogenic cardiomyopathy and V2264M associated with restrictive cardiomyopathy) on calcium homeostasis, electrophysiology, and gene expression profile of iPSC-derived patient-specific cardiomyocytes. We demonstrated that R1267Q FLNC variant leads to greater disturbances in calcium dynamics, Nav1.5 kinetics and action potentials compared to V2264M variant. These functional characteristics were accompanied by transcriptome changes in genes linked to action potential and sodium transport as well as structural cardiomyocyte genes. We suggest distinct molecular effects of two FLNC variants linked to different types of cardiomyopathies in terms of myofilament structure, electrophysiology, ion channel function and intracellular calcium homeostasis providing the molecular the bases for their different clinical phenotypes.
Collapse
Affiliation(s)
- Klimenko E.S
- Almazov National Medical Research CentreInstitute of Molecular Biology and GeneticsSaint‐PetersburgRussia
| | - Zaytseva A.K
- Almazov National Medical Research CentreInstitute of Molecular Biology and GeneticsSaint‐PetersburgRussia
| | - Sorokina M.Yu
- Almazov National Medical Research CentreInstitute of Molecular Biology and GeneticsSaint‐PetersburgRussia
| | - Perepelina K.I
- Almazov National Medical Research CentreInstitute of Molecular Biology and GeneticsSaint‐PetersburgRussia
| | - Rodina N.L
- Almazov National Medical Research CentreInstitute of Molecular Biology and GeneticsSaint‐PetersburgRussia
| | - Nikitina E.G
- Almazov National Medical Research CentreInstitute of Molecular Biology and GeneticsSaint‐PetersburgRussia
| | - Sukhareva K.S
- Almazov National Medical Research CentreInstitute of Molecular Biology and GeneticsSaint‐PetersburgRussia
| | - Khudiakov A.A
- Almazov National Medical Research CentreInstitute of Molecular Biology and GeneticsSaint‐PetersburgRussia
| | - Vershinina T.L
- Almazov National Medical Research CentreInstitute of Molecular Biology and GeneticsSaint‐PetersburgRussia
| | - Muravyev A.S
- Almazov National Medical Research CentreInstitute of Molecular Biology and GeneticsSaint‐PetersburgRussia
| | - Mikhaylov E.N
- Almazov National Medical Research CentreInstitute of Molecular Biology and GeneticsSaint‐PetersburgRussia
| | - Pervunina T.M
- Almazov National Medical Research CentreInstitute of Molecular Biology and GeneticsSaint‐PetersburgRussia
| | - Vasichkina E.S
- Almazov National Medical Research CentreInstitute of Molecular Biology and GeneticsSaint‐PetersburgRussia
| | - Kostareva A.A
- Almazov National Medical Research CentreInstitute of Molecular Biology and GeneticsSaint‐PetersburgRussia
- Karolinska Institutet, Department of Women's and Children's HealthKarolinska University HospitalStockholmSweden
| |
Collapse
|
5
|
Low BSH, Asimaki A. Targeting Canonical Wnt-signaling Through GSK-3β in Arrhythmogenic Cardiomyopathy: Conservative or Progressive? J Cardiovasc Transl Res 2025; 18:121-132. [PMID: 39392548 PMCID: PMC11885336 DOI: 10.1007/s12265-024-10567-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
Arrhythmogenic cardiomyopathy is a primary myocardial disease and a major cause of sudden death in all populations of the world. Canonical Wnt signalling is a critical pathway controlling numerous processes including cellular differentiation, hypertrophy and development. GSK3β is a ubiquitous serine/threonine kinase, which acts downstream of Wnt to promote protein ubiquitination and proteasomal degradation. Several studies now suggest that inhibiting GSK3β can prevent and reverse key pathognomonic features of ACM in a range of experimental models. However, varying concerns are reported throughout the literature including the risk of paradoxical arrhythmias, cancer and off-target effects in upstream or downstream pathways. CLINICAL RELEVANCE: In light of the start of the phase 2 TaRGET clinical trial, designed to evaluate the potential therapeutic efficacy of GSK3β inhibition in patients with arrhythmogenic cardiomyopathy, this report aims to review the advantages and disadvantages of this strategy.
Collapse
Affiliation(s)
| | - Angeliki Asimaki
- Cardiovascular and Genomics Research Institute, City St. George's, University of London, London, UK.
- Cardiovascular Clinical Academic Group, City & St George's University of London, Cranmer Terrace, London, SW17 0RE, UK.
| |
Collapse
|
6
|
Ostini A, Kléber AG, Rudy Y, Saffitz JE, Kucera JP. Computational Modeling of Effects of PKP2 Gene Therapy on Ventricular Conduction Properties in Arrhythmogenic Cardiomyopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.12.628155. [PMID: 39764031 PMCID: PMC11702725 DOI: 10.1101/2024.12.12.628155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Background Patients with arrhythmogenic cardiomyopathy (ACM) due to pathogenic variants in PKP2 , the gene for the desmosomal protein plakophilin-2, are being enrolled in gene therapy trials designed to replace the defective allele via adeno-associated viral (AAV) transduction of cardiac myocytes. Evidence from experimental systems and patients indicates that ventricular myocytes in PKP2 ACM have greatly reduced electrical coupling at gap junctions and reduced Na + current density. In previous AAV gene therapy trials, <50% of ventricular myocytes have generally been transduced. Methods We used established computational models of ventricular cell electrophysiology to define the effects of varying levels of successful gene therapy on conduction in patients with PKP2 ACM. Conduction velocity and development of conduction block were analyzed in tissue constructs composed of cells with levels of electrical coupling and Na + current density observed in experimental studies. Results We observed a non-linear relationship between conduction velocity and the proportion of transduced cells. Conduction velocity increased only modestly when up to 40% of myocytes were transduced. Conduction block did not occur in tissue constructs with moderate levels of uncoupling (0.10 or 0.15 of normal) as this degree of coupling was sufficient to allow electrotonic current to pass through diseased cells. Thus, low levels of transduction, likely to occur in phase 1 clinical trials, do not appear to pose a major safety concern. However, our models did not incorporate potential effects of fibrosis and immune signaling, both of which will presumably be present in PKP2 ACM patients undergoing gene therapy. Conclusions The extent of successful ventricular myocyte transduction anticipated to be achieved in PKP2 AAV gene therapy trials will likely not restore conduction velocity to levels sufficient to decrease risk of reentrant arrhythmias. What is Known Patients with arrhythmogenic cardiomyopathy due to pathogenic variants in PKP2 (the gene for the desmosomal protein plakophilin-2) are now being enrolled in gene therapy trials. Experimental and clinical observations indicate that patients with arrhythmogenic cardiomyopathy have slow ventricular conduction with a propensity to conduction block due to source-sink mismatch.<50% of ventricular myocytes are usually transduced after adeno-associated viral gene therapy. What the Study Adds At anticipated levels of successful transduction of ventricular myocytes, little change in conduction velocity will be achieved in patients with arrhythmogenic cardiomyopathy due to variants in PKP2 . Higher levels of transduction could produce conditions that increase risk of conduction block, especially in the presence of areas of non-conducting fibrofatty scar tissue.
Collapse
|
7
|
Fan X, Yang G, Duru F, Grilli M, Akin I, Zhou X, Saguner AM, Ei-Battrawy I. Arrhythmogenic Cardiomyopathy: from Preclinical Models to Genotype-phenotype Correlation and Pathophysiology. Stem Cell Rev Rep 2023; 19:2683-2708. [PMID: 37731079 PMCID: PMC10661732 DOI: 10.1007/s12015-023-10615-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 09/22/2023]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a hereditary myocardial disease characterized by the replacement of the ventricular myocardium with fibrous fatty deposits. ACM is usually inherited in an autosomal dominant pattern with variable penetrance and expressivity, which is mainly related to ventricular tachyarrhythmia and sudden cardiac death (SCD). Importantly, significant progress has been made in determining the genetic background of ACM due to the development of new techniques for genetic analysis. The exact molecular pathomechanism of ACM, however, is not completely clear and the genotype-phenotype correlations have not been fully elucidated, which are useful to predict the prognosis and treatment of ACM patients. Different gene-targeted and transgenic animal models, human-induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) models, and heterologous expression systems have been developed. Here, this review aims to summarize preclinical ACM models and platforms promoting our understanding of the pathogenesis of ACM and assess their value in elucidating the ACM genotype-phenotype relationship.
Collapse
Affiliation(s)
- Xuehui Fan
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
- Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- European Center for AngioScience (ECAS), German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/ Mannheim, and Centre for Cardiovascular Acute Medicine Mannheim (ZKAM), Medical Centre Mannheim, Heidelberg University, Partner Site, Heidelberg-Mannheim, Germany
| | - Guoqiang Yang
- Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Department of Acupuncture and Rehabilitation, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Research Unit of Molecular Imaging Probes, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Firat Duru
- Department of Cardiology, University Heart Centre, University Hospital Zurich, Zurich, Switzerland
| | - Maurizio Grilli
- Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Ibrahim Akin
- Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- European Center for AngioScience (ECAS), German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/ Mannheim, and Centre for Cardiovascular Acute Medicine Mannheim (ZKAM), Medical Centre Mannheim, Heidelberg University, Partner Site, Heidelberg-Mannheim, Germany
| | - Xiaobo Zhou
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China.
- Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
- European Center for AngioScience (ECAS), German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/ Mannheim, and Centre for Cardiovascular Acute Medicine Mannheim (ZKAM), Medical Centre Mannheim, Heidelberg University, Partner Site, Heidelberg-Mannheim, Germany.
- First Department of Medicine, University Medical Centre Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Ardan Muammer Saguner
- Department of Cardiology, University Heart Centre, University Hospital Zurich, Zurich, Switzerland
| | - Ibrahim Ei-Battrawy
- European Center for AngioScience (ECAS), German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/ Mannheim, and Centre for Cardiovascular Acute Medicine Mannheim (ZKAM), Medical Centre Mannheim, Heidelberg University, Partner Site, Heidelberg-Mannheim, Germany.
- Department of Cardiology and Angiology, Ruhr University, Bochum, Germany; Institute of Physiology, Department of Cellular and Translational Physiology and Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr- University Bochum, Bochum, Germany.
| |
Collapse
|
8
|
Chua CJ, Morrissette-McAlmon J, Tung L, Boheler KR. Understanding Arrhythmogenic Cardiomyopathy: Advances through the Use of Human Pluripotent Stem Cell Models. Genes (Basel) 2023; 14:1864. [PMID: 37895213 PMCID: PMC10606441 DOI: 10.3390/genes14101864] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 10/29/2023] Open
Abstract
Cardiomyopathies (CMPs) represent a significant healthcare burden and are a major cause of heart failure leading to premature death. Several CMPs are now recognized to have a strong genetic basis, including arrhythmogenic cardiomyopathy (ACM), which predisposes patients to arrhythmic episodes. Variants in one of the five genes (PKP2, JUP, DSC2, DSG2, and DSP) encoding proteins of the desmosome are known to cause a subset of ACM, which we classify as desmosome-related ACM (dACM). Phenotypically, this disease may lead to sudden cardiac death in young athletes and, during late stages, is often accompanied by myocardial fibrofatty infiltrates. While the pathogenicity of the desmosome genes has been well established through animal studies and limited supplies of primary human cells, these systems have drawbacks that limit their utility and relevance to understanding human disease. Human induced pluripotent stem cells (hiPSCs) have emerged as a powerful tool for modeling ACM in vitro that can overcome these challenges, as they represent a reproducible and scalable source of cardiomyocytes (CMs) that recapitulate patient phenotypes. In this review, we provide an overview of dACM, summarize findings in other model systems linking desmosome proteins with this disease, and provide an up-to-date summary of the work that has been conducted in hiPSC-cardiomyocyte (hiPSC-CM) models of dACM. In the context of the hiPSC-CM model system, we highlight novel findings that have contributed to our understanding of disease and enumerate the limitations, prospects, and directions for research to consider towards future progress.
Collapse
Affiliation(s)
- Christianne J. Chua
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.J.C.); (J.M.-M.); (L.T.)
| | - Justin Morrissette-McAlmon
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.J.C.); (J.M.-M.); (L.T.)
| | - Leslie Tung
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.J.C.); (J.M.-M.); (L.T.)
| | - Kenneth R. Boheler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.J.C.); (J.M.-M.); (L.T.)
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
9
|
Kim SL, Trembley MA, Lee KY, Choi S, MacQueen LA, Zimmerman JF, de Wit LHC, Shani K, Henze DE, Drennan DJ, Saifee SA, Loh LJ, Liu X, Parker KK, Pu WT. Spatiotemporal cell junction assembly in human iPSC-CM models of arrhythmogenic cardiomyopathy. Stem Cell Reports 2023; 18:1811-1826. [PMID: 37595583 PMCID: PMC10545490 DOI: 10.1016/j.stemcr.2023.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 08/20/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiac disorder that causes life-threatening arrhythmias and myocardial dysfunction. Pathogenic variants in Plakophilin-2 (PKP2), a desmosome component within specialized cardiac cell junctions, cause the majority of ACM cases. However, the molecular mechanisms by which PKP2 variants induce disease phenotypes remain unclear. Here we built bioengineered platforms using genetically modified human induced pluripotent stem cell-derived cardiomyocytes to model the early spatiotemporal process of cardiomyocyte junction assembly in vitro. Heterozygosity for truncating variant PKP2R413X reduced Wnt/β-catenin signaling, impaired myofibrillogenesis, delayed mechanical coupling, and reduced calcium wave velocity in engineered tissues. These abnormalities were ameliorated by SB216763, which activated Wnt/β-catenin signaling, improved cytoskeletal organization, restored cell junction integrity in cell pairs, and improved calcium wave velocity in engineered tissues. Together, these findings highlight the therapeutic potential of modulating Wnt/β-catenin signaling in a human model of ACM.
Collapse
Affiliation(s)
- Sean L Kim
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA; Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Michael A Trembley
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Keel Yong Lee
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA; Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Suji Choi
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Luke A MacQueen
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - John F Zimmerman
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Lousanne H C de Wit
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Kevin Shani
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA; Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Douglas E Henze
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Daniel J Drennan
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Shaila A Saifee
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Li Jun Loh
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Xujie Liu
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Kevin Kit Parker
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA; Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
10
|
Reisqs JB, Moreau A, Sleiman Y, Boutjdir M, Richard S, Chevalier P. Arrhythmogenic cardiomyopathy as a myogenic disease: highlights from cardiomyocytes derived from human induced pluripotent stem cells. Front Physiol 2023; 14:1191965. [PMID: 37250123 PMCID: PMC10210147 DOI: 10.3389/fphys.2023.1191965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiomyopathy characterized by the replacement of myocardium by fibro-fatty infiltration and cardiomyocyte loss. ACM predisposes to a high risk for ventricular arrhythmias. ACM has initially been defined as a desmosomal disease because most of the known variants causing the disease concern genes encoding desmosomal proteins. Studying this pathology is complex, in particular because human samples are rare and, when available, reflect the most advanced stages of the disease. Usual cellular and animal models cannot reproduce all the hallmarks of human pathology. In the last decade, human-induced pluripotent stem cells (hiPSC) have been proposed as an innovative human cellular model. The differentiation of hiPSCs into cardiomyocytes (hiPSC-CM) is now well-controlled and widely used in many laboratories. This hiPSC-CM model recapitulates critical features of the pathology and enables a cardiomyocyte-centered comprehensive approach to the disease and the screening of anti-arrhythmic drugs (AAD) prescribed sometimes empirically to the patient. In this regard, this model provides unique opportunities to explore and develop new therapeutic approaches. The use of hiPSC-CMs will undoubtedly help the development of precision medicine to better cure patients suffering from ACM. This review aims to summarize the recent advances allowing the use of hiPSCs in the ACM context.
Collapse
Affiliation(s)
- J. B. Reisqs
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States
| | - A. Moreau
- Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, PhyMedExp, Montpellier, France
| | - Y. Sleiman
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States
| | - M. Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States
- Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Sciences University, NY, United States
- Department of Medicine, New York University School of Medicine, NY, United States
| | - S. Richard
- Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, PhyMedExp, Montpellier, France
| | - P. Chevalier
- Neuromyogene Institute, Claude Bernard University, Lyon 1, Villeurbanne, France
- Service de Rythmologie, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
11
|
Higo S. Disease modeling of desmosome-related cardiomyopathy using induced pluripotent stem cell-derived cardiomyocytes. World J Stem Cells 2023; 15:71-82. [PMID: 37007457 PMCID: PMC10052339 DOI: 10.4252/wjsc.v15.i3.71] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/10/2023] [Accepted: 03/17/2023] [Indexed: 03/23/2023] Open
Abstract
Cardiomyopathy is a pathological condition characterized by cardiac pump failure due to myocardial dysfunction and the major cause of advanced heart failure requiring heart transplantation. Although optimized medical therapies have been developed for heart failure during the last few decades, some patients with cardiomyopathy exhibit advanced heart failure and are refractory to medical therapies. Desmosome, which is a dynamic cell-to-cell junctional component, maintains the structural integrity of heart tissues. Genetic mutations in desmosomal genes cause arrhythmogenic cardiomyopathy (AC), a rare inheritable disease, and predispose patients to sudden cardiac death and heart failure. Recent advances in sequencing technologies have elucidated the genetic basis of cardiomyopathies and revealed that desmosome-related cardiomyopathy is concealed in broad cardiomyopathies. Among desmosomal genes, mutations in PKP2 (which encodes PKP2) are most frequently identified in patients with AC. PKP2 deficiency causes various pathological cardiac phenotypes. Human cardiomyocytes differentiated from patient-derived induced pluripotent stem cells (iPSCs) in combination with genome editing, which allows the precise arrangement of the targeted genome, are powerful experimental tools for studying disease. This review summarizes the current issues associated with practical medicine for advanced heart failure and the recent advances in disease modeling using iPSC-derived cardiomyocytes targeting desmosome-related cardiomyopathy caused by PKP2 deficiency.
Collapse
Affiliation(s)
- Shuichiro Higo
- Department of Medical Therapeutics for Heart Failure, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| |
Collapse
|
12
|
Vallverdú-Prats M, Carreras D, Pérez GJ, Campuzano O, Brugada R, Alcalde M. Alterations in Calcium Handling Are a Common Feature in an Arrhythmogenic Cardiomyopathy Cell Model Triggered by Desmosome Genes Loss. Int J Mol Sci 2023; 24:2109. [PMID: 36768439 PMCID: PMC9917020 DOI: 10.3390/ijms24032109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/25/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiac disease characterized by fibrofatty replacement of the myocardium. Deleterious variants in desmosomal genes are the main cause of ACM and lead to common and gene-specific molecular alterations, which are not yet fully understood. This article presents the first systematic in vitro study describing gene and protein expression alterations in desmosomes, electrical conduction-related genes, and genes involved in fibrosis and adipogenesis. Moreover, molecular and functional alterations in calcium handling were also characterized. This study was performed d with HL1 cells with homozygous knockouts of three of the most frequently mutated desmosomal genes in ACM: PKP2, DSG2, and DSC2 (generated by CRISPR/Cas9). Moreover, knockout and N-truncated clones of DSP were also included. Our results showed functional alterations in calcium handling, a slower calcium re-uptake was observed in the absence of PKP2, DSG2, and DSC2, and the DSP knockout clone showed a more rapid re-uptake. We propose that the described functional alterations of the calcium handling genes may be explained by mRNA expression levels of ANK2, CASQ2, ATP2A2, RYR2, and PLN. In conclusion, the loss of desmosomal genes provokes alterations in calcium handling, potentially contributing to the development of arrhythmogenic events in ACM.
Collapse
Affiliation(s)
- Marta Vallverdú-Prats
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, 17190 Salt, Spain
| | - David Carreras
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, 17190 Salt, Spain
| | - Guillermo J. Pérez
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, 17190 Salt, Spain
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 21005 Madrid, Spain
| | - Oscar Campuzano
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, 17190 Salt, Spain
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 21005 Madrid, Spain
| | - Ramon Brugada
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, 17190 Salt, Spain
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 21005 Madrid, Spain
- Hospital Josep Trueta, 17007 Girona, Spain
| | - Mireia Alcalde
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, 17190 Salt, Spain
| |
Collapse
|
13
|
De Bortoli M, Meraviglia V, Mackova K, Frommelt LS, König E, Rainer J, Volani C, Benzoni P, Schlittler M, Cattelan G, Motta BM, Volpato C, Rauhe W, Barbuti A, Zacchigna S, Pramstaller PP, Rossini A. Modeling incomplete penetrance in arrhythmogenic cardiomyopathy by human induced pluripotent stem cell derived cardiomyocytes. Comput Struct Biotechnol J 2023; 21:1759-1773. [PMID: 36915380 PMCID: PMC10006475 DOI: 10.1016/j.csbj.2023.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) are commonly used to model arrhythmogenic cardiomyopathy (ACM), a heritable cardiac disease characterized by severe ventricular arrhythmias, fibrofatty myocardial replacement and progressive ventricular dysfunction. Although ACM is inherited as an autosomal dominant disease, incomplete penetrance and variable expressivity are extremely common, resulting in different clinical manifestations. Here, we propose hiPSC-CMs as a powerful in vitro model to study incomplete penetrance in ACM. Six hiPSC lines were generated from blood samples of three ACM patients carrying a heterozygous deletion of exon 4 in the PKP2 gene, two asymptomatic (ASY) carriers of the same mutation and one healthy control (CTR), all belonging to the same family. Whole exome sequencing was performed in all family members and hiPSC-CMs were examined by ddPCR, western blot, Wes™ immunoassay system, patch clamp, immunofluorescence and RNASeq. Our results show molecular and functional differences between ACM and ASY hiPSC-CMs, including a higher amount of mutated PKP2 mRNA, a lower expression of the connexin-43 protein, a lower overall density of sodium current, a higher intracellular lipid accumulation and sarcomere disorganization in ACM compared to ASY hiPSC-CMs. Differentially expressed genes were also found, supporting a predisposition for a fatty phenotype in ACM hiPSC-CMs. These data indicate that hiPSC-CMs are a suitable model to study incomplete penetrance in ACM.
Collapse
Key Words
- ABC, active ß-catenin
- ACM, arrhythmogenic cardiomyopathy
- ASY, asymptomatic
- Arrhythmogenic cardiomyopathy
- BBB, bundle-branch block
- CMs, cardiomyocytes
- CTR, control
- Cx43, connexin-43
- DEGs, differentially expressed genes
- GATK, Genome Analysis Toolkit
- Human induced pluripotent stem cell derived cardiomyocytes
- ICD, implantable cardioverter-defibrillator
- ID, intercalated disk
- Incomplete penetrance
- LBB, left bundle-branch block
- MRI, magnetic resonance imagingmut, mutated
- NSVT, non-sustained ventricular tachycardia
- RV, right ventricle
- hiPSC, human induced pluripotent stem cell
- wt, wild type
Collapse
Affiliation(s)
- Marzia De Bortoli
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, Bolzano, Italy
| | - Viviana Meraviglia
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, Bolzano, Italy.,Department of Anatomy and Embryology, Leiden University Medical Center, 2316 Leiden, the Netherlands
| | - Katarina Mackova
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, Bolzano, Italy
| | - Laura S Frommelt
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, Bolzano, Italy
| | - Eva König
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, Bolzano, Italy
| | - Johannes Rainer
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, Bolzano, Italy
| | - Chiara Volani
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, Bolzano, Italy.,Universita` degli Studi di Milano, The Cell Physiology MiLab, Department of Biosciences, Milano, Italy
| | - Patrizia Benzoni
- Universita` degli Studi di Milano, The Cell Physiology MiLab, Department of Biosciences, Milano, Italy
| | - Maja Schlittler
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, Bolzano, Italy
| | - Giada Cattelan
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, Bolzano, Italy
| | - Benedetta M Motta
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, Bolzano, Italy
| | - Claudia Volpato
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, Bolzano, Italy
| | - Werner Rauhe
- San Maurizio Hospital, Department of Cardiology, Bolzano, Italy
| | - Andrea Barbuti
- Universita` degli Studi di Milano, The Cell Physiology MiLab, Department of Biosciences, Milano, Italy
| | - Serena Zacchigna
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cardiovascular Biology Laboratory, Trieste, Italy
| | - Peter P Pramstaller
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, Bolzano, Italy
| | - Alessandra Rossini
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, Bolzano, Italy
| |
Collapse
|
14
|
Perepelina K, Zaytseva A, Khudiakov A, Neganova I, Vasichkina E, Malashicheva A, Kostareva A. LMNA mutation leads to cardiac sodium channel dysfunction in the Emery-Dreifuss muscular dystrophy patient. Front Cardiovasc Med 2022; 9:932956. [PMID: 35935653 PMCID: PMC9355377 DOI: 10.3389/fcvm.2022.932956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022] Open
Abstract
Pathogenic variants in the LMNA gene are known to cause laminopathies, a broad range of disorders with different clinical phenotypes. LMNA genetic variants lead to tissue-specific pathologies affecting various tissues and organs. Common manifestations of laminopathies include cardiovascular system abnormalities, in particular, cardiomyopathies and conduction disorders. In the present study, we used induced pluripotent stem cells from a patient carrying LMNA p.R249Q genetic variant to create an in vitro cardiac model of laminopathy. Induced pluripotent stem cell-derived cardiomyocytes with LMNA p.R249Q genetic variant showed a decreased sodium current density and an impaired sodium current kinetics alongside with changes in transcription levels of cardiac-specific genes. Thus, we obtained compelling in vitro evidence of an association between LMNA p.R249Q genetic variant and cardiac-related abnormalities.
Collapse
Affiliation(s)
- Kseniya Perepelina
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint-Petersburg, Russia
- Department of Embryology, Faculty of Biology, St Petersburg State University, Saint-Petersburg, Russia
| | - Anastasia Zaytseva
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint-Petersburg, Russia
- Laboratory of Biophysics of Synaptics Processes, Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint-Petersburg, Russia
| | - Aleksandr Khudiakov
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - Irina Neganova
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Elena Vasichkina
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - Anna Malashicheva
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint-Petersburg, Russia
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Anna Kostareva
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint-Petersburg, Russia
- Department of Women's and Children's Health and Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
15
|
Glycogen Synthase Kinase 3: Ion Channels, Plasticity, and Diseases. Int J Mol Sci 2022; 23:ijms23084413. [PMID: 35457230 PMCID: PMC9028019 DOI: 10.3390/ijms23084413] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/15/2022] Open
Abstract
Glycogen synthase kinase 3β (GSK3) is a multifaceted serine/threonine (S/T) kinase expressed in all eukaryotic cells. GSK3β is highly enriched in neurons in the central nervous system where it acts as a central hub for intracellular signaling downstream of receptors critical for neuronal function. Unlike other kinases, GSK3β is constitutively active, and its modulation mainly involves inhibition via upstream regulatory pathways rather than increased activation. Through an intricate converging signaling system, a fine-tuned balance of active and inactive GSK3β acts as a central point for the phosphorylation of numerous primed and unprimed substrates. Although the full range of molecular targets is still unknown, recent results show that voltage-gated ion channels are among the downstream targets of GSK3β. Here, we discuss the direct and indirect mechanisms by which GSK3β phosphorylates voltage-gated Na+ channels (Nav1.2 and Nav1.6) and voltage-gated K+ channels (Kv4 and Kv7) and their physiological effects on intrinsic excitability, neuronal plasticity, and behavior. We also present evidence for how unbalanced GSK3β activity can lead to maladaptive plasticity that ultimately renders neuronal circuitry more vulnerable, increasing the risk for developing neuropsychiatric disorders. In conclusion, GSK3β-dependent modulation of voltage-gated ion channels may serve as an important pharmacological target for neurotherapeutic development.
Collapse
|
16
|
Müller L, Hatzfeld M, Keil R. Desmosomes as Signaling Hubs in the Regulation of Cell Behavior. Front Cell Dev Biol 2021; 9:745670. [PMID: 34631720 PMCID: PMC8495202 DOI: 10.3389/fcell.2021.745670] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022] Open
Abstract
Desmosomes are intercellular junctions, which preserve tissue integrity during homeostatic and stress conditions. These functions rely on their unique structural properties, which enable them to respond to context-dependent signals and transmit them to change cell behavior. Desmosome composition and size vary depending on tissue specific expression and differentiation state. Their constituent proteins are highly regulated by posttranslational modifications that control their function in the desmosome itself and in addition regulate a multitude of desmosome-independent functions. This review will summarize our current knowledge how signaling pathways that control epithelial shape, polarity and function regulate desmosomes and how desmosomal proteins transduce these signals to modulate cell behavior.
Collapse
Affiliation(s)
- Lisa Müller
- Department for Pathobiochemistry, Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Mechthild Hatzfeld
- Department for Pathobiochemistry, Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - René Keil
- Department for Pathobiochemistry, Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
17
|
Zhang J, Liang Y, Bradford WH, Sheikh F. Desmosomes: emerging pathways and non-canonical functions in cardiac arrhythmias and disease. Biophys Rev 2021; 13:697-706. [PMID: 34765046 PMCID: PMC8555023 DOI: 10.1007/s12551-021-00829-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022] Open
Abstract
Desmosomes are critical adhesion structures in cardiomyocytes, with mutation/loss linked to the heritable cardiac disease, arrhythmogenic right ventricular cardiomyopathy (ARVC). Early studies revealed the ability of desmosomal protein loss to trigger ARVC disease features including structural remodeling, arrhythmias, and inflammation; however, the precise mechanisms contributing to diverse disease presentations are not fully understood. Recent mechanistic studies demonstrated the protein degradation component CSN6 is a resident cardiac desmosomal protein which selectively restricts cardiomyocyte desmosomal degradation and disease. This suggests defects in protein degradation can trigger the structural remodeling underlying ARVC. Additionally, a subset of ARVC-related mutations show enhanced vulnerability to calpain-mediated degradation, further supporting the relevance of these mechanisms in disease. Desmosomal gene mutations/loss has been shown to impact arrhythmogenic pathways in the absence of structural disease within ARVC patients and model systems. Studies have shown the involvement of connexins, calcium handling machinery, and sodium channels as early drivers of arrhythmias, suggesting these may be distinct pathways regulating electrical function from the desmosome. Emerging evidence has suggested inflammation may be an early mechanism in disease pathogenesis, as clinical reports have shown an overlap between myocarditis and ARVC. Recent studies focus on the association between desmosomal mutations/loss and inflammatory processes including autoantibodies and signaling pathways as a way to understand the involvement of inflammation in ARVC pathogenesis. A specific focus will be to dissect ongoing fields of investigation to highlight diverse pathogenic pathways associated with desmosomal mutations/loss.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA
| | - Yan Liang
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA
| | - William H. Bradford
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA
| | - Farah Sheikh
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA
| |
Collapse
|
18
|
Hawthorne RN, Blazeski A, Lowenthal J, Kannan S, Teuben R, DiSilvestre D, Morrissette-McAlmon J, Saffitz JE, Boheler KR, James CA, Chelko SP, Tomaselli G, Tung L. Altered Electrical, Biomolecular, and Immunologic Phenotypes in a Novel Patient-Derived Stem Cell Model of Desmoglein-2 Mutant ARVC. J Clin Med 2021; 10:jcm10143061. [PMID: 34300226 PMCID: PMC8306340 DOI: 10.3390/jcm10143061] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 12/27/2022] Open
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a progressive heart condition which causes fibro-fatty myocardial scarring, ventricular arrhythmias, and sudden cardiac death. Most cases of ARVC can be linked to pathogenic mutations in the cardiac desmosome, but the pathophysiology is not well understood, particularly in early phases when arrhythmias can develop prior to structural changes. Here, we created a novel human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) model of ARVC from a patient with a c.2358delA variant in desmoglein-2 (DSG2). These DSG2-mutant (DSG2Mut) hiPSC-CMs were compared against two wildtype hiPSC-CM lines via immunostaining, RT-qPCR, Western blot, RNA-Seq, cytokine expression and optical mapping. Mutant cells expressed reduced DSG2 mRNA and had altered localization of desmoglein-2 protein alongside thinner, more disorganized myofibrils. No major changes in other desmosomal proteins were noted. There was increased pro-inflammatory cytokine expression that may be linked to canonical and non-canonical NFκB signaling. Action potentials in DSG2Mut CMs were shorter with increased upstroke heterogeneity, while time-to-peak calcium and calcium decay rate were reduced. These were accompanied by changes in ion channel and calcium handling gene expression. Lastly, suppressing DSG2 in control lines via siRNA allowed partial recapitulation of electrical anomalies noted in DSG2Mut cells. In conclusion, the aberrant cytoskeletal organization, cytokine expression, and electrophysiology found DSG2Mut hiPSC-CMs could underlie early mechanisms of disease manifestation in ARVC patients.
Collapse
Affiliation(s)
- Robert N. Hawthorne
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (R.N.H.); (A.B.); (J.L.); (S.K.); (R.T.); (J.M.-M.); (K.R.B.)
- Medical Scientist Training Program, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Adriana Blazeski
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (R.N.H.); (A.B.); (J.L.); (S.K.); (R.T.); (J.M.-M.); (K.R.B.)
| | - Justin Lowenthal
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (R.N.H.); (A.B.); (J.L.); (S.K.); (R.T.); (J.M.-M.); (K.R.B.)
- Medical Scientist Training Program, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Suraj Kannan
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (R.N.H.); (A.B.); (J.L.); (S.K.); (R.T.); (J.M.-M.); (K.R.B.)
- Medical Scientist Training Program, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Roald Teuben
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (R.N.H.); (A.B.); (J.L.); (S.K.); (R.T.); (J.M.-M.); (K.R.B.)
| | - Deborah DiSilvestre
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (D.D.); (C.A.J.)
| | - Justin Morrissette-McAlmon
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (R.N.H.); (A.B.); (J.L.); (S.K.); (R.T.); (J.M.-M.); (K.R.B.)
| | - Jeffrey E. Saffitz
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA;
| | - Kenneth R. Boheler
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (R.N.H.); (A.B.); (J.L.); (S.K.); (R.T.); (J.M.-M.); (K.R.B.)
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (D.D.); (C.A.J.)
| | - Cynthia A. James
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (D.D.); (C.A.J.)
| | - Stephen P. Chelko
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (D.D.); (C.A.J.)
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
- Correspondence: (S.P.C.); (G.T.); (L.T.); Tel.: +1-850-644-2215 (S.P.C.); +1-718-430-2801 (G.T.); +1-410-955-9603 (L.T.)
| | - Gordon Tomaselli
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (D.D.); (C.A.J.)
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Correspondence: (S.P.C.); (G.T.); (L.T.); Tel.: +1-850-644-2215 (S.P.C.); +1-718-430-2801 (G.T.); +1-410-955-9603 (L.T.)
| | - Leslie Tung
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (R.N.H.); (A.B.); (J.L.); (S.K.); (R.T.); (J.M.-M.); (K.R.B.)
- Correspondence: (S.P.C.); (G.T.); (L.T.); Tel.: +1-850-644-2215 (S.P.C.); +1-718-430-2801 (G.T.); +1-410-955-9603 (L.T.)
| |
Collapse
|