1
|
Leigh RS, Kaynak BL, Ruskoaho H, Välimäki MJ. Development and comparison of single FLT3-inhibitors to dual FLT3/TAF1-inhibitors as an anti-leukemic approach. PLoS One 2025; 20:e0320443. [PMID: 40153395 PMCID: PMC11952222 DOI: 10.1371/journal.pone.0320443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/19/2025] [Indexed: 03/30/2025] Open
Abstract
Acute myeloid leukemia (AML) is characterized by several recurrent mutations that affect disease biology and phenotype, response to therapy and risk of subsequent relapse. Though tyrosine kinase inhibitors have gained regulatory approval for the treatment of AML, it is unclear whether single drugs targeting a specific genomic alteration will be sufficient to eradicate disease. Fortuitously, kinase/bromodomain inhibitors allow targeting of downstream transcriptional effectors of oncogenic pathways, allowing impediment of drug resistance at the transcriptional level. Successful development of combinatorial therapeutic strategies to inhibit both upstream oncogenic pathways and their downstream effectors could thus impede the onset of resistant disease. By using a combination of high-throughput cell-based screening assays and structure-based design, we have developed a novel anti-proliferative 3i-compound scaffold with a diverse range of single and dual FLT3/TAF1(2) activity against AML. Our novel approach to target both FLT3 kinase and TAF1(2) bromodomain efficiently maintained potency against haematological cancers. However, reference compounds and in vitro cell viability and cytotoxicity assays in cancer cell lines demonstrated superior effects of high affinity tyrosine kinase inhibition compared to inhibition of the TAF1 bromodomain. Our results highlight the feasibility of dual tyrosine kinase-bromodomain targeting to overcome disease mechanisms while also revealing the increased efficacy of FLT3-targeted compounds in AML.
Collapse
Affiliation(s)
- Robert S. Leigh
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Bogac L. Kaynak
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Heikki Ruskoaho
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Mika J. Välimäki
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Crombie EM, Cleverley K, Timmers HTM, Fisher EMC. The roles of TAF1 in neuroscience and beyond. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240790. [PMID: 39323550 PMCID: PMC11423858 DOI: 10.1098/rsos.240790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/27/2024]
Abstract
The transcriptional machinery is essential for gene expression and regulation; dysregulation of transcription can result in a range of pathologies, including neurodegeneration, cancer, developmental disorders and cardiovascular disease. A key component of RNA polymerase II-mediated transcription is the basal transcription factor IID, which is formed of the TATA box-binding protein (TBP) and 14 TBP-associated factors (TAFs), the largest of which is the TAF1 protein, encoded on the X chromosome (Xq13.1). TAF1 is dysregulated in X-linked dystonia-parkinsonism and congenital mutations in the gene are causative for neurodevelopmental phenotypes; TAF1 dysfunction is also associated with cardiac anomalies and cancer. However, how TAF1 contributes to pathology is unclear. Here, we highlight the key aspects of the TAF1 gene and protein function that may link transcriptional regulation with disorders of development, growth and adult-onset disorders of motor impairment. We highlight the need to experimentally investigate the full range of TAF1 messenger RNA variants and protein isoforms in human and mouse to aid our understanding of TAF1 biology. Furthermore, the X-linked nature of TAF1-related diseases adds complexity to understanding phenotypes. Overall, we shed light on the aspects of TAF1 biology that may contribute to disease and areas that could be addressed for future research and targeted therapeutics.
Collapse
Affiliation(s)
- Elisa M Crombie
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Karen Cleverley
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - H T Marc Timmers
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between the DKFZ, Germany
- Department of Urology, Medical Center-University of Freiburg, Breisacher Straße 66, Freiburg, 79106, Germany
| | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
3
|
Zhang C, Yang L, Zhang H, Wu F, Zhang Y, Zhang K, Wu C, Li R, Dong M, Zhao S, Song H. TAF1 is needed for the proliferation and maturation of thyroid follicle cells via Notch signaling. Am J Physiol Endocrinol Metab 2024; 326:E832-E841. [PMID: 38656129 DOI: 10.1152/ajpendo.00403.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Thyroid dysgenesis (TD) is the common pathogenic mechanism of congenital hypothyroidism (CH). In addition, known pathogenic genes are limited to those that are directly involved in thyroid development. To identify additional candidate pathogenetic genes, we performed forward genetic screening for TD in zebrafish, followed by positional cloning. The candidate gene was confirmed in vitro using the Nthy-ori 3.1 cell line and in vivo using a zebrafish model organism. We obtained a novel zebrafish line with thyroid dysgenesis and identified the candidate pathogenetic mutation TATA-box binding protein associated Factor 1 (taf1) by positional cloning. Further molecular studies revealed that taf1 was needed for the proliferation of thyroid follicular cells by binding to the NOTCH1 promoter region. Knockdown of TAF1 impaired the proliferation and maturation of thyroid cells, thereby leading to thyroid dysplasia. This study showed that TAF1 promoted Notch signaling and that this association played a pivotal role in thyroid development.NEW & NOTEWORTHY In our study, we obtained a novel zebrafish line with thyroid dysgenesis (TD) and identified the candidate pathogenetic mutation TATA-box binding protein associated Factor 1 (taf1). Further researches revealed that taf1 was required for thyroid follicular cells by binding to the NOTCH1 promoter region. Our findings revealed a novel role of TAF1 in thyroid morphogenesis.
Collapse
Affiliation(s)
- Caoxu Zhang
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Liu Yang
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Haiyang Zhang
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Fengyao Wu
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Yue Zhang
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Kaiwen Zhang
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Chenyang Wu
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Rui Li
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Mei Dong
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Shuangxia Zhao
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Huaidong Song
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
4
|
Gold S, Shilatifard A. Therapeutic targeting of BET bromodomain and other epigenetic acetylrecognition domain-containing factors. Curr Opin Genet Dev 2024; 86:102181. [PMID: 38564841 DOI: 10.1016/j.gde.2024.102181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Development of cancer therapies targeting chromatin modifiers and transcriptional regulatory factors is rapidly expanding to include new targets and novel targeting strategies. At the same time, basic molecular research continues to refine our understanding of the epigenetic mechanisms regulating transcription, gene expression, and oncogenesis. This mini-review focuses on cancer therapies targeting the chromatin-associated factors that recognize histone lysine acetylation. Recently reported safety and efficacy are discussed for inhibitors targeting the bromodomains of bromodomain and extraterminal domain (BET) family proteins. In light of recent results indicating that the transcriptional regulator BRD4-PTEFb can function independently of BRD4's bromodomains, the clinical trial performance of these BET inhibitors is placed in a broader context of existing and potential strategies for targeting BRD4-PTEFb. Recently developed therapies targeting bromodomain-containing factors within the SWI/SNF (BAF) family of chromatin remodeling complexes are discussed, as is the potential for targeting the bromodomain-containing transcription factor TAF1 and the YEATS acetylrecognition domain-containing factor GAS41. Recent findings regarding the selectivity and combinatorial specificity of acetylrecognition are highlighted. In conclusion, the potential for further development is discussed with a focus on proximity-based therapies targeting this class of epigenetic factors.
Collapse
Affiliation(s)
- Sarah Gold
- Department of Biochemistry and Molecular Genetics, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA. https://twitter.com/@rwx_life
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|