1
|
Sharma S, Roy D, Cherian S. In-silico evaluation of the T-cell based immune response against SARS-CoV-2 omicron variants. Sci Rep 2024; 14:25413. [PMID: 39455652 PMCID: PMC11511884 DOI: 10.1038/s41598-024-75658-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
During of COVID-19 pandemic, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has continuously evolved, resulting in the emergence of several new variants of concerns (VOCs) with numerous mutations. These VOCs dominate in various regions due to increased transmissibility and antibody evasion, potentially reducing vaccine effectiveness. Nonetheless, it remains uncertain whether the recent SARS-CoV-2 VOCs have the ability to circumvent the T cell immunity elicited by either COVID-19 vaccination or natural infection. To address this, we conducted in-silico analysis to examine the impact of VOC-specific mutations at the epitope level and T cell cross-reactivity with the ancestral SARS-CoV-2. According to the in-silico investigation, T cell responses triggered by immunization or prior infections still recognize the variants in spite of mutations. These variants are expected to either maintain their dominant epitope HLA patterns or bind with new HLAs, unlike the epitopes of the ancestral strain. Our findings indicate that a significant proportion of immuno-dominant CD8 + and CD4 + epitopes are conserved across all the variants, implying that existing vaccines might maintain efficacy against new variations. However, further in-vitro and in-vivo studies are needed to validate the in-silico results and fully elucidate immune sensitivities to VOCs.
Collapse
Affiliation(s)
- Shivangi Sharma
- Bioinformatics and Data Management Group, ICMR-National Institute of Virology, Pune, Maharashtra, 411001, India
| | - Diya Roy
- Bioinformatics and Data Management Group, ICMR-National Institute of Virology, Pune, Maharashtra, 411001, India
| | - Sarah Cherian
- Bioinformatics and Data Management Group, ICMR-National Institute of Virology, Pune, Maharashtra, 411001, India.
| |
Collapse
|
2
|
Reyes C, Patarroyo MA. Self-assembling peptides: Perspectives regarding biotechnological applications and vaccine development. Int J Biol Macromol 2024; 259:128944. [PMID: 38145690 DOI: 10.1016/j.ijbiomac.2023.128944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
Self-assembly involves a set of molecules spontaneously interacting in a highly coordinated and dynamic manner to form a specific supramolecular structure having new and clearly defined properties. Many examples of this occur in nature and many more came from research laboratories, with their number increasing every day via ongoing research concerning complex biomolecules and the possibility of harnessing it when developing new applications. As a phenomenon, self-assembly has been described on very different types of molecules (biomolecules including), so this review focuses on what is known about peptide self-assembly, its origins, the forces behind it, how the properties of the resulting material can be tuned in relation to experimental considerations, some biotechnological applications (in which the main protagonists are peptide sequences capable of self-assembly) and what is yet to be tuned regarding their research and development.
Collapse
Affiliation(s)
- César Reyes
- PhD Biotechnology Programme, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá DC 111321, Colombia; Structure Analysis Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá DC 111321, Colombia; Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A.), Calle 222#55-37, Bogotá DC 111166, Colombia
| | - Manuel A Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá DC 111321, Colombia; Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá DC 111321, Colombia.
| |
Collapse
|
3
|
Dolley A, Goswami HB, Dowerah D, Dey U, Kumar A, Hmuaka V, Mukhopadhyay R, Kundu D, Varghese GM, Doley R, Chandra Deka R, Namsa ND. Reverse vaccinology and immunoinformatics approach to design a chimeric epitope vaccine against Orientia tsutsugamushi. Heliyon 2024; 10:e23616. [PMID: 38187223 PMCID: PMC10767154 DOI: 10.1016/j.heliyon.2023.e23616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Scrub typhus is a vector-borne infectious disease caused by Orientia tsutsugamushi and it is reportedly associated with up to 20 % of hospitalized cases of febrile illnesses. The major challenge of vaccine development is the lack of identified antigens that can induce both heterotypic and homotypic immunity including the production of antibodies, cytotoxic T lymphocyte, and helper T lymphocytes. We employed a comprehensive immunoinformatic prediction algorithm to identify immunogenic epitopes of the 56-kDa type-specific cell membrane surface antigen and surface cell antigen A of O. tsutsugamushi to select potential candidates for developing vaccines and diagnostic assays. We identified 35 linear and 29 continuous immunogenic B-cell epitopes and 51 and 27 strong-binding T-cell epitopes of major histocompatibility complex class I and class II molecules, respectively, in the conserved and variable regions of the 56-kDa type-specific surface antigen. The predicted B- and T-cell epitopes were used to develop immunogenic multi-epitope candidate vaccines and showed to elicit a broad-range of immune protection. A stable interactions between the multi-epitope vaccines and the host fibronectin protein were observed using docking and simulation methods. Molecular dynamics simulation studies demonstrated that the multi-epitope vaccine constructs and fibronectin docked models were stable during simulation time. Furthermore, the multi-epitope vaccine exhibited properties such as antigenicity, non-allergenicity and ability to induce interferon gamma production and had strong associations with their respective human leukocyte antigen alleles of world-wide population coverage. A correlation of immune simulations and the in-silico predicted immunogenic potential of multi-epitope vaccines implicate for further investigations to accelerate designing of epitope-based vaccine candidates and chimeric antigens for development of serological diagnostic assays for scrub typhus.
Collapse
Affiliation(s)
- Anutee Dolley
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, 784028, Assam, India
| | - Himanshu Ballav Goswami
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, 784028, Assam, India
| | - Dikshita Dowerah
- Department of Chemical Sciences, Tezpur University, Napaam, 784028, Assam, India
| | - Upalabdha Dey
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, 784028, Assam, India
| | - Aditya Kumar
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, 784028, Assam, India
| | - Vanlal Hmuaka
- Entomology and Biothreat Management Division, Defence Research Laboratory, Tezpur, 784001, Assam, India
| | - Rupak Mukhopadhyay
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, 784028, Assam, India
| | - Debasree Kundu
- Department of Infectious Diseases, Christian Medical College, Vellore, 632002, Tamil Nadu, India
| | - George M. Varghese
- Department of Infectious Diseases, Christian Medical College, Vellore, 632002, Tamil Nadu, India
| | - Robin Doley
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, 784028, Assam, India
| | - Ramesh Chandra Deka
- Department of Chemical Sciences, Tezpur University, Napaam, 784028, Assam, India
| | - Nima D. Namsa
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, 784028, Assam, India
| |
Collapse
|
4
|
Sun B, Zhang J, Li Z, Xie M, Luo C, Wang Y, Chen L, Wang Y, Jiang D, Yang K. Integration: Gospel for immune bioinformatician on epitope-based therapy. Front Immunol 2023; 14:1075419. [PMID: 36798136 PMCID: PMC9927647 DOI: 10.3389/fimmu.2023.1075419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Affiliation(s)
- Baozeng Sun
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, China
| | - Junqi Zhang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, China
| | - Zhikui Li
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, China
| | - Mingyang Xie
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, China
| | - Cheng Luo
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, China
| | - Yongkai Wang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, China
| | - Longyu Chen
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, China
| | - Yueyue Wang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, China
| | - Dongbo Jiang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, China.,The Key Laboratory of Bio-hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, China.,Department of Microbiology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, China
| | - Kun Yang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, China.,The Key Laboratory of Bio-hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, China.,Department of Rheumatology, Tangdu Hospital, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, China
| |
Collapse
|
5
|
Emmelot ME, Vos M, Boer MC, Rots NY, van Els CACM, Kaaijk P. SARS-CoV-2 Omicron BA.4/BA.5 Mutations in Spike Leading to T Cell Escape in Recently Vaccinated Individuals. Viruses 2022; 15:101. [PMID: 36680141 PMCID: PMC9863717 DOI: 10.3390/v15010101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023] Open
Abstract
SARS-CoV-2 Omicron (B.1.1.529) lineages rapidly became dominant in various countries reflecting its enhanced transmissibility and ability to escape neutralizing antibodies. Although T cells induced by ancestral SARS-CoV-2-based vaccines also recognize Omicron variants, we showed in our previous study that there was a marked loss of T cell cross-reactivity to spike epitopes harboring Omicron BA.1 mutations. The emerging BA.4/BA.5 subvariants carry other spike mutations than the BA.1 variant. The present study aims to investigate the impact of BA.4/BA.5 spike mutations on T cell cross-reactivity at the epitope level. Here, we focused on universal T-helper epitopes predicted to be presented by multiple common HLA class II molecules for broad population coverage. Fifteen universal T-helper epitopes of ancestral spike, which contain mutations in the Omicron BA.4/BA.5 variants, were identified utilizing a bioinformatic tool. T cells isolated from 10 subjects, who were recently vaccinated with mRNA-based BNT162b2, were tested for functional cross-reactivity between epitopes of ancestral SARS-CoV-2 spike and the Omicron BA.4/BA.5 spike counterparts. Reduced T cell cross-reactivity in one or more vaccinees was observed against 87% of the tested 15 non-conserved CD4+ T cell epitopes. These results should be considered for vaccine boosting strategies to protect against Omicron BA.4/BA.5 and future SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Maarten E. Emmelot
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | - Martijn Vos
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | - Mardi C. Boer
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | - Nynke Y. Rots
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | - Cécile A. C. M. van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
- Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Patricia Kaaijk
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| |
Collapse
|
6
|
Dynamics of SARS-CoV-2 Variants of Concern in Vaccination Model City in the State of Sao Paulo, Brazil. Viruses 2022; 14:v14102148. [PMID: 36298703 PMCID: PMC9609010 DOI: 10.3390/v14102148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 12/02/2022] Open
Abstract
From a country with one of the highest SARS-CoV-2 morbidity and mortality rates, Brazil has implemented one of the most successful vaccination programs. Brazil's first model city vaccination program was performed by the CoronaVac vaccine (Sinovac Biotech) in the town of Serrana, São Paulo State. To evaluate the vaccination effect on the SARS-CoV-2 molecular dynamics and clinical outcomes, we performed SARS-CoV-2 molecular surveillance on 4375 complete genomes obtained between June 2020 and April 2022 in this location. This study included the period between the initial SARS-CoV-2 introduction and during the vaccination process. We observed that the SARS-CoV-2 substitution dynamics in Serrana followed the viral molecular epidemiology in Brazil, including the initial identification of the ancestral lineages (B.1.1.28 and B.1.1.33) and epidemic waves of variants of concern (VOC) including the Gamma, Delta, and, more recently, Omicron. Most probably, as a result of the immunization campaign, the mortality during the Gamma and Delta VOC was significantly reduced compared to the rest of Brazil, which was also related to lower morbidity. Our phylogenetic analysis revealed the evolutionary history of the SARS-CoV-2 in this location and showed that multiple introduction events have occurred over time. The evaluation of the COVID-19 clinical outcome revealed that most cases were mild (88.9%, 98.1%, 99.1% to Gamma, Delta, and Omicron, respectively) regardless of the infecting VOC. In conclusion, we observed that vaccination was responsible for reducing the death toll rate and related COVID-19 morbidity, especially during the gamma and Delta VOC; however, it does not prevent the rapid substitution rate and morbidity of the Omicron VOC.
Collapse
|
7
|
Jonny J, Putranto TA, Irfon R, Sitepu EC. Developing dendritic cell for SARS-CoV-2 vaccine: Breakthrough in the pandemic. Front Immunol 2022; 13:989685. [PMID: 36148241 PMCID: PMC9485669 DOI: 10.3389/fimmu.2022.989685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Finding a vaccine that can last a long time and effective against viruses with high mutation rates such as SARS-CoV-2 is still a challenge today. The various vaccines that have been available have decreased in effectiveness and require booster administration. As the professional antigen presenting cell, Dendritic Cells can also activate the immune system, especially T cells. This ability makes dendritic cells have been developed as vaccines for some types of diseases. In SARS-CoV-2 infection, T cells play a vital role in eliminating the virus, and their presence can be detected in the long term. Hence, this condition shows that the formation of T cell immunity is essential to prevent and control the course of the disease. The construction of vaccines oriented to induce strong T cells response can be formed by utilizing dendritic cells. In this article, we discuss and illustrate the role of dendritic cells and T cells in the pathogenesis of SARS-CoV-2 infection and summarizing the crucial role of dendritic cells in the formation of T cell immunity. We arrange the basis concept of developing dendritic cells for SARS-CoV-2 vaccines. A dendritic cell-based vaccine for SARS-CoV-2 has the potential to be an effective vaccine that solves existing problems.
Collapse
|