1
|
Huang L, Duan Q, Liu Y, Wu Y, Li Z, Guo Z, Liu M, Lu X, Wang P, Liu F, Ren F, Li C, Wang J, Huang Y, Yan B, Kioumourtzoglou MA, Kinney PL. Artificial intelligence: A key fulcrum for addressing complex environmental health issues. ENVIRONMENT INTERNATIONAL 2025; 198:109389. [PMID: 40121790 DOI: 10.1016/j.envint.2025.109389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/16/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Environmental health (EH) is a complex and interdisciplinary field dedicated to the examination of environmental behaviours, toxicological effects, health risks, and strategies for mitigating harmful environmental factors. Traditional EH research investigates correlations between risk factors and health outcomes through control variables, but this route is difficult to address complex EH issue. Artificial intelligence (AI) technology not only has accelerated the innovation of the scientific research paradigm but also has become an important tool for solving complex EH problems. However, the in-depth and comprehensive implementation of AI in the field of EH still faces many barriers, such as model generalizability, data privacy protection, algorithm transparency, and regulatory and ethical issues. This review focuses on the compound exposures of EH and explores the potential, challenges, and development directions of AI in four key phases of EH research: (1) data collection, fusion, and management, (2) hazard identification and screening, (3) risk modeling and assessment and (4) EH management. It is not difficult to see that in the future, artificial intelligence technology will inevitably carry out multidimensional simulation of complex exposure factors through multi-mode data fusion, so as to achieve accurate identification of environmental health risks, and eventually become an efficient tool for global environmental health management. This review will help researchers re-examine this strategy and provide a reference for AI to solve complex exposure problems.
Collapse
Affiliation(s)
- Lei Huang
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, China; Basic Science Center for Energy and Climate Change, Beijing 100081, China.
| | - Qiannan Duan
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China.
| | - Yuxin Liu
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yangyang Wu
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zenghui Li
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zhao Guo
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Mingliang Liu
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaowei Lu
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Peng Wang
- Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, China
| | - Fan Liu
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Futian Ren
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chen Li
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, China; Medical School, Nanjing University, Nanjing 210093, China
| | - Jiaming Wang
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yujia Huang
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Beizhan Yan
- Lamont-Doherty Earth Observatory, Columbia University, New York, USA
| | | | | |
Collapse
|
2
|
Kumar P, Chaudhary B, Arya P, Chauhan R, Devi S, Parejiya PB, Gupta MM. Advanced Artificial Intelligence Technologies Transforming Contemporary Pharmaceutical Research. Bioengineering (Basel) 2025; 12:363. [PMID: 40281723 PMCID: PMC12024664 DOI: 10.3390/bioengineering12040363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/02/2025] [Accepted: 03/05/2025] [Indexed: 04/29/2025] Open
Abstract
One area of study within machine learning and artificial intelligence (AI) seeks to create computer programs with intelligence that can mimic human focal processes in order to produce results. This technique includes data collection, effective data usage system development, conclusion illustration, and arrangements. Analysis algorithms that are learning to mimic human cognitive activities are the most widespread application of AI. Artificial intelligence (AI) studies have proliferated, and the field is quickly beginning to understand its potential impact on medical services and investigation. This review delves deeper into the pros and cons of AI across the healthcare and pharmaceutical research industries. Research and review articles published throughout the last few years were selected from PubMed, Google Scholar, and Science Direct, using search terms like 'artificial intelligence', 'drug discovery', 'pharmacy research', 'clinical trial', etc. This article provides a comprehensive overview of how artificial intelligence (AI) is being used to diagnose diseases, treat patients digitally, find new drugs, and predict when outbreaks or pandemics may occur. In artificial intelligence, neural networks and deep learning are some of the most popular tools; in clinical research, Bayesian non-parametric approaches hold promise for better results, while smartphones and the processing of natural languages are employed in recognizing patients and trial monitoring. Seasonal flu, Ebola, Zika, COVID-19, tuberculosis, and outbreak predictions were made using deep computation and artificial intelligence. The academic world is hopeful that AI development will lead to more efficient and less expensive medical and pharmaceutical investigations and better public services.
Collapse
Affiliation(s)
- Parveen Kumar
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University, Jaipur 303121, Rajasthan, India;
| | - Benu Chaudhary
- Shri Ram College of Pharmacy, Karnal 132001, Haryana, India; (B.C.); (P.A.)
| | - Preeti Arya
- Shri Ram College of Pharmacy, Karnal 132001, Haryana, India; (B.C.); (P.A.)
| | - Rupali Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (R.C.); (S.D.)
| | - Sushma Devi
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (R.C.); (S.D.)
| | - Punit B. Parejiya
- Department of Pharmaceutics, K.B. Institute of Pharmaceutical Education and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar 382 023, Gujarat, India;
| | - Madan Mohan Gupta
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University, Jaipur 303121, Rajasthan, India;
| |
Collapse
|
3
|
Khilwani R, Singh S. Leveraging Evolutionary Immunology in Interleukin-6 and Interleukin-17 Signaling for Lung Cancer Therapeutics. ACS Pharmacol Transl Sci 2024; 7:3658-3670. [PMID: 39698267 PMCID: PMC11650734 DOI: 10.1021/acsptsci.4c00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024]
Abstract
Lung cancer is among the most common instances of cancer subtypes and is associated with high mortality rates. Due to the availability of fewer therapies and delayed clinical investigations, the number of cancer incidences is rising dramatically. This is possibly an effect of immune modulations and chemotherapeutic drugs that raises cancer resistance. Among the list, IL-6 and IL-17 are host-derived paradoxical effectors that attune immune responses in malignant lung cells. Their excessive release in the cytokine milieu stabilizes immunosuppressive phenotypes, resulting in cellular perturbations. During tumor development, the significance of these molecules is reflected in their potential to regulate oncogenesis by initiating a myriad of signaling events that influence tumor growth and the metastatic ability of benign cancer cells. Moreover, their transactivation contributes to antiapoptotic mechanisms and favors cancer cell survival via constitutive expression of immunoregulatory molecules. Co-evolution and gene duplication events could be the major drivers behind cytokine evolution, which have prompted generic changes and, hence, the additive effect. The evolutionary model and statistical analysis provide evidence about the cytokines ancestral relationships and site-specific conservation, which is more convincing as both cytokines share cysteine-knot-like structures important in maintaining structural integrity. Funneling through the findings could help find residues that serve a catalytic role in immune functioning. Designing peptides or subunit vaccine formulations against those conserved residues could aid in combating lung cancer pathogenesis.
Collapse
Affiliation(s)
- Riya Khilwani
- Systems Medicine Laboratory, BRIC-National Centre for Cell Science, NCCS Complex,
Ganeshkhind, SPPU Campus, Pune 411007, India
| | - Shailza Singh
- Systems Medicine Laboratory, BRIC-National Centre for Cell Science, NCCS Complex,
Ganeshkhind, SPPU Campus, Pune 411007, India
| |
Collapse
|
4
|
Suriyaamporn P, Pamornpathomkul B, Patrojanasophon P, Ngawhirunpat T, Rojanarata T, Opanasopit P. The Artificial Intelligence-Powered New Era in Pharmaceutical Research and Development: A Review. AAPS PharmSciTech 2024; 25:188. [PMID: 39147952 DOI: 10.1208/s12249-024-02901-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024] Open
Abstract
Currently, artificial intelligence (AI), machine learning (ML), and deep learning (DL) are gaining increased interest in many fields, particularly in pharmaceutical research and development, where they assist in decision-making in complex situations. Numerous research studies and advancements have demonstrated how these computational technologies are used in various pharmaceutical research and development aspects, including drug discovery, personalized medicine, drug formulation, optimization, predictions, drug interactions, pharmacokinetics/ pharmacodynamics, quality control/quality assurance, and manufacturing processes. Using advanced modeling techniques, these computational technologies can enhance efficiency and accuracy, handle complex data, and facilitate novel discoveries within minutes. Furthermore, these technologies offer several advantages over conventional statistics. They allow for pattern recognition from complex datasets, and the models, typically developed from data-driven algorithms, can predict a given outcome (model output) from a set of features (model inputs). Additionally, this review discusses emerging trends and provides perspectives on the application of AI with quality by design (QbD) and the future role of AI in this field. Ethical and regulatory considerations associated with integrating AI into pharmaceutical technology were also examined. This review aims to offer insights to researchers, professionals, and others on the current state of AI applications in pharmaceutical research and development and their potential role in the future of research and the era of pharmaceutical Industry 4.0 and 5.0.
Collapse
Affiliation(s)
- Phuvamin Suriyaamporn
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | - Boonnada Pamornpathomkul
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | - Prasopchai Patrojanasophon
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | - Tanasait Ngawhirunpat
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | - Theerasak Rojanarata
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand.
| |
Collapse
|
5
|
Kong X, Wang W, Zhong Y, Wang N, Bai K, Wu Y, Qi Q, Zhang Y, Liu X, Xie J. Recent advances in the exploration and discovery of SARS-CoV-2 inhibitory peptides from edible animal proteins. Front Nutr 2024; 11:1346510. [PMID: 38389797 PMCID: PMC10883054 DOI: 10.3389/fnut.2024.1346510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), which causes the coronavirus disease 2019 (COVID-19), is spreading worldwide. Although the COVID-19 epidemic has passed its peak of transmission, the harm it has caused deserves our attention. Scientists are striving to develop medications that can effectively treat COVID-19 symptoms without causing any adverse reactions. SARS-CoV-2 inhibitory peptides derived from animal proteins have a wide range of functional activities in addition to safety. Identifying animal protein sources is crucial to obtaining SARS-CoV-2 inhibitory peptides from animal sources. This review aims to reveal the mechanisms of action of these peptides on SARS-CoV-2 and the possibility of animal proteins as a material source of SARS-CoV-2 inhibitory peptides. Also, it introduces the utilization of computer-aided design methods, phage display, and drug delivery strategies in the research on SARS-CoV-2 inhibitor peptides from animal proteins. In order to identify new antiviral peptides and boost their efficiency, we recommend investigating the interaction between SARS-CoV-2 inhibitory peptides from animal protein sources and non-structural proteins (Nsps) using a variety of technologies, including computer-aided drug approaches, phage display techniques, and drug delivery techniques. This article provides useful information for the development of novel anti-COVID-19 drugs.
Collapse
Affiliation(s)
- Xiaoyue Kong
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Wei Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Yizhi Zhong
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Nan Wang
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Kaiwen Bai
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Yi Wu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Qianhui Qi
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Yu Zhang
- Institute of Quality and Standard for Agriculture Products, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Xingquan Liu
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Junran Xie
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Ghosh A, Larrondo-Petrie MM, Pavlovic M. Revolutionizing Vaccine Development for COVID-19: A Review of AI-Based Approaches. INFORMATION 2023; 14:665. [DOI: 10.3390/info14120665] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
The evolvement of COVID-19 vaccines is rapidly being revolutionized using artificial intelligence-based technologies. Small compounds, peptides, and epitopes are collected to develop new therapeutics. These substances can also guide artificial intelligence-based modeling, screening, or creation. Machine learning techniques are used to leverage pre-existing data for COVID-19 drug detection and vaccine advancement, while artificial intelligence-based models are used for these purposes. Models based on artificial intelligence are used to evaluate and recognize the best candidate targets for future therapeutic development. Artificial intelligence-based strategies can be used to address issues with the safety and efficacy of COVID-19 vaccine candidates, as well as issues with manufacturing, storage, and logistics. Because antigenic peptides are effective at eliciting immune responses, artificial intelligence algorithms can assist in identifying the most promising COVID-19 vaccine candidates. Following COVID-19 vaccination, the first phase of the vaccine-induced immune response occurs when major histocompatibility complex (MHC) class II molecules (typically bind peptides of 12–25 amino acids) recognize antigenic peptides. Therefore, AI-based models are used to identify the best COVID-19 vaccine candidates and ensure the efficacy and safety of vaccine-induced immune responses. This study explores the use of artificial intelligence-based approaches to address logistics, manufacturing, storage, safety, and effectiveness issues associated with several COVID-19 vaccine candidates. Additionally, we will evaluate potential targets for next-generation treatments and examine the role that artificial intelligence-based models can play in identifying the most promising COVID-19 vaccine candidates, while also considering the effectiveness of antigenic peptides in triggering immune responses. The aim of this project is to gain insights into how artificial intelligence-based approaches could revolutionize the development of COVID-19 vaccines and how they can be leveraged to address challenges associated with vaccine development. In this work, we highlight potential barriers and solutions and focus on recent improvements in using artificial intelligence to produce COVID-19 drugs and vaccines, as well as the prospects for intelligent training in COVID-19 treatment discovery.
Collapse
Affiliation(s)
- Aritra Ghosh
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Maria M. Larrondo-Petrie
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Mirjana Pavlovic
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
7
|
Vora LK, Gholap AD, Jetha K, Thakur RRS, Solanki HK, Chavda VP. Artificial Intelligence in Pharmaceutical Technology and Drug Delivery Design. Pharmaceutics 2023; 15:1916. [PMID: 37514102 PMCID: PMC10385763 DOI: 10.3390/pharmaceutics15071916] [Citation(s) in RCA: 183] [Impact Index Per Article: 91.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Artificial intelligence (AI) has emerged as a powerful tool that harnesses anthropomorphic knowledge and provides expedited solutions to complex challenges. Remarkable advancements in AI technology and machine learning present a transformative opportunity in the drug discovery, formulation, and testing of pharmaceutical dosage forms. By utilizing AI algorithms that analyze extensive biological data, including genomics and proteomics, researchers can identify disease-associated targets and predict their interactions with potential drug candidates. This enables a more efficient and targeted approach to drug discovery, thereby increasing the likelihood of successful drug approvals. Furthermore, AI can contribute to reducing development costs by optimizing research and development processes. Machine learning algorithms assist in experimental design and can predict the pharmacokinetics and toxicity of drug candidates. This capability enables the prioritization and optimization of lead compounds, reducing the need for extensive and costly animal testing. Personalized medicine approaches can be facilitated through AI algorithms that analyze real-world patient data, leading to more effective treatment outcomes and improved patient adherence. This comprehensive review explores the wide-ranging applications of AI in drug discovery, drug delivery dosage form designs, process optimization, testing, and pharmacokinetics/pharmacodynamics (PK/PD) studies. This review provides an overview of various AI-based approaches utilized in pharmaceutical technology, highlighting their benefits and drawbacks. Nevertheless, the continued investment in and exploration of AI in the pharmaceutical industry offer exciting prospects for enhancing drug development processes and patient care.
Collapse
Affiliation(s)
- Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Amol D Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Keshava Jetha
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
- Ph.D. Section, Gujarat Technological University, Ahmedabad 382424, Gujarat, India
| | | | - Hetvi K Solanki
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
8
|
Kumar M, Nguyen TPN, Kaur J, Singh TG, Soni D, Singh R, Kumar P. Opportunities and challenges in application of artificial intelligence in pharmacology. Pharmacol Rep 2023; 75:3-18. [PMID: 36624355 PMCID: PMC9838466 DOI: 10.1007/s43440-022-00445-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 01/11/2023]
Abstract
Artificial intelligence (AI) is a machine science that can mimic human behaviour like intelligent analysis of data. AI functions with specialized algorithms and integrates with deep and machine learning. Living in the digital world can generate a huge amount of medical data every day. Therefore, we need an automated and reliable evaluation tool that can make decisions more accurately and faster. Machine learning has the potential to learn, understand and analyse the data used in healthcare systems. In the last few years, AI is known to be employed in various fields in pharmaceutical science especially in pharmacological research. It helps in the analysis of preclinical (laboratory animals) and clinical (in human) trial data. AI also plays important role in various processes such as drug discovery/manufacturing, diagnosis of big data for disease identification, personalized treatment, clinical trial research, radiotherapy, surgical robotics, smart electronic health records, and epidemic outbreak prediction. Moreover, AI has been used in the evaluation of biomarkers and diseases. In this review, we explain various models and general processes of machine learning and their role in pharmacological science. Therefore, AI with deep learning and machine learning could be relevant in pharmacological research.
Collapse
Affiliation(s)
- Mandeep Kumar
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - T P Nhung Nguyen
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
- Department of Pharmacy, Da Nang University of Medical Technology and Pharmacy, Da Nang, Vietnam
| | - Jasleen Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Lucknow, Uttar Pradesh, 226002, India
| | | | - Divya Soni
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Randhir Singh
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India.
| |
Collapse
|
9
|
Khandibharad S, Singh S. Artificial intelligence channelizing protein-peptide interactions pipeline for host-parasite paradigm in IL-10 and IL-12 reciprocity by SHP-1. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166466. [PMID: 35750267 DOI: 10.1016/j.bbadis.2022.166466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022]
Abstract
Identification of molecular targets in any cellular phenomena is a challenge and a path that one endeavors upon independently. We have identified a phosphatase SHP-1 as a point of intervention of IL-10 and IL-12 reciprocity in leishmaniasis. The therapeutic model that we have developed uniquely targets this protein but the pipeline in general can be used by the researchers for their unique targets. Naturally occurring peptides are well known for their biochemical participation in cellular functions hence we were motivated to use this uniqueness of physico-chemical properties of peptides conferred by amino acids through machine learning to channelize a mode of therapeutic exploration in infectious disease. Using computational approaches, we identified high order sequence conservation and similarity in SHP-1 sequence which was also evolutionarily conserved, complete structure of Mouse SHP-1 was predicted and validated, a unique motif of the same was identified against which library of synthetic peptides were designed and validated followed by screening the library by docking them with MuSHP-1 protein structure. Our findings showed 3 peptides had high binding affinity and in future can be validated using cell based and in vivo assays.
Collapse
Affiliation(s)
- Shweta Khandibharad
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, INDIA
| | - Shailza Singh
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, INDIA.
| |
Collapse
|
10
|
Aruleba RT, Adekiya TA, Ayawei N, Obaido G, Aruleba K, Mienye ID, Aruleba I, Ogbuokiri B. COVID-19 Diagnosis: A Review of Rapid Antigen, RT-PCR and Artificial Intelligence Methods. Bioengineering (Basel) 2022; 9:153. [PMID: 35447713 PMCID: PMC9024895 DOI: 10.3390/bioengineering9040153] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/15/2022] Open
Abstract
As of 27 December 2021, SARS-CoV-2 has infected over 278 million persons and caused 5.3 million deaths. Since the outbreak of COVID-19, different methods, from medical to artificial intelligence, have been used for its detection, diagnosis, and surveillance. Meanwhile, fast and efficient point-of-care (POC) testing and self-testing kits have become necessary in the fight against COVID-19 and to assist healthcare personnel and governments curb the spread of the virus. This paper presents a review of the various types of COVID-19 detection methods, diagnostic technologies, and surveillance approaches that have been used or proposed. The review provided in this article should be beneficial to researchers in this field and health policymakers at large.
Collapse
Affiliation(s)
- Raphael Taiwo Aruleba
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town 7701, South Africa;
| | - Tayo Alex Adekiya
- Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa;
| | - Nimibofa Ayawei
- Department of Chemistry, Bayelsa Medical University, Yenagoa PMB 178, Bayelsa State, Nigeria;
| | - George Obaido
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093-0404, USA
| | - Kehinde Aruleba
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Ibomoiye Domor Mienye
- Department of Electrical and Electronic Engineering Science, University of Johannesburg, Johannesburg 2006, South Africa; (I.D.M.); (I.A.)
| | - Idowu Aruleba
- Department of Electrical and Electronic Engineering Science, University of Johannesburg, Johannesburg 2006, South Africa; (I.D.M.); (I.A.)
| | - Blessing Ogbuokiri
- Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada;
| |
Collapse
|
11
|
Chourasia R, Padhi S, Phukon LC, Abedin MM, Sirohi R, Singh SP, Rai AK. Peptide candidates for the development of therapeutics and vaccines against β-coronavirus infection. Bioengineered 2022; 13:9435-9454. [PMID: 35387556 PMCID: PMC9161909 DOI: 10.1080/21655979.2022.2060453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 01/18/2023] Open
Abstract
Betacoronaviruses (β-CoVs) have caused major viral outbreaks in the last two decades in the world. The mutation and recombination abilities in β-CoVs resulted in zoonotic diseases in humans. Proteins responsible for viral attachment and replication are highly conserved in β-CoVs. These conserved proteins have been extensively studied as targets for preventing infection and the spread of β-CoVs. Peptides are among the most promising candidates for developing vaccines and therapeutics against viral pathogens. The immunostimulatory and viral inhibitory potential of natural and synthetic peptides has been extensively studied since the SARS-CoV outbreak. Food-derived peptides demonstrating high antiviral activity can be used to develop effective therapeutics against β-CoVs. Specificity, tolerability, and customizability of peptides can be explored to develop potent drugs against β-CoVs. However, the proteolytic susceptibility and low bioavailability of peptides pose challenges for the development of therapeutics. This review illustrates the potential role of peptides in eliciting an adaptive immune response and inhibiting different stages of the β-CoV life cycle. Further, the challenges and future directions associated with developing peptide-based therapeutics and vaccines against existing and future β-CoV pathogens have been discussed.
Collapse
Affiliation(s)
- Rounak Chourasia
- Institute of Bioresources and Sustainable Development (DBT-IBSD), Regional Centre, Tadong- 737102, India
| | - Srichandan Padhi
- Institute of Bioresources and Sustainable Development (DBT-IBSD), Regional Centre, Tadong- 737102, India
| | - Loreni Chiring Phukon
- Institute of Bioresources and Sustainable Development (DBT-IBSD), Regional Centre, Tadong- 737102, India
| | - Md Minhajul Abedin
- Institute of Bioresources and Sustainable Development (DBT-IBSD), Regional Centre, Tadong- 737102, India
| | - Ranjana Sirohi
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, 02841, Republic of Korea
| | - Sudhir P Singh
- Centre of Innovative and Applied Bioprocessing (DBT-CIAB), Sector-81, S.A.S. Nagar, Mohali- 140306, India
| | - Amit Kumar Rai
- Institute of Bioresources and Sustainable Development (DBT-IBSD), Regional Centre, Tadong- 737102, India
- Institute of Bioresources and Sustainable Development (DBT-IBSD), Mizoram Node, Aizawl, India
| |
Collapse
|
12
|
Traboulsi H, Khedr MA, Elgorashe R, Al-Faiyz Y, Negm A. Development of superior antibodies against the S-protein of SARS-Cov-2 using macrocyclic epitopes. ARAB J CHEM 2022; 15:103631. [PMID: 34909055 PMCID: PMC8662835 DOI: 10.1016/j.arabjc.2021.103631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 12/06/2021] [Indexed: 11/29/2022] Open
Abstract
One of the proven methods to prevent and inhibit viral infections is to use antibodies to block the initial Receptor Binding Domain (RBD) of SARS-CoV-2 S protein and avoid its binding with the host cells. Thus, developing these RBD-targeting antibodies would be a promising approach for treating the SARS-CoV-2 infectious disease and stop virus replication. Macrocyclic epitopes constitute closer mimics of the receptor's actual topology and, as such, are expected to be superior epitopes for antibody generation. This work demonstrated the vital effect of the three-dimensional shape of epitopes on the developed antibodies' activity against RBD protein of SARS-CoV-2. The molecular dynamics studies showed the greater stability of the cyclic epitopes in comparison with the linear counterpart, which was reflected in the activity of their produced antibodies. Indeed, the antibodies we developed using macrocyclic epitopes showed superiority with respect to binding to RBD proteins compared to antibodies formed from a linear peptide. The results of the present work constitute a roadmap for developing superior antibodies that could be used to inhibit the activity of the SARS-CoV-2 and prevent its reproduction.
Collapse
Affiliation(s)
- Hassan Traboulsi
- Department of Chemistry, College of Science, King Faisal University, P.O Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Mohammed A Khedr
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-AHasa 31982, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, P.O. Box 11795, Cairo, Egypt
| | - Rafea Elgorashe
- Department of Chemistry, College of Science, King Faisal University, P.O Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Yasair Al-Faiyz
- Department of Chemistry, College of Science, King Faisal University, P.O Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Amr Negm
- Department of Chemistry, College of Science, King Faisal University, P.O Box 400, Al-Ahsa 31982, Saudi Arabia
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
13
|
Therapeutic peptides: current applications and future directions. Signal Transduct Target Ther 2022; 7:48. [PMID: 35165272 PMCID: PMC8844085 DOI: 10.1038/s41392-022-00904-4] [Citation(s) in RCA: 804] [Impact Index Per Article: 268.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 02/08/2023] Open
Abstract
Peptide drug development has made great progress in the last decade thanks to new production, modification, and analytic technologies. Peptides have been produced and modified using both chemical and biological methods, together with novel design and delivery strategies, which have helped to overcome the inherent drawbacks of peptides and have allowed the continued advancement of this field. A wide variety of natural and modified peptides have been obtained and studied, covering multiple therapeutic areas. This review summarizes the efforts and achievements in peptide drug discovery, production, and modification, and their current applications. We also discuss the value and challenges associated with future developments in therapeutic peptides.
Collapse
|
14
|
Thomas S, Abraham A, Baldwin J, Piplani S, Petrovsky N. Artificial Intelligence in Vaccine and Drug Design. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2410:131-146. [PMID: 34914045 DOI: 10.1007/978-1-0716-1884-4_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Knowledge in the fields of biochemistry, structural biology, immunological principles, microbiology, and genomics has all increased dramatically in recent years. There has also been tremendous growth in the fields of data science, informatics, and artificial intelligence needed to handle this immense data flow. At the intersection of wet lab and data science is the field of bioinformatics, which seeks to apply computational tools to better understanding of the biological sciences. Like so many other areas of biology, bioinformatics has transformed immunology research leading to the discipline of immunoinformatics. Within this field, many new databases and computational tools have been created that increasingly drive immunology research, in many cases drawing upon artificial intelligence and machine learning to predict complex immune system behaviors, for example, prediction of B cell and T cell epitopes. In this book chapter, we provide an overview of computational tools and artificial intelligence being used for protein modeling, drug screening, vaccine design, and highlight how these tools are being used to transform approaches to pandemic countermeasure development, by reference to the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Sunil Thomas
- Lankenau Institute for Medical Research, Wynnewood, PA, USA.
| | - Ann Abraham
- Lankenau Institute for Medical Research, Wynnewood, PA, USA
| | | | - Sakshi Piplani
- Vaxine Pty Ltd, Adelaide, SA, Australia.,College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, Adelaide, SA, Australia.,College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
15
|
Machine learning & deep learning in data-driven decision making of drug discovery and challenges in high-quality data acquisition in the pharmaceutical industry. Future Med Chem 2021; 14:245-270. [PMID: 34939433 DOI: 10.4155/fmc-2021-0243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Predicting novel small molecule bioactivities for the target deconvolution, hit-to-lead optimization in drug discovery research, requires molecular representation. Previous reports have demonstrated that machine learning (ML) and deep learning (DL) have substantial implications in virtual screening, peptide synthesis, drug ADMET screening and biomarker discovery. These strategies can increase the positive outcomes in the drug discovery process without false-positive rates and can be achieved in a cost-effective way with a minimum duration of time by high-quality data acquisition. This review substantially discusses the recent updates in AI tools as cheminformatics application in medicinal chemistry for the data-driven decision making of drug discovery and challenges in high-quality data acquisition in the pharmaceutical industry while improving small-molecule bioactivities and properties.
Collapse
|
16
|
Data-Driven Analytics Leveraging Artificial Intelligence in the Era of COVID-19: An Insightful Review of Recent Developments. Symmetry (Basel) 2021. [DOI: 10.3390/sym14010016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
This paper presents the role of artificial intelligence (AI) and other latest technologies that were employed to fight the recent pandemic (i.e., novel coronavirus disease-2019 (COVID-19)). These technologies assisted the early detection/diagnosis, trends analysis, intervention planning, healthcare burden forecasting, comorbidity analysis, and mitigation and control, to name a few. The key-enablers of these technologies was data that was obtained from heterogeneous sources (i.e., social networks (SN), internet of (medical) things (IoT/IoMT), cellular networks, transport usage, epidemiological investigations, and other digital/sensing platforms). To this end, we provide an insightful overview of the role of data-driven analytics leveraging AI in the era of COVID-19. Specifically, we discuss major services that AI can provide in the context of COVID-19 pandemic based on six grounds, (i) AI role in seven different epidemic containment strategies (a.k.a non-pharmaceutical interventions (NPIs)), (ii) AI role in data life cycle phases employed to control pandemic via digital solutions, (iii) AI role in performing analytics on heterogeneous types of data stemming from the COVID-19 pandemic, (iv) AI role in the healthcare sector in the context of COVID-19 pandemic, (v) general-purpose applications of AI in COVID-19 era, and (vi) AI role in drug design and repurposing (e.g., iteratively aligning protein spikes and applying three/four-fold symmetry to yield a low-resolution candidate template) against COVID-19. Further, we discuss the challenges involved in applying AI to the available data and privacy issues that can arise from personal data transitioning into cyberspace. We also provide a concise overview of other latest technologies that were increasingly applied to limit the spread of the ongoing pandemic. Finally, we discuss the avenues of future research in the respective area. This insightful review aims to highlight existing AI-based technological developments and future research dynamics in this area.
Collapse
|
17
|
Mohanty E, Mohanty A. Role of artificial intelligence in peptide vaccine design against RNA viruses. INFORMATICS IN MEDICINE UNLOCKED 2021; 26:100768. [PMID: 34722851 PMCID: PMC8536498 DOI: 10.1016/j.imu.2021.100768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/16/2021] [Accepted: 10/16/2021] [Indexed: 01/18/2023] Open
Abstract
RNA viruses have high rate of replication and mutation that help them adapt and change according to their environmental conditions. Many viral mutants are the cause of various severe and lethal diseases. Vaccines, on the other hand have the capacity to protect us from infectious diseases by eliciting antibody or cell-mediated immune responses that are pathogen-specific. While there are a few reviews pertaining to the use of artificial intelligence (AI) for SARS-COV-2 vaccine development, none focus on peptide vaccination for RNA viruses and the important role played by AI in it. Peptide vaccine which is slowly coming to be recognized as a safe and effective vaccination strategy has the capacity to overcome the mutant escape problem which is also being currently faced by SARS-COV-2 vaccines in circulation.Here we review the present scenario of peptide vaccines which are developed using mathematical and computational statistics methods to prevent the spread of disease caused by RNA viruses. We also focus on the importance and current stage of AI and mathematical evolutionary modeling using machine learning tools in the establishment of these new peptide vaccines for the control of viral disease.
Collapse
Affiliation(s)
- Eileena Mohanty
- Trident School of Biotech Sciences, Trident Academy of Creative Technology (TACT), Bhubaneswar, Odisha, 751024, India
| | - Anima Mohanty
- School of Biotechnology (KSBT), KIIT University-2, Bhubaneswar, 751024, India
| |
Collapse
|
18
|
Arora G, Joshi J, Mandal RS, Shrivastava N, Virmani R, Sethi T. Artificial Intelligence in Surveillance, Diagnosis, Drug Discovery and Vaccine Development against COVID-19. Pathogens 2021; 10:1048. [PMID: 34451513 PMCID: PMC8399076 DOI: 10.3390/pathogens10081048] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022] Open
Abstract
As of August 6th, 2021, the World Health Organization has notified 200.8 million laboratory-confirmed infections and 4.26 million deaths from COVID-19, making it the worst pandemic since the 1918 flu. The main challenges in mitigating COVID-19 are effective vaccination, treatment, and agile containment strategies. In this review, we focus on the potential of Artificial Intelligence (AI) in COVID-19 surveillance, diagnosis, outcome prediction, drug discovery and vaccine development. With the help of big data, AI tries to mimic the cognitive capabilities of a human brain, such as problem-solving and learning abilities. Machine Learning (ML), a subset of AI, holds special promise for solving problems based on experiences gained from the curated data. Advances in AI methods have created an unprecedented opportunity for building agile surveillance systems using the deluge of real-time data generated within a short span of time. During the COVID-19 pandemic, many reports have discussed the utility of AI approaches in prioritization, delivery, surveillance, and supply chain of drugs, vaccines, and non-pharmaceutical interventions. This review will discuss the clinical utility of AI-based models and will also discuss limitations and challenges faced by AI systems, such as model generalizability, explainability, and trust as pillars for real-life deployment in healthcare.
Collapse
Affiliation(s)
- Gunjan Arora
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jayadev Joshi
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA;
| | - Rahul Shubhra Mandal
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Nitisha Shrivastava
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA;
| | - Richa Virmani
- Confo Therapeutics, Technologiepark 94, 9052 Ghent, Belgium;
| | - Tavpritesh Sethi
- Indraprastha Institute of Information Technology, New Delhi 110020, India;
| |
Collapse
|
19
|
Arora G, Joshi J, Mandal RS, Shrivastava N, Virmani R, Sethi T. Artificial Intelligence in Surveillance, Diagnosis, Drug Discovery and Vaccine Development against COVID-19. Pathogens 2021; 10:1048. [PMID: 34451513 PMCID: PMC8399076 DOI: 10.3390/pathogens10081048,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
As of August 6th, 2021, the World Health Organization has notified 200.8 million laboratory-confirmed infections and 4.26 million deaths from COVID-19, making it the worst pandemic since the 1918 flu. The main challenges in mitigating COVID-19 are effective vaccination, treatment, and agile containment strategies. In this review, we focus on the potential of Artificial Intelligence (AI) in COVID-19 surveillance, diagnosis, outcome prediction, drug discovery and vaccine development. With the help of big data, AI tries to mimic the cognitive capabilities of a human brain, such as problem-solving and learning abilities. Machine Learning (ML), a subset of AI, holds special promise for solving problems based on experiences gained from the curated data. Advances in AI methods have created an unprecedented opportunity for building agile surveillance systems using the deluge of real-time data generated within a short span of time. During the COVID-19 pandemic, many reports have discussed the utility of AI approaches in prioritization, delivery, surveillance, and supply chain of drugs, vaccines, and non-pharmaceutical interventions. This review will discuss the clinical utility of AI-based models and will also discuss limitations and challenges faced by AI systems, such as model generalizability, explainability, and trust as pillars for real-life deployment in healthcare.
Collapse
Affiliation(s)
- Gunjan Arora
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Correspondence: or
| | - Jayadev Joshi
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA;
| | - Rahul Shubhra Mandal
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Nitisha Shrivastava
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA;
| | - Richa Virmani
- Confo Therapeutics, Technologiepark 94, 9052 Ghent, Belgium;
| | - Tavpritesh Sethi
- Indraprastha Institute of Information Technology, New Delhi 110020, India;
| |
Collapse
|
20
|
Veit-Acosta M, de Azevedo Junior WF. Computational Prediction of Binding Affinity for CDK2-ligand Complexes. A Protein Target for Cancer Drug Discovery. Curr Med Chem 2021; 29:2438-2455. [PMID: 34365938 DOI: 10.2174/0929867328666210806105810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND CDK2 participates in the control of eukaryotic cell-cycle progression. Due to the great interest in CDK2 for drug development and the relative easiness in crystallizing this enzyme, we have over 400 structural studies focused on this protein target. This structural data is the basis for the development of computational models to estimate CDK2-ligand binding affinity. OBJECTIVE This work focuses on the recent developments in the application of supervised machine learning modeling to develop scoring functions to predict the binding affinity of CDK2. METHOD We employed the structures available at the protein data bank and the ligand information accessed from the BindingDB, Binding MOAD, and PDBbind to evaluate the predictive performance of machine learning techniques combined with physical modeling used to calculate binding affinity. We compared this hybrid methodology with classical scoring functions available in docking programs. RESULTS Our comparative analysis of previously published models indicated that a model created using a combination of a mass-spring system and cross-validated Elastic Net to predict the binding affinity of CDK2-inhibitor complexes outperformed classical scoring functions available in AutoDock4 and AutoDock Vina. CONCLUSION All studies reviewed here suggest that targeted machine learning models are superior to classical scoring functions to calculate binding affinities. Specifically for CDK2, we see that the combination of physical modeling with supervised machine learning techniques exhibits improved predictive performance to calculate the protein-ligand binding affinity. These results find theoretical support in the application of the concept of scoring function space.
Collapse
Affiliation(s)
- Martina Veit-Acosta
- Western Michigan University, 1903 Western, Michigan Ave, Kalamazoo, MI 49008. United States
| | | |
Collapse
|
21
|
Barbieri D, Giuliani E, Del Prete A, Losi A, Villani M, Barbieri A. How Artificial Intelligence and New Technologies Can Help the Management of the COVID-19 Pandemic. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147648. [PMID: 34300099 PMCID: PMC8303245 DOI: 10.3390/ijerph18147648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/07/2021] [Accepted: 07/16/2021] [Indexed: 12/19/2022]
Abstract
The COVID-19 pandemic has worked as a catalyst, pushing governments, private companies, and healthcare facilities to design, develop, and adopt innovative solutions to control it, as is often the case when people are driven by necessity. After 18 months since the first case, it is time to think about the pros and cons of such technologies, including artificial intelligence—which is probably the most complex and misunderstood by non-specialists—in order to get the most out of them, and to suggest future improvements and proper adoption. The aim of this narrative review was to select the relevant papers that directly address the adoption of artificial intelligence and new technologies in the management of pandemics and communicable diseases such as SARS-CoV-2: environmental measures; acquisition and sharing of knowledge in the general population and among clinicians; development and management of drugs and vaccines; remote psychological support of patients; remote monitoring, diagnosis, and follow-up; and maximization and rationalization of human and material resources in the hospital environment.
Collapse
Affiliation(s)
- Davide Barbieri
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Savonarola 9, 44121 Ferrara, Italy;
| | - Enrico Giuliani
- Department of Biomedical, Metabolic and Neuroscience Sciences, University of Modena and Reggio Emilia, Via Del Pozzo 71, 41125 Modena, Italy;
| | - Anna Del Prete
- School of Anesthesiology and Intensive Care, University of Modena and Reggio Emilia, Via Del Pozzo 71, 41125 Modena, Italy; (A.D.P.); (A.B.)
| | - Amanda Losi
- Department of Biomedical, Metabolic and Neuroscience Sciences, University of Modena and Reggio Emilia, Via Del Pozzo 71, 41125 Modena, Italy;
- Correspondence: ; Tel.: +39-0598721234 (ext. 41125)
| | - Matteo Villani
- Department of Anesthesiology and Intensive Care, Azienda USL Piacenza, Via Antonio Anguissola 15, 29121 Piacenza, Italy;
| | - Alberto Barbieri
- School of Anesthesiology and Intensive Care, University of Modena and Reggio Emilia, Via Del Pozzo 71, 41125 Modena, Italy; (A.D.P.); (A.B.)
| |
Collapse
|
22
|
Kurpe SR, Grishin SY, Surin AK, Panfilov AV, Slizen MV, Chowdhury SD, Galzitskaya OV. Antimicrobial and Amyloidogenic Activity of Peptides. Can Antimicrobial Peptides Be Used against SARS-CoV-2? Int J Mol Sci 2020; 21:E9552. [PMID: 33333996 PMCID: PMC7765370 DOI: 10.3390/ijms21249552] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/07/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023] Open
Abstract
At present, much attention is paid to the use of antimicrobial peptides (AMPs) of natural and artificial origin to combat pathogens. AMPs have several points that determine their biological activity. We analyzed the structural properties of AMPs, as well as described their mechanism of action and impact on pathogenic bacteria and viruses. Recently published data on the development of new AMP drugs based on a combination of molecular design and genetic engineering approaches are presented. In this article, we have focused on information on the amyloidogenic properties of AMP. This review examines AMP development strategies from the perspective of the current high prevalence of antibiotic-resistant bacteria, and the potential prospects and challenges of using AMPs against infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Collapse
Affiliation(s)
- Stanislav R. Kurpe
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (S.Y.G.); (A.K.S.); (A.V.P.); (M.V.S.)
| | - Sergei Yu. Grishin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (S.Y.G.); (A.K.S.); (A.V.P.); (M.V.S.)
| | - Alexey K. Surin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (S.Y.G.); (A.K.S.); (A.V.P.); (M.V.S.)
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| | - Alexander V. Panfilov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (S.Y.G.); (A.K.S.); (A.V.P.); (M.V.S.)
| | - Mikhail V. Slizen
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (S.Y.G.); (A.K.S.); (A.V.P.); (M.V.S.)
| | - Saikat D. Chowdhury
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India;
| | - Oxana V. Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (S.Y.G.); (A.K.S.); (A.V.P.); (M.V.S.)
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|