1
|
Kawakatsu R, Tadagaki K, Yamasaki K, Kuwahara Y, Nakada S, Yoshida T. The combination of venetoclax and quercetin exerts a cytotoxic effect on acute myeloid leukemia. Sci Rep 2024; 14:26418. [PMID: 39488609 PMCID: PMC11531559 DOI: 10.1038/s41598-024-78221-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024] Open
Abstract
Venetoclax is a BH3 mimetic that was recently approved for the treatment of acute myeloid leukemia (AML) treatment. However, the effect of venetoclax on AML remains limited, and a novel strategy is required. Here, we demonstrate for the first time that the cytotoxic effect of venetoclax drastically increased when by combined with the naturally occurring flavonoid quercetin. Combined treatment with venetoclax and quercetin caused most of AML KG-1 cells to exhibit a condensed morphology. Cell cycle analysis revealed that the combination strongly induced cell death. Caspase inhibitor blocked this cell death, and the combination induced poly (ADP-ribose) polymerase (PARP) cleavage, indicating that apoptosis was the primary mechanism. These effects were also observed in another AML cell line Kasumi-1 but not in chronic myeloid leukemia (CML) K562 cells. Public data analysis demonstrated that B-cell/CLL lymphoma 2 (Bcl-2) expression is increased in AML cells compared to other malignant tumors, and the survival and the growth of AML cell line depends on Bcl-2. We found that quercetin increased Bcl-2-associated X protein (Bax) expression in KG-1. Our study provides a novel function for quercetin and presents a promising strategy for AML treatment using venetoclax.
Collapse
Affiliation(s)
- Renshi Kawakatsu
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kenjiro Tadagaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kenta Yamasaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yasumichi Kuwahara
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Shinichiro Nakada
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tatsushi Yoshida
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| |
Collapse
|
2
|
Rane SS, Shellard E, Adamson A, Eyre S, Warren RB. IL23R mutations associated with decreased risk of psoriasis lead to the differential expression of genes implicated in the disease. Exp Dermatol 2024; 33:e15180. [PMID: 39306854 DOI: 10.1111/exd.15180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024]
Abstract
Psoriasis is an incurable immune-mediated skin disease, affecting around 1%-3% of the population. Various lines of evidence implicate IL23 as being pivotal in disease. Genetic variants within the IL23 receptor (IL23R) increase the risk of developing psoriasis, and biologic therapies specifically targeting IL23 demonstrated high efficacy in treating disease. IL23 acts via the IL23R, signalling through the STAT3 pathway, mediating the cascade of events that ultimately results in the clinical presentation of psoriasis. Given the essential role of IL23R in disease, it is important to understand the impact of genetic variants on receptor function with respect to downstream gene regulation. Here we developed model systems in CD4+ (Jurkat) and CD8+ (MyLa) T cells to express either the wild type risk or mutant (R381Q) protective form of IL23R. After confirmation that the model system expressed the genes/proteins and had a differential effect on the phosphorylation of STAT3, we used RNAseq to explore differential gene regulation, in particular for genes implicated with risk to psoriasis, at a single time point for both cell types, and in a time course experiment for Jurkat CD4+ T cells. These experiments discovered differentially regulated genes in the cells expressing wild type and mutant IL23R, including HLA-B, SOCS1, RUNX3, CCR5, CXCR3, CCR9, KLF3, CD28, IRF, SOCS6, TNFAIP and ICAM5, that have been implicated in both the IL23 pathway and psoriasis. These genes have the potential to define a IL23/psoriasis pathway in disease, advancing our understanding of the biology behind the disease.
Collapse
Affiliation(s)
- Shraddha S Rane
- Manchester Academic Health Science Centre, Faculty of Biology Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Elan Shellard
- Manchester Academic Health Science Centre, Faculty of Biology Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Antony Adamson
- Manchester Academic Health Science Centre, Faculty of Biology Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Steve Eyre
- Manchester Academic Health Science Centre, Faculty of Biology Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Richard B Warren
- Manchester Academic Health Science Centre, Faculty of Biology Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Dermatology Centre, Northern Care Alliance NHS Foundation Trust, Manchester, UK
| |
Collapse
|
3
|
Yu X, Li Y, Yang P, Wang Y, Liu X, Cai L, Lai J, Zhang Y, Zha X, Przybylski GK, Xu L, Li Y. BCL11B promotes T-cell acute lymphoblastic leukaemia cell survival via the XRCC5/C11ORF21 axis. Clin Transl Med 2024; 14:e1580. [PMID: 38317587 PMCID: PMC10844840 DOI: 10.1002/ctm2.1580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/07/2024] Open
Affiliation(s)
- Xibao Yu
- The First Affiliated Hospital and Institute of Hematology, School of MedicineJinan UniversityGuangzhouGuangdongChina
- Key Laboratory for Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdongChina
- Guangzhou Municipality Tianhe Nuoya Bio‐Engineering Co. Ltd., Guangzhou 510663GuangdongChina
| | - Yuchen Li
- The First Affiliated Hospital and Institute of Hematology, School of MedicineJinan UniversityGuangzhouGuangdongChina
- Key Laboratory for Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdongChina
| | - Pengyue Yang
- The First Affiliated Hospital and Institute of Hematology, School of MedicineJinan UniversityGuangzhouGuangdongChina
- Key Laboratory for Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdongChina
| | - Yan Wang
- The First Affiliated Hospital and Institute of Hematology, School of MedicineJinan UniversityGuangzhouGuangdongChina
- Key Laboratory for Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdongChina
| | - Xuan Liu
- The First Affiliated Hospital and Institute of Hematology, School of MedicineJinan UniversityGuangzhouGuangdongChina
- Key Laboratory for Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdongChina
| | - Letong Cai
- The First Affiliated Hospital and Institute of Hematology, School of MedicineJinan UniversityGuangzhouGuangdongChina
- Key Laboratory for Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdongChina
| | - Jing Lai
- The First Affiliated Hospital and Institute of Hematology, School of MedicineJinan UniversityGuangzhouGuangdongChina
| | - Yue Zhang
- The First Affiliated Hospital and Institute of Hematology, School of MedicineJinan UniversityGuangzhouGuangdongChina
| | - Xianfeng Zha
- Department of Clinical Laboratory, First Affiliated HospitalJinan UniversityGuangzhouGuangdongChina
| | | | - Ling Xu
- The First Affiliated Hospital and Institute of Hematology, School of MedicineJinan UniversityGuangzhouGuangdongChina
- Key Laboratory for Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdongChina
| | - Yangqiu Li
- The First Affiliated Hospital and Institute of Hematology, School of MedicineJinan UniversityGuangzhouGuangdongChina
- Key Laboratory for Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdongChina
| |
Collapse
|
4
|
Rabaan AA, AlSaihati H, Bukhamsin R, Bakhrebah MA, Nassar MS, Alsaleh AA, Alhashem YN, Bukhamseen AY, Al-Ruhimy K, Alotaibi M, Alsubki RA, Alahmed HE, Al-Abdulhadi S, Alhashem FA, Alqatari AA, Alsayyah A, Farahat RA, Abdulal RH, Al-Ahmed AH, Imran M, Mohapatra RK. Application of CRISPR/Cas9 Technology in Cancer Treatment: A Future Direction. Curr Oncol 2023; 30:1954-1976. [PMID: 36826113 PMCID: PMC9955208 DOI: 10.3390/curroncol30020152] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/13/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Gene editing, especially with clustered regularly interspaced short palindromic repeats associated protein 9 (CRISPR-Cas9), has advanced gene function science. Gene editing's rapid advancement has increased its medical/clinical value. Due to its great specificity and efficiency, CRISPR/Cas9 can accurately and swiftly screen the whole genome. This simplifies disease-specific gene therapy. To study tumor origins, development, and metastasis, CRISPR/Cas9 can change genomes. In recent years, tumor treatment research has increasingly employed this method. CRISPR/Cas9 can treat cancer by removing genes or correcting mutations. Numerous preliminary tumor treatment studies have been conducted in relevant fields. CRISPR/Cas9 may treat gene-level tumors. CRISPR/Cas9-based personalized and targeted medicines may shape tumor treatment. This review examines CRISPR/Cas9 for tumor therapy research, which will be helpful in providing references for future studies on the pathogenesis of malignancy and its treatment.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Hajir AlSaihati
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Rehab Bukhamsin
- Dammam Regional Laboratory and Blood Bank, Dammam 31411, Saudi Arabia
| | - Muhammed A. Bakhrebah
- Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Majed S. Nassar
- Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Abdulmonem A. Alsaleh
- Clinical Laboratory Science Department, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Yousef N. Alhashem
- Clinical Laboratory Science Department, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Ammar Y. Bukhamseen
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Khalil Al-Ruhimy
- Department of Public Health, Ministry of Health, Riyadh 14235, Saudi Arabia
| | - Mohammed Alotaibi
- Department of Public Health, Ministry of Health, Riyadh 14235, Saudi Arabia
| | - Roua A. Alsubki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Hejji E. Alahmed
- Department of Laboratory and Blood Bank, King Fahad Hospital, Al Hofuf 36441, Saudi Arabia
| | - Saleh Al-Abdulhadi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Riyadh 11942, Saudi Arabia
- Saleh Office for Medical Genetic and Genetic Counseling Services, The House of Expertise, Prince Sattam Bin Abdulaziz University, Dammam 32411, Saudi Arabia
| | - Fatemah A. Alhashem
- Laboratory Medicine Department, Hematopathology Division, King Fahad Hospital of the University, Al-Khobar 31441, Saudi Arabia
| | - Ahlam A. Alqatari
- Hematopathology Department, Clinical Pathology, Al-Dorr Specialist Medical Center, Qatif 31911, Saudi Arabia
| | - Ahmed Alsayyah
- Department of Pathology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | | | - Rwaa H. Abdulal
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ali H. Al-Ahmed
- Dammam Health Network, Eastern Health Cluster, Dammam 31444, Saudi Arabia
| | - Mohd. Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Ranjan K. Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar 758002, India
| |
Collapse
|