1
|
Zhang C, Yang X, Xue Y, Li H, Zeng C, Chen M. The Role of Solute Carrier Family Transporters in Hepatic Steatosis and Hepatic Fibrosis. J Clin Transl Hepatol 2025; 13:233-252. [PMID: 40078199 PMCID: PMC11894391 DOI: 10.14218/jcth.2024.00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/19/2024] [Accepted: 12/31/2024] [Indexed: 03/14/2025] Open
Abstract
Solute carrier (SLC) family transporters are crucial transmembrane proteins responsible for transporting various molecules, including amino acids, electrolytes, fatty acids, and nucleotides. To date, more than fifty SLC transporter subfamilies have been identified, many of which are linked to the progression of hepatic steatosis and fibrosis. These conditions are often caused by factors such as non-alcoholic fatty liver disease and non-alcoholic steatohepatitis, which are major contributors to the global liver disease burden. The activity of SLC members regulates the transport of substrates across biological membranes, playing key roles in lipid synthesis and metabolism, mitochondrial function, and ferroptosis. These processes, in turn, influence the function of hepatocytes, hepatic stellate cells, and macrophages, thereby contributing to the development of hepatic steatosis and fibrosis. Additionally, some SLC transporters are involved in drug transport, acting as critical regulators of drug-induced hepatic steatosis. Beyond substrate transport, certain SLC members also exhibit additional functions. Given the pivotal role of the SLC family in hepatic steatosis and fibrosis, this review aimed to summarize the molecular mechanisms through which SLC transporters influence these conditions.
Collapse
Affiliation(s)
| | | | - Yi Xue
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Huan Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chuanfei Zeng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mingkai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
2
|
Tsuruno Y, Nagano A, Sugita K, Onishi S, Tabata Y, Kedoin C, Murakami M, Yano K, Kawano T, Hasuzawa N, Nomura M, Kaji T, Bitoh Y, Ieiri S. Favorable inhibitory effect of clodronate on hepatic steatosis in short bowel syndrome model rats. Pediatr Surg Int 2024; 40:307. [PMID: 39537943 PMCID: PMC11561034 DOI: 10.1007/s00383-024-05858-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE This study investigated the anti-inflammatory effect of clodronate, a vesicular nucleotide transporter (VNUT) inhibitor, on intestinal-failure-associated liver disease (IFALD) in a rat model of short bowel syndrome (SBS). METHODS The rats underwent jugular vein catheterization for continuous total parenteral nutrition (TPN) and 90% small bowel resection. The animals were divided into the following groups: TPN/SBS (Control group), TPN/SBS/intravenous administration of low-dose clodronate (20 mg/kg twice per week; Low group), or TPN/SBS/intravenous administration of high-dose clodronate (60 mg/kg twice per week; High group). On day 7, the rats were euthanized. Hepatic steatosis and hepatocellular injury were also assessed. RESULTS Hepatic steatosis and lobular inflammation in the liver were observed in all groups. The High group showed histologically reduced hepatic steatosis compared with the Control group. IL-6 and Nlrp3 expression in the High group was significantly suppressed compared to that in the Control group. The expression of other inflammatory cytokines tended to be lower in the High dose group than in the control group. The lipid metabolism gene expression in the liver specimens showed no significant differences among the groups. CONCLUSION The high-dose administration of clodronate may, therefore, inhibit hepatic steatosis and inflammation associated with IFALD in patients with SBS.
Collapse
Affiliation(s)
- Yudai Tsuruno
- Department of Pediatric Surgery, Medical and Dental Area, Research and Education Assembly, Research Field in Medical and Health Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
- Division of Pediatric Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ayaka Nagano
- Department of Pediatric Surgery, Medical and Dental Area, Research and Education Assembly, Research Field in Medical and Health Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Koshiro Sugita
- Department of Pediatric Surgery, Medical and Dental Area, Research and Education Assembly, Research Field in Medical and Health Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan.
| | - Shun Onishi
- Department of Pediatric Surgery, Medical and Dental Area, Research and Education Assembly, Research Field in Medical and Health Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Yumiko Tabata
- Department of Pediatric Surgery, Medical and Dental Area, Research and Education Assembly, Research Field in Medical and Health Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Chihiro Kedoin
- Department of Pediatric Surgery, Medical and Dental Area, Research and Education Assembly, Research Field in Medical and Health Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Masakazu Murakami
- Department of Pediatric Surgery, Medical and Dental Area, Research and Education Assembly, Research Field in Medical and Health Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Keisuke Yano
- Department of Pediatric Surgery, Medical and Dental Area, Research and Education Assembly, Research Field in Medical and Health Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Takafumi Kawano
- Department of Pediatric Surgery, Medical and Dental Area, Research and Education Assembly, Research Field in Medical and Health Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Nao Hasuzawa
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Masatoshi Nomura
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Tatsuru Kaji
- Department of Pediatric Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Yuko Bitoh
- Division of Pediatric Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satoshi Ieiri
- Department of Pediatric Surgery, Medical and Dental Area, Research and Education Assembly, Research Field in Medical and Health Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| |
Collapse
|
3
|
Monti F, Perazza F, Leoni L, Stefanini B, Ferri S, Tovoli F, Zavatta G, Piscaglia F, Petroni ML, Ravaioli F. RANK-RANKL-OPG Axis in MASLD: Current Evidence Linking Bone and Liver Diseases and Future Perspectives. Int J Mol Sci 2024; 25:9193. [PMID: 39273141 PMCID: PMC11395242 DOI: 10.3390/ijms25179193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD)-and its worse form, metabolic-associated steatohepatitis (MASH), characterised by inflammation and liver damage-corresponds to the liver's involvement in metabolic syndrome, which constitutes an economic burden for healthcare systems. However, the biomolecular pathways that contribute to steatotic liver disease are not completely clear. Abnormalities of bone metabolism are frequent in people affected by metabolic liver disease, with reduced bone density and an increased risk of fracture. Receptor activator of NF-κB (RANK), receptor activator of NF-κB ligand (RANKL), and osteoprotegerin(OPG) are critical regulators of bone metabolism, performing pleiotropic effects, and may have potential involvement in metabolic disorders like MASLD, resulting in a topic of great interest and intrigue. This narrative review aims to investigate this potential role and its implications in MASLD development and progression and in hepatocellular carcinoma, which represents its worst complication.
Collapse
Affiliation(s)
- Federico Monti
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.M.); (F.P.); (B.S.); (F.T.); (G.Z.); (F.P.); (M.L.P.)
| | - Federica Perazza
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.M.); (F.P.); (B.S.); (F.T.); (G.Z.); (F.P.); (M.L.P.)
| | - Laura Leoni
- Department of Dietetics and Clinical Nutrition, Maggiore-Bellaria Hospital, Azienda Unità Sanitaria Locale (AUSL), 40138 Bologna, Italy;
| | - Bernardo Stefanini
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.M.); (F.P.); (B.S.); (F.T.); (G.Z.); (F.P.); (M.L.P.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Silvia Ferri
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Francesco Tovoli
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.M.); (F.P.); (B.S.); (F.T.); (G.Z.); (F.P.); (M.L.P.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Guido Zavatta
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.M.); (F.P.); (B.S.); (F.T.); (G.Z.); (F.P.); (M.L.P.)
- Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Fabio Piscaglia
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.M.); (F.P.); (B.S.); (F.T.); (G.Z.); (F.P.); (M.L.P.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Maria Letizia Petroni
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.M.); (F.P.); (B.S.); (F.T.); (G.Z.); (F.P.); (M.L.P.)
- Unit of Clinical Nutrition and Metabolism, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Federico Ravaioli
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.M.); (F.P.); (B.S.); (F.T.); (G.Z.); (F.P.); (M.L.P.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| |
Collapse
|
4
|
Tokumaru T, Apolinario MEC, Shimizu N, Umeda R, Honda K, Shikano K, Teranishi H, Hikida T, Hanada T, Ohta K, Li Y, Murakami K, Hanada R. Hepatic extracellular ATP/adenosine dynamics in zebrafish models of alcoholic and metabolic steatotic liver disease. Sci Rep 2024; 14:7813. [PMID: 38565862 PMCID: PMC10987586 DOI: 10.1038/s41598-024-58043-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
Steatotic liver disease (SLD) is a burgeoning health problem predominantly associated with excessive alcohol consumption, which causes alcohol-related liver disease (ALD), and high caloric intake, which results in metabolic dysfunction-associated SLD (MASLD). The pathogenesis of ALD and MASLD, which can progress from steatohepatitis to more severe conditions such as liver fibrosis, cirrhosis, and hepatocellular carcinoma, is complicated by several factors. Recently, extracellular ATP and adenosine (Ado), as damage-associated molecular patterns, were reported to promote inflammation and liver fibrosis, contributing to SLD pathogenesis. Here, we explored the in vivo dynamics of hepatic extracellular ATP and Ado during the progression of steatohepatitis using a genetically encoded GPCR-activation-based sensor (GRAB) in zebrafish models. We established hepatocyte-specific GRABATP and GRABAdo in zebrafish and investigated the changes in in vivo hepatic extracellular ATP and Ado levels under ALD or MASLD conditions. Disease-specific changes in hepatocyte extracellular ATP and Ado levels were observed, clearly indicating a correlation between hepatocyte extracellular ATP/Ado dynamics and disease progression. Furthermore, clodronate, a vesicular nucleotide transporter inhibitor, alleviated the MASLD phenotype by reducing the hepatic extracellular ATP and Ado content. These findings provide deep insights into extracellular ATP/Ado dynamics in disease progression, suggesting therapeutic potential for ALD and MASLD.
Collapse
Affiliation(s)
- Tomoko Tokumaru
- Department of Neurophysiology, Faculty of Medicine, Oita University, Yufu, Oita, Japan
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | | | - Nobuyuki Shimizu
- Department of Cell Biology, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Ryohei Umeda
- Department of Neurophysiology, Faculty of Medicine, Oita University, Yufu, Oita, Japan
- Department of Advanced Medical Science, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Koichi Honda
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Kenshiro Shikano
- Department of Neurophysiology, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Hitoshi Teranishi
- Department of Neurophysiology, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Toshikatsu Hanada
- Department of Cell Biology, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Keisuke Ohta
- Advanced Imaging Research Center, Kurume University, Kurume, Japan
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
| | - Kazunari Murakami
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Reiko Hanada
- Department of Neurophysiology, Faculty of Medicine, Oita University, Yufu, Oita, Japan.
| |
Collapse
|
5
|
Senfeld J, Peng Q, Shi Y, Qian S, Shen J. A purinergic mechanism underlying metformin regulation of hyperglycemia. iScience 2023; 26:106898. [PMID: 37378329 PMCID: PMC10291329 DOI: 10.1016/j.isci.2023.106898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/01/2023] [Accepted: 05/12/2023] [Indexed: 06/29/2023] Open
Abstract
Metformin, created in 1922, has been the first-line therapy for treating type 2 diabetes mellitus for almost 70 years; however, its mechanism of action remains controversial, partly because most prior studies used supratherapeutic concentrations exceeding 1 mM despite therapeutical blood concentrations of metformin being less than 40 μM. Here we report metformin, at 10-30 μM, blocks high glucose-stimulated ATP secretion from hepatocytes mediating its antihyperglycemic action. Following glucose administration, mice demonstrate increased circulating ATP, which is prevented by metformin. Extracellular ATP through P2Y2 receptors (P2Y2R) suppresses PIP3 production, compromising insulin-induced AKT activation while promoting hepatic glucose production. Furthermore, metformin-dependent improvements in glucose tolerance are abolished in P2Y2R-null mice. Thus, removing the target of extracellular ATP, P2Y2R, mimics the effects of metformin, revealing a new purinergic antidiabetic mechanism for metformin. Besides unraveling long-standing questions in purinergic control of glucose homeostasis, our findings provide new insights into the pleiotropic actions of metformin.
Collapse
Affiliation(s)
- Jared Senfeld
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Qianman Peng
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Yi Shi
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Shenqi Qian
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Jianzhong Shen
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
6
|
The Effects of SGLT2 Inhibitors on Liver Cirrhosis Patients with Refractory Ascites: A Literature Review. J Clin Med 2023; 12:jcm12062253. [PMID: 36983252 PMCID: PMC10056954 DOI: 10.3390/jcm12062253] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Decompensated liver cirrhosis is often complicated by refractory ascites, and intractable ascites are a predictor of poor prognosis in patients with liver cirrhosis. The treatment of ascites in patients with cirrhosis is based on the use of aldosterone blockers and loop diuretics, and occasionally vasopressin receptor antagonists are also used. Recent reports suggest that sodium–glucose cotransporter 2 (SGLT2) inhibitors may be a new treatment for refractory ascites with a different mechanism with respect to conventional agents. The main mechanisms of ascites reduction with SGLT2 inhibitors appear to be natriuresis and osmotic diuresis. However, other mechanisms, including improvements in glucose metabolism and nutritional status, hepatoprotection by ketone bodies and adiponectin, amelioration of the sympathetic nervous system, and inhibition of the renin–angiotensin–aldosterone system, may also contribute to the reduction of ascites. This literature review describes previously reported cases in which SGLT2 inhibitors were used to effectively treat ascites caused by liver cirrhosis. The discussion of the mechanisms involved is expected to contribute to establishing SGLT2 therapy for ascites in the future.
Collapse
|
7
|
Donoso MV, Hernández F, Barra R, Huidobro-Toro JP. Nanomolar clodronate induces adenosine accumulation in the perfused rat mesenteric bed and mesentery-derived endothelial cells. Front Pharmacol 2023; 13:1031223. [PMID: 36744214 PMCID: PMC9895365 DOI: 10.3389/fphar.2022.1031223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/22/2022] [Indexed: 01/22/2023] Open
Abstract
The vesicular nucleotide transporter (VNUT) is critical for sympathetic co-transmission and purinergic transmission maintenance. To examine this proposal, we assessed whether the bisphosphonate clodronate, claimed as a potent in vitro VNUT blocker, modified spontaneous and/or the electrically evoked overflow of ATP/metabolites and NA from mesentery sympathetic perivascular nerve terminals. Additionally, in primary endothelial cell cultures derived from this tissue, we also evaluated whether clodronate interfered with ATP/metabolite cell outflow and metabolism of N6-etheno adenosine 5'-triphosphate (eATP), N6-etheno adenosine (eADO), and adenosine deaminase enzyme activity. Rat mesenteries were perfused in the absence or presence of .01-1,000 nM clodronate, 1-1,000 nM Evans blue (EB), and 1-10 µM DIDS; tissue perfusates were collected to determine ATP/metabolites and NA before, during, and after perivascular electrical nerve terminal depolarization. An amount of 1-1,000 nM clodronate did not modify the time course of ATP or NA overflow elicited by nerve terminal depolarization, and only 10 nM clodronate significantly augmented perfusate adenosine. Electrical nerve terminal stimulation increased tissue perfusion pressure that was significantly reduced only by 10 nM clodronate [90.0 ± 18.6 (n = 8) to 35.0 ± 10.4 (n = 7), p = .0277]. As controls, EB, DIDS, or reserpine treatment reduced the overflow of ATP/metabolites and NA in a concentration-dependent manner elicited by nerve terminal depolarization. Moreover, mechanical stimulation of primary endothelial cell cultures from the rat mesentery added with 10 or 100 nM clodronate increased adenosine in the cell media. eATP was metabolized by endothelial cells to the same extent with and without 1-1,000 nM clodronate, suggesting the bisphosphonate did not interfere with nucleotide ectoenzyme metabolism. In contrast, extracellular eADO remained intact, indicating that this nucleoside is neither metabolized nor transported intracellularly. Furthermore, only 10 nM clodronate inhibited (15.5%) adenosine metabolism to inosine in endothelial cells as well as in a commercial crude adenosine deaminase enzyme preparation (12.7%), and both effects proved the significance (p < .05). Altogether, present data allow inferring that clodronate inhibits adenosine deaminase activity in isolated endothelial cells as in a crude extract preparation, a finding that may account for adenosine accumulation following clodronate mesentery perfusion.
Collapse
Affiliation(s)
- M. Verónica Donoso
- Laboratorio de Farmacología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Hernández
- Laboratorio de Farmacología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Rafael Barra
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago, Chile
| | - J. Pablo Huidobro-Toro
- Laboratorio de Farmacología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile,Centro de Nanociencia y Nanotecnología, Universidad de Santiago de Chile, Santiago, Chile,*Correspondence: J. Pablo Huidobro-Toro,
| |
Collapse
|
8
|
Moriyama Y, Hasuzawa N, Nomura M. Is the vesicular nucleotide transporter a molecular target of eicosapentaenoic acid? Front Pharmacol 2022; 13:1080189. [PMID: 36569286 PMCID: PMC9768625 DOI: 10.3389/fphar.2022.1080189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Vesicular nucleotide transporter (VNUT), an active transporter for nucleotides in secretory vesicles, is responsible for the vesicular storage of ATP and plays an essential role in purinergic chemical transmission. Inhibition of VNUT decreases the concentration of ATP in the luminal space of secretory vesicles, followed by decreased vesicular ATP release, resulting in the blockade of purinergic chemical transmission. Very recently, Miyaji and colleagues reported that eicosapentaenoic acid (EPA) is a potent VNUT inhibitor and effective in treating neuropathic and inflammatory pain and insulin resistance through inhibition of vesicular storage and release of ATP. However, our validation study indicated that, in bovine adrenal chromaffin granule membrane vesicles, EPA inhibited the formation of an electrochemical gradient of protons across the membrane with the concentration of 50% inhibition (IC50) being 1.0 μM without affecting concanamycin B-sensitive ATPase activity. Essentially, similar results were obtained with proteoliposomes containing purified vacuolar H+-ATPase. Consistent with these observations, EPA inhibited the ATP-dependent uptakes of ATP and dopamine by chromaffin granule membrane vesicles, with ID50 being 1.2 and 1.0 μM, respectively. Furthermore, EPA inhibited ATP-dependent uptake of L-glutamate by mouse brain synaptic vesicles with ID50 being 0.35 μM. These results indicate that EPA at sub-μM acts as a proton conductor and increases proton permeability across the membrane, regardless of the presence or absence of VNUT, thereby inhibiting non-specifically the vesicular storage of neurotransmitters. Thus, EPA may affect a broader range of chemical transmission than proposed.
Collapse
|
9
|
Vesicular nucleotide transporter is a molecular target of eicosapentaenoic acid for neuropathic and inflammatory pain treatment. Proc Natl Acad Sci U S A 2022; 119:e2122158119. [PMID: 35858418 PMCID: PMC9335333 DOI: 10.1073/pnas.2122158119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Eicosapentaenoic acid (EPA), an omega-3 (ω-3) polyunsaturated fatty acid, is an essential nutrient that exhibits antiinflammatory, neuroprotective, and cardiovascular-protective activities. Although EPA is used as a nutrient-based pharmaceutical agent or dietary supplement, its molecular target(s) is debatable. Here, we showed that EPA and its metabolites strongly and reversibly inhibit vesicular nucleotide transporter (VNUT), a key molecule for vesicular storage and release of adenosine triphosphate (ATP) in purinergic chemical transmission. In vitro analysis showed that EPA inhibits human VNUT-mediated ATP uptake at a half-maximal inhibitory concentration (IC50) of 67 nM, acting as an allosteric modulator through competition with Cl-. EPA impaired vesicular ATP release from neurons without affecting the vesicular release of other neurotransmitters. In vivo, VNUT-/- mice showed a delay in the onset of neuropathic pain and resistance to both neuropathic and inflammatory pain. EPA potently attenuated neuropathic and inflammatory pain in wild-type mice but not in VNUT-/- mice without affecting the basal nociception. The analgesic effect of EPA was canceled by the intrathecal injection of purinoceptor agonists and was stronger than that of existing drugs used for neuropathic pain treatment, with few side effects. Neuropathic pain impaired insulin sensitivity in previous studies, which was improved by EPA in the wild-type mice but not in the VNUT-/- mice. Our results showed that VNUT is a molecular target of EPA that attenuates neuropathic and inflammatory pain and insulin resistance. EPA may represent a unique nutrient-based treatment and prevention strategy for neurological, immunological, and metabolic diseases by targeting purinergic chemical transmission.
Collapse
|
10
|
Kui XY, Gao Y, Liu XS, Zeng J, Yang JW, Zhou LM, Liu XY, Zhang Y, Zhang YH, Pei ZJ. Comprehensive Analysis of SLC17A9 and Its Prognostic Value in Hepatocellular Carcinoma. Front Oncol 2022; 12:809847. [PMID: 35957868 PMCID: PMC9357942 DOI: 10.3389/fonc.2022.809847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/21/2022] [Indexed: 12/24/2022] Open
Abstract
Background Solute carrier family 17 member 9 (SLC17A9) encodes a member of a family of transmembrane proteins that are involved in the transport of small molecules. SLC17A9 is involved in the occurrence and development of various cancers, but its biological role in liver hepatocellular carcinoma (LIHC) is unclear. Methods The expression level of SLC17A9 was assessed using The Cancer Genome Atlas (TCGA) database and immunohistochemistry of tumor tissues and adjacent normal liver tissues. The receiver operating characteristic (ROC) and R software package performed diagnosis and prognosis. Gene Ontology/Kyoto Encyclopedia of Genes and Genomes functional enrichment and co-expression of SLC17A9, gene–gene interaction (GGI), and protein–protein interaction (PPI) networks were performed using R, GeneMANIA, and STRING. Western blot, real-time quantitative PCR (RT-qPCR), immunofluorescence, colony formation, wound scratch assay, ATP production assays, and high connotation were applied to determine the effect of SLC17A9 knockdown on HEPG2 (hepatocellular liver carcinoma) cells. TIMER, GEPIA, and TCGA analyzed the relationship between SLC17A9 expression and immune cells, m6A modification, and ferroptosis. Results SLC17A9 expression in LIHC tissues was higher than in normal liver tissues (p < 0.001), and SLC17A9 was related to sex, DSS (disease-specific survival), and PFI (progression-free interval) (p = 0.015, 0.006, and 0.023). SLC17A9 expression has diagnostic (AUC: 0.812; CI: 0.770–0.854) and prognostic potential (p = 0.015) in LIHC. Gene Ontology/Kyoto Encyclopedia of Genes and Genomes (GO/KEGG) functional enrichment analysis showed that SLC17A9 was closely related to neuronal cell body, presynapse, axonogenesis, PI3K/Akt signaling pathway. GGI showed that SLC17A9 was closely related to MYO5A. PPI showed that SLC17A9 was closely related to SLC18A3. SLC17A9 silencing inhibited HepG2 cells proliferation, migration, colony formation, and reduced their ATP level. SLC17A9 expression level was related to immune cells: B cells (r = 0.094, P = 8.06E-02), CD4+ T cells (r = 0.184, P = 5.95E-04), and macrophages (r = 0.137, P = 1.15E-02); m6A modification: HNRNPC (r = 0.220, p < 0.001), METTL3 (r = 0.180, p < 0.001), and WTAP (r = 0.130, p = 0.009); and ferroptosis: HSPA5 (r = 0.240, p < 0.001), SLC7A11 (r = 0.180, p < 0.001), and FANCD2 (r = 0.280, p < 0.001). Conclusion Our data show that SLC17A9 may influence LIHC progression. SLC17A9 expression correlates with tumor immune infiltration, m6A modification, and ferroptosis in LIHC and may have diagnostic and prognostic value in LIHC.
Collapse
Affiliation(s)
- Xue-Yan Kui
- Postgraduate Training Basement of Jinzhou Medical University, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yan Gao
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xu-Sheng Liu
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jing Zeng
- Department of Infection Control, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jian-Wei Yang
- Department of Nuclear Medicine, Xiangyang Cenral Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Lu-Meng Zhou
- Department of Nuclear Medicine, Huanggang Central Hospital, Huanggang, China
| | - Xiao-Yu Liu
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yu Zhang
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yao-Hua Zhang
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhi-Jun Pei
- Postgraduate Training Basement of Jinzhou Medical University, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, China
- *Correspondence: Zhi-Jun Pei,
| |
Collapse
|
11
|
Adipocyte purinergic receptors activated by uracil nucleotides as obesity and type 2 diabetes targets. Curr Opin Pharmacol 2022; 63:102190. [PMID: 35231671 PMCID: PMC8995365 DOI: 10.1016/j.coph.2022.102190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/22/2021] [Accepted: 01/24/2022] [Indexed: 11/23/2022]
Abstract
Extracellular uridine nucleotides regulate physiological and pathophysiological metabolic processes through the activation of P2Y2, P2Y4, P2Y6 and P2Y14 purinergic receptors, which play a key role in adipogenesis, glucose uptake, lipolysis and adipokine secretion. Using adipocyte-specific knockout mouse models, it has been demonstrated that lack of the P2Y6R or P2Y14R can protect against diet-induced obesity and improve whole-body glucose metabolism. The P2Y2R facilitated adipogenesis and inflammation, and the loss of P2Y4R or P2Y14R raised the levels of the protective endocrine factor adiponectin. Hence, potent antagonists for these receptors may be tested to identify drug candidates for the treatment of obesity and type 2 diabetes. However, future studies are required to provide insight into purinergic regulation of brown adipocytes and their role in thermogenesis. This review summarizes the current studies on uridine nucleotide-activated P2YRs and their role in adipocyte function, diet-induced obesity and associated metabolic deficits.
Collapse
|
12
|
Chavez-Dominguez R, Perez-Medina M, Aguilar-Cazares D, Galicia-Velasco M, Meneses-Flores M, Islas-Vazquez L, Camarena A, Lopez-Gonzalez JS. Old and New Players of Inflammation and Their Relationship With Cancer Development. Front Oncol 2021; 11:722999. [PMID: 34881173 PMCID: PMC8645998 DOI: 10.3389/fonc.2021.722999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/04/2021] [Indexed: 12/18/2022] Open
Abstract
Pathogens or genotoxic agents continuously affect the human body. Acute inflammatory reaction induced by a non-sterile or sterile environment is triggered for the efficient elimination of insults that caused the damage. According to the insult, pathogen-associated molecular patterns, damage-associated molecular patterns, and homeostasis-altering molecular processes are released to facilitate the arrival of tissue resident and circulating cells to the injured zone to promote harmful agent elimination and tissue regeneration. However, when inflammation is maintained, a chronic phenomenon is induced, in which phagocytic cells release toxic molecules damaging the harmful agent and the surrounding healthy tissues, thereby inducing DNA lesions. In this regard, chronic inflammation has been recognized as a risk factor of cancer development by increasing the genomic instability of transformed cells and by creating an environment containing proliferation signals. Based on the cancer immunoediting concept, a rigorous and regulated inflammation process triggers participation of innate and adaptive immune responses for efficient elimination of transformed cells. When immune response does not eliminate all transformed cells, an equilibrium phase is induced. Therefore, excessive inflammation amplifies local damage caused by the continuous arrival of inflammatory/immune cells. To regulate the overstimulation of inflammatory/immune cells, a network of mechanisms that inhibit or block the cell overactivity must be activated. Transformed cells may take advantage of this process to proliferate and gradually grow until they become preponderant over the immune cells, preserving, increasing, or creating a microenvironment to evade the host immune response. In this microenvironment, tumor cells resist the attack of the effector immune cells or instruct them to sustain tumor growth and development until its clinical consequences. With tumor development, evolving, complex, and overlapping microenvironments are arising. Therefore, a deeper knowledge of cytokine, immune, and tumor cell interactions and their role in the intricated process will impact the combination of current or forthcoming therapies.
Collapse
Affiliation(s)
- Rodolfo Chavez-Dominguez
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico.,Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Mario Perez-Medina
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico.,Laboratorio de Quimioterapia Experimental, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Dolores Aguilar-Cazares
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Miriam Galicia-Velasco
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Manuel Meneses-Flores
- Departamento de Patología, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Lorenzo Islas-Vazquez
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Angel Camarena
- Laboratorio de Human Leukocyte Antigen (HLA), Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Jose S Lopez-Gonzalez
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| |
Collapse
|
13
|
Hasuzawa N, Moriyama S, Wang L, Nagayama A, Ashida K, Moriyama Y, Nomura M. Quinacrine is not a vital fluorescent probe for vesicular ATP storage. Purinergic Signal 2021; 17:725-735. [PMID: 34713379 DOI: 10.1007/s11302-021-09820-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022] Open
Abstract
Quinacrine, a fluorescent amphipathic amine, has been used as a vital fluorescent probe to visualize vesicular storage of ATP in the field of purinergic signaling. However, the mechanism(s) by which quinacrine represents vesicular ATP storage remains to be clarified. The present study investigated the validity of the use of quinacrine as a vial fluorescent probe for ATP-storing organelles. Vesicular nucleotide transporter (VNUT), an essential component for vesicular storage and ATP release, is present in very low density lipoprotein (VLDL)-containing secretory vesicles in hepatocytes. VNUT gene knockout (Vnut-/-) or clodronate treatment, a VNUT inhibitor, disappeared vesicular ATP release (Tatsushima et al., Biochim Biophys Acta Molecular Basis of Disease 2021, e166013). Upon incubation of mice's primary hepatocytes, quinacrine accumulates in a granular pattern into the cytoplasm, sensitive to 0.1-μM bafilomycin A1, a vacuolar ATPase (V-ATPase) inhibitor. Neither Vnut-/- nor treatment of clodronate affected quinacrine granular accumulation. In vitro, quinacrine is accumulated into liposomes upon imposing inside acidic transmembranous pH gradient (∆pH) irrespective of the presence or absence of ATP. Neither ATP binding on VNUT nor VNUT-mediated uptake of ATP was affected by quinacrine. Consistently, VNUT-mediated uptake of quinacrine was negligible or under the detection limit. From these results, it is concluded that vesicular quinacrine accumulation is not due to a consequence of its interaction with ATP but due to ∆pH-driven concentration across the membranes as an amphipathic amine. Thus, quinacrine is not a vital fluorescent probe for vesicular ATP storage.
Collapse
Affiliation(s)
- Nao Hasuzawa
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Sawako Moriyama
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Lixiang Wang
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Ayako Nagayama
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Kenji Ashida
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Yoshinori Moriyama
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan.
| | - Masatoshi Nomura
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| |
Collapse
|
14
|
Receptor-specific Ca 2+ oscillation patterns mediated by differential regulation of P2Y purinergic receptors in rat hepatocytes. iScience 2021; 24:103139. [PMID: 34646983 PMCID: PMC8496176 DOI: 10.1016/j.isci.2021.103139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/26/2021] [Accepted: 09/14/2021] [Indexed: 11/21/2022] Open
Abstract
Extracellular agonists linked to inositol-1,4,5-trisphosphate (IP3) formation elicit cytosolic Ca2+ oscillations in many cell types, but despite a common signaling pathway, distinct agonist-specific Ca2+ spike patterns are observed. Using qPCR, we show that rat hepatocytes express multiple purinergic P2Y and P2X receptors (R). ADP acting through P2Y1R elicits narrow Ca2+ oscillations, whereas UTP acting through P2Y2R elicits broad Ca2+ oscillations, with composite patterns observed for ATP. P2XRs do not play a role at physiological agonist levels. The discrete Ca2+ signatures reflect differential effects of protein kinase C (PKC), which selectively modifies the falling phase of the Ca2+ spikes. Negative feedback by PKC limits the duration of P2Y1R-induced Ca2+ spikes in a manner that requires extracellular Ca2+. By contrast, P2Y2R is resistant to PKC negative feedback. Thus, the PKC leg of the bifurcated IP3 signaling pathway shapes unique Ca2+ oscillation patterns that allows for distinct cellular responses to different agonists. Distinct stereotypic Ca2+ oscillations are elicited by P2Y1 and P2Y2 receptors P2X receptors do not contribute to the generation of Ca2+ oscillations Agonist-specific Ca2+ spike shapes reflect discrete modes of PKC negative feedback Bifurcation of IP3/PKC signaling yields unique Ca2+ oscillation signatures
Collapse
|
15
|
Clodronate, an inhibitor of the vesicular nucleotide transporter, ameliorates steatohepatitis and acute liver injury. Sci Rep 2021; 11:5192. [PMID: 33664289 PMCID: PMC7933178 DOI: 10.1038/s41598-021-83144-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
The vesicular nucleotide transporter (VNUT) is responsible for the vesicular storage and release of ATP from various ATP-secreting cells, and it plays an essential role in purinergic signaling. Although extracellular ATP and its degradation products are known to mediate various inflammatory responses via purinoceptors, whether vesicular ATP release affects steatohepatitis and acute liver injury is far less understood. In the present study, we investigated the effects of clodronate, a potent and selective VNUT inhibitor, on acute and chronic liver inflammation in mice. In a model of methionine/choline-deficient diet-induced non-alcoholic steatohepatitis (NASH), the administration of clodronate reduced hepatic inflammation, fibrosis, and triglyceride accumulation. Clodronate also protected mice against high-fat/high-cholesterol diet-induced steatohepatitis. Moreover, prophylactic administration of clodronate prevented d-galactosamine and lipopolysaccharide-induced acute liver injury by reducing inflammatory cytokines and hepatocellular apoptosis. In vitro, clodronate inhibited glucose-induced vesicular ATP release mediated by VNUT and reduced the intracellular level and secretion of triglycerides in isolated hepatocytes. These results suggest that VNUT-dependent vesicular ATP release plays a crucial role in the recruitment of immune cells, cytokine production, and the aggravation of steatosis in the liver. Pharmacological inhibition of VNUT may provide therapeutic benefits in liver inflammatory disorders, including NASH and acute toxin-induced injury.
Collapse
|
16
|
Hasuzawa N, Tatsushima K, Tokubuchi R, Kabashima M, Nomura M. [VNUT Is a Therapeutic Target for Type 2 Diabetes and NASH]. YAKUGAKU ZASSHI 2021; 141:517-526. [PMID: 33790119 DOI: 10.1248/yakushi.20-00204-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ATP, used in cells as an energy currency, also acts as an extracellular signaling molecule. Studies of purinergic receptor subtypes have revealed that purinergic chemical transmission plays important roles in various cell types. The vesicular nucleotide transporter (VNUT), the ninth transporter in the SLC17 organic anion transporter family, is essential for vesicular ATP storage and its subsequent release. The VNUT is localized on the membrane of secretory vesicles and actively transports ATP into vesicles using an electrochemical gradient of protons supplied by vacuolar proton ATPase (V-ATPase) as a driving force. ATP acts as a damage-associated molecular pattern (DAMPs), contributing to the persistence of chronic inflammation. Chronic inflammation induces systemic insulin resistance, which is the underlying pathology of type 2 diabetes and non-alcoholic fatty liver disease (NAFLD), ranging from simple steatosis to non-alcoholic steatohepatitis (NASH). We previously demonstrated that ATP transported in insulin granules via the VNUT negatively regulates insulin secretion. We also found that hepatocytes release ATP in a VNUT-dependent manner, which elicits hepatic insulin resistance and inflammation. VNUT-knockout mice exhibited improved glucose tolerance and were resistant to the development of high fat diet-induced NAFLD. In this article, we summarize recent advances in our understanding of the mechanism of the VNUT, the development of inhibitors, and its pathological involvement in type 2 diabetes and NAFLD. The pharmacological inhibition of the VNUT may represent a potential therapeutic approach for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Nao Hasuzawa
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine
| | | | - Rie Tokubuchi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine
| | - Masaharu Kabashima
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine
| | - Masatoshi Nomura
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine
| |
Collapse
|
17
|
Abstract
Extracellular nucleosides and nucleotides activate a group of G protein-coupled receptors (GPCRs) known as purinergic receptors, comprising adenosine and P2Y receptors. Furthermore, purinergic P2X ion channels are activated by ATP. These receptors are expressed in liver resident cells and play a critical role in maintaining liver function. In the normal physiology, these receptors regulate hepatic metabolic processes such as insulin responsiveness, glycogen and lipid metabolism, and bile secretion. In disease states, ATP and other nucleotides serve as danger signals and modulate purinergic responses in the cells. Recent studies have demonstrated that purinergic receptors play a significant role in the development of metabolic syndrome associated non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), fibrosis, hepatocellular carcinoma (HCC) and liver inflammation. In this concise review, we dissect the role of purinergic signaling in different liver resident cells involved in maintaining healthy liver function and in the development of the above-mentioned liver pathologies. Moreover, we discuss potential therapeutic strategies for liver diseases by targeting adenosine, P2Y and P2X receptors.
Collapse
|