1
|
Jiang H, Wang H, Wang X, Wang Y, Song R, Yuan S, Fan Z, Meng D. Methyl jasmonate differentially and tissue-specifically regulated the expression of arginine catabolism-related genes and proteins in Agaricus bisporus mushrooms during storage. Fungal Genet Biol 2024; 170:103864. [PMID: 38199492 DOI: 10.1016/j.fgb.2024.103864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/26/2023] [Accepted: 01/07/2024] [Indexed: 01/12/2024]
Abstract
Methyl jasmonate (MeJA)-regulated postharvest quality retention of Agaricus bisporus fruiting bodies is associated with arginine catabolism. However, the mechanism of MeJA-regulated arginine catabolism in edible mushrooms is still unclear. This study aimed to investigate the regulatory modes of MeJA on the expression of arginine catabolism-related genes and proteins in intact and different tissues of A. bisporus mushrooms during storage. Results showed that exogenous MeJA treatment activated endogenous JA biosynthesis in A. bisporus mushrooms, and differentially and tissue-specifically regulated the expression of arginine catabolism-related genes (AbARG, AbODC, AbSPE-SDH, AbSPDS, AbSAMDC, and AbASL) and proteins (AbARG, AbSPE-SDH, AbASL, and AbASS). MeJA caused no significant change in AbASS expression but resulted in a dramatic increase in AbASS protein level. Neither the expression of the AbSAMS gene nor the AbSAMS protein was conspicuously altered upon MeJA treatment. Additionally, MeJA reduced the contents of arginine and ornithine and induced the accumulation of free putrescine and spermidine, which was closely correlated with MeJA-regulated arginine catabolism-related genes and proteins. Hence, the results suggested that the differential and tissue-specific regulation of arginine catabolism-related genes and proteins by MeJA contributed to their selective involvement in the postharvest continuing development and quality retention of button mushrooms.
Collapse
Affiliation(s)
- Hanyue Jiang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Huadong Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China; Shandong drug and food vocational college, Weihai 264200, People's Republic of China
| | - Xiuhong Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Yating Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Rui Song
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Shuai Yuan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Zhenchuan Fan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Demei Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China; Tianjin Gasin-DH Preservation Technology Co., Ltd, Tianjin 300300, People's Republic of China.
| |
Collapse
|
2
|
Wang Y, Xi Z, Wang X, Zhang Y, Liu Y, Yuan S, Zhao S, Sheng J, Meng D. Identification of bHLH family genes in Agaricus bisporus and transcriptional regulation of arginine catabolism-related genes by AbbHLH1 after harvest. Int J Biol Macromol 2023; 226:496-509. [PMID: 36521696 DOI: 10.1016/j.ijbiomac.2022.12.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/23/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022]
Abstract
Basic helix-loop-helix (bHLH) transcription factors (TFs) are widely distributed in eukaryotes and play an important role in biological growth and development. The identification and functional analyses of bHLH genes/proteins in edible mushrooms (Agaricus bisporus) have yet to be reported. In the present study, we identified 10 putative bHLH members carrying the conserved bHLH domains. Phylogenetic analyses revealed that the 10 AbbHLHs were the closest to sequences of species belonging to 7 different fungal subgroups, which was supported by loop length, intron patterns, and key amino acid residues. The substantial increase after harvest and continuously elevated expression of AbbHLH1 during the development until the disruption of mushroom velum, and the preferential expression in cap and gill tissues suggest the important function of AbbHLH1 in postharvest development of A. bisporus. The relationship of arginine catabolism-related genes with the early stage of postharvest continuing development also was revealed by expression determination. Subcellular localization showed that AbbHLH1 could be localized in nucleus. Importantly, the electrophoretic mobility shift and dual-luciferase reporter assays showed that AbbHLH1 activated the promoters of AbOAT, AbSPDS, and AbSAMDC and suppressed the expression of AbARG, AbUREA, and AbODC, probably for the modulation of arginine catabolism and thus control of postharvest mushroom development. Taken together, the available data provide valuable functional insight into the role of AbbHLH proteins in postharvest mushrooms.
Collapse
Affiliation(s)
- Yating Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Zhiai Xi
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Xiuhong Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Yuyu Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, People's Republic of China
| | - Yongguo Liu
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, People's Republic of China
| | - Shuai Yuan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Shirui Zhao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Jiping Sheng
- School of Agricultural Economics and Rural Development, Renmin University of China, Beijing 100872, People's Republic of China
| | - Demei Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China; Tianjin Gasin-DH Preservation Technology Co., Ltd, Tianjin 300300, People's Republic of China.
| |
Collapse
|
3
|
Yamaguchi Y, Hirata Y, Saito T, Kumagai H. Combined Effects of Amino Acids in Garlic and Buna-Shimeji ( Hypsizygus marmoreus) on Suppression of CCl 4-Induced Hepatic Injury in Rats. Foods 2021; 10:foods10071491. [PMID: 34199038 PMCID: PMC8306630 DOI: 10.3390/foods10071491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 12/31/2022] Open
Abstract
The combination of the garlic-derived amino acid, S-allyl-l-cysteine sulfoxide (ACSO), and ornithine or arginine on CCl4-induced hepatic injury was examined. After investigating the effectiveness of the mixture of ACSO and ornithine or arginine in preventing hepatic injury in vivo, an extract rich in ACSO and ornithine was prepared by converting arginine in garlic to ornithine by arginase from Hypsizygus marmoreus (buna-shimeji), after screening the productivity of ornithine among 12 kinds of mushrooms. Co-administration of ACSO with ornithine or arginine suppressed the increase in aspartate transaminase, alanine transaminase, and thiobarbituric acid reactive substance, and the decrease in glutathione S-transferase and cytochrome p450 2E1 activities after CCl4 injection more effectively than a single administration of ACSO. All extracts prepared from garlic and buna-shimeji with low and high contents of ACSO and arginine or ornithine significantly suppressed CCl4-induced hepatic injury in rats. Considering that ACSO is tasteless, odourless, and enhances taste, and ornithine has a flat or sweet taste and masks bitterness, the extract rich in ACSO and ornithine from garlic and buna-shimeji could be considered a potential antioxidant food material that can be added to many kinds of food to prevent hepatic injury.
Collapse
Affiliation(s)
- Yusuke Yamaguchi
- Department of Chemistry and Life Science, Nihon University, 1866 Kameino, Fujisawa-shi 252-0880, Japan; (Y.Y.); (Y.H.)
| | - Yushi Hirata
- Department of Chemistry and Life Science, Nihon University, 1866 Kameino, Fujisawa-shi 252-0880, Japan; (Y.Y.); (Y.H.)
| | - Takeshi Saito
- ACERA Co., Ltd., 156 Nishitakahashi-machi, Kofu-shi 400-0826, Japan;
| | - Hitomi Kumagai
- Department of Chemistry and Life Science, Nihon University, 1866 Kameino, Fujisawa-shi 252-0880, Japan; (Y.Y.); (Y.H.)
- Correspondence: ; Tel.: +81-466-3946
| |
Collapse
|
4
|
Pan J, Zhou Z, Béjà O, Cai M, Yang Y, Liu Y, Gu JD, Li M. Genomic and transcriptomic evidence of light-sensing, porphyrin biosynthesis, Calvin-Benson-Bassham cycle, and urea production in Bathyarchaeota. MICROBIOME 2020; 8:43. [PMID: 32234071 PMCID: PMC7110647 DOI: 10.1186/s40168-020-00820-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 03/02/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Bathyarchaeota, a newly proposed archaeal phylum, is considered as an important driver of the global carbon cycle. However, due to the great diversity of them, there is limited genomic information that accurately encompasses the metabolic potential of the entire archaeal phylum. RESULTS In the current study, nine metagenome-assembled genomes of Bathyarchaeota from four subgroups were constructed from mangrove sediments, and metatranscriptomes were obtained for evaluating their in situ transcriptional activities. Comparative analyses with reference genomes and the transcripts of functional genes posit an expanded role for Bathyarchaeota in phototrophy, autotrophy, and nitrogen and sulfur cycles, respectively. Notably, the presence of genes for rhodopsins, cobalamin biosynthesis, and the oxygen-dependent metabolic pathways in some Bathyarchaeota subgroup 6 genomes suggest a light-sensing and microoxic lifestyle within this subgroup. CONCLUSIONS The results of this study expand our knowledge of metabolic abilities and diverse lifestyles of Bathyarchaeota, highlighting the crucial role of Bathyarchaeota in geochemical cycle. Video abstract.
Collapse
Affiliation(s)
- Jie Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Zhichao Zhou
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR China
| | - Oded Béjà
- Faculty of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Mingwei Cai
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yuchun Yang
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR China
| | - Yang Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Ji-Dong Gu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR China
| | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
5
|
Meng DM, Wang HD, Zhang YX, Xi ZA, Yang R, Sheng JP, Zhang XH, Ding Y, Wang JP, Fan ZC. Ornithine decarboxylase is involved in methyl jasmonate-regulated postharvest quality retention in button mushrooms (Agaricus bisporus). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:790-796. [PMID: 29998459 DOI: 10.1002/jsfa.9247] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 06/30/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND In the present study, we investigated the role of ornithine decarboxylase (ODC) in the methyl jasmonate (MeJA)-regulated postharvest quality maintenance of Agaricus bisporus (J. E. Kange) Imbach button mushrooms by pretreating mushrooms with a specific irreversible inhibitor called α-difluoromethylornithine (DFMO) before exposure to MeJA vapor. RESULTS Mushrooms were treated with 0 or 100 µmol L-1 MeJA or a combination of 120 µmol L-1 DFMO and 100 µmol L-1 MeJA, respectively, before storage at 4 °C for 21 days. Treatment with MeJA alone induced the increase in ODC activity whereas this effect was greatly suppressed by pretreatment with DFMO. α-Difluoromethylornithine strongly attenuated the effect of MeJA on decreasing cap opening, slowing the decline rate of soluble protein and total sugar, and accumulating total phenolics and flavonoids. α-Difluoromethylornithine pretreatment also counteracted the ability of MeJA to inhibit polyphenol oxidase and lipoxygenase activities, and malondialdehyde production, and to stimulate superoxide dismutase and catalase activities. It also largely downregulated MeJA-induced accumulation of free putrescine (Put). CONCLUSION These results reveal that ODC is involved in MeJA-regulated postharvest quality retention of button mushrooms, and this involvement is likely to be associated with Put levels. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- De-Mei Meng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Institute of Health Biotechnology, International Collaborative Research Center for Health Biotechnology, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Hua-Dong Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Institute of Health Biotechnology, International Collaborative Research Center for Health Biotechnology, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Ya-Xuan Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Institute of Health Biotechnology, International Collaborative Research Center for Health Biotechnology, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Zhi-Ai Xi
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Institute of Health Biotechnology, International Collaborative Research Center for Health Biotechnology, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Rui Yang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Institute of Health Biotechnology, International Collaborative Research Center for Health Biotechnology, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Ji-Ping Sheng
- Department of Food Safety and Food Science, School of Agricultural Economics and Rural Development, Renmin University of China, Beijing, China
| | - Xin-Hua Zhang
- Department of Food Science and Engineering, School of Agriculture and Food Engineering, Shandong University of Technology, Zibo, China
| | - Yang Ding
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China
| | - Jun-Ping Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Institute of Health Biotechnology, International Collaborative Research Center for Health Biotechnology, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Zhen-Chuan Fan
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Institute of Health Biotechnology, International Collaborative Research Center for Health Biotechnology, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, China
- Obesita & Algaegen LLC, College Station, TX, USA
| |
Collapse
|
6
|
Sakamoto Y. Influences of environmental factors on fruiting body induction, development and maturation in mushroom-forming fungi. FUNGAL BIOL REV 2018. [DOI: 10.1016/j.fbr.2018.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Wrona M, Pezo D, Canellas E, Nerín C. Ultra high performance liquid chromatography coupled to quadruple time-of-flight with MS(E) technology used for qualitative analysis of non-volatile oxidation markers in sliced packed mushrooms (Agaricus Bisporus). J Chromatogr A 2016; 1432:73-83. [PMID: 26777782 DOI: 10.1016/j.chroma.2016.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/29/2015] [Accepted: 01/04/2016] [Indexed: 11/19/2022]
Abstract
61 different non-volatile compounds were determined in Agaricus Bisporus sliced mushrooms using UHPLC/Q-TOF with MS(E) technology. Both positive and negative electrospray ionization were applied. Chemical profile of three parts of mushroom was created: cap, gills and stipe. The analysed mushrooms were oxidized to identify the non-volatile markers in their parts. MarkerLynx(®) was proposed as a powerful tool to distinguish mushrooms purchased in different countries (Spain and Portugal) by determining their non-volatile markers. Some metabolites were identified. Surprisingly a mix of polyethylene glycols (PEGs) was detected in cap and gills of mushrooms. Whole mushrooms were considered as vegetable resistant to migration from packaging compounds. Additionally migration tests were performed to determine the source of migrating compounds.
Collapse
Affiliation(s)
- Magdalena Wrona
- Department of Analytical Chemistry, Aragon Institute of Engineering Research I3A, CPS-University of Zaragoza, Torres Quevedo Building, María de Luna St. 3, E-50018 Zaragoza, Spain.
| | - Davinson Pezo
- Department of Analytical Chemistry, Aragon Institute of Engineering Research I3A, CPS-University of Zaragoza, Torres Quevedo Building, María de Luna St. 3, E-50018 Zaragoza, Spain.
| | - Elena Canellas
- Department of Analytical Chemistry, Aragon Institute of Engineering Research I3A, CPS-University of Zaragoza, Torres Quevedo Building, María de Luna St. 3, E-50018 Zaragoza, Spain; Samtack Adhesivos Industriales, C/Cerámica, n°3, Pol. Ind. Magarola Sud, 08292 Esparreguera, Barcelona, Spain.
| | - Cristina Nerín
- Department of Analytical Chemistry, Aragon Institute of Engineering Research I3A, CPS-University of Zaragoza, Torres Quevedo Building, María de Luna St. 3, E-50018 Zaragoza, Spain.
| |
Collapse
|
8
|
Sanguinetti M, Amillis S, Pantano S, Scazzocchio C, Ramón A. Modelling and mutational analysis of Aspergillus nidulans UreA, a member of the subfamily of urea/H⁺ transporters in fungi and plants. Open Biol 2014; 4:140070. [PMID: 24966243 PMCID: PMC4077062 DOI: 10.1098/rsob.140070] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/03/2014] [Indexed: 01/02/2023] Open
Abstract
We present the first account of the structure-function relationships of a protein of the subfamily of urea/H(+) membrane transporters of fungi and plants, using Aspergillus nidulans UreA as a study model. Based on the crystal structures of the Vibrio parahaemolyticus sodium/galactose symporter (vSGLT) and of the Nucleobase-Cation-Symport-1 benzylhydantoin transporter from Microbacterium liquefaciens (Mhp1), we constructed a three-dimensional model of UreA which, combined with site-directed and classical random mutagenesis, led to the identification of amino acids important for UreA function. Our approach allowed us to suggest roles for these residues in the binding, recognition and translocation of urea, and in the sorting of UreA to the membrane. Residues W82, Y106, A110, T133, N275, D286, Y388, Y437 and S446, located in transmembrane helixes 2, 3, 7 and 11, were found to be involved in the binding, recognition and/or translocation of urea and the sorting of UreA to the membrane. Y106, A110, T133 and Y437 seem to play a role in substrate selectivity, while S446 is necessary for proper sorting of UreA to the membrane. Other amino acids identified by random classical mutagenesis (G99, R141, A163, G168 and P639) may be important for the basic transporter's structure, its proper folding or its correct traffic to the membrane.
Collapse
Affiliation(s)
- Manuel Sanguinetti
- Sección Bioquímica, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Sotiris Amillis
- Faculty of Biology, Department of Botany, University of Athens, Athens, Greece
| | - Sergio Pantano
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Claudio Scazzocchio
- Sección Bioquímica, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay Institut de Génétique et Microbiologie, Université Paris-Sud, Orsay, France Department of Microbiology, Imperial College London, London, UK
| | - Ana Ramón
- Sección Bioquímica, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
9
|
Yates SA, Chernukhin I, Alvarez-Fernandez R, Bechtold U, Baeshen M, Baeshen N, Mutwakil MZ, Sabir J, Lawson T, Mullineaux PM. The temporal foliar transcriptome of the perennial C3 desert plant Rhazya stricta in its natural environment. BMC PLANT BIOLOGY 2014; 14:2. [PMID: 24387666 PMCID: PMC3906910 DOI: 10.1186/1471-2229-14-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/23/2013] [Indexed: 05/23/2023]
Abstract
BACKGROUND The perennial species Rhazya stricta (R. stricta) grows in arid zones and carries out typical C3 photosynthesis under daily extremes of heat, light intensity and low humidity. In order to identify processes attributable to its adaptation to this harsh environment, we profiled the foliar transcriptome of apical and mature leaves harvested from the field at three time periods of the same day. RESULTS Next generation sequencing was used to reconstruct the transcriptome and quantify gene expression. 28018 full length transcript sequences were recovered and 45.4% were differentially expressed (DE) throughout the day. We compared our dataset with microarray experiments in Arabidopsis thaliana (Arabidopsis) and other desert species to identify trends in circadian and stress response profiles between species. 34% of the DE genes were homologous to Arabidopsis circadian-regulated genes. Independent of circadian control, significant overlaps with Arabidopsis genes were observed only with heat and salinity/high light stress-responsive genes. Also, groups of DE genes common to other desert plants species were identified. We identified protein families specific to R. stricta which were found to have diverged from their homologs in other species and which were over -expressed at midday. CONCLUSIONS This study shows that temporal profiling is essential to assess the significance of genes apparently responsive to abiotic stress. This revealed that in R. stricta, the circadian clock is a major regulator of DE genes, even of those annotated as stress-responsive in other species. This may be an important feature of the adaptation of R. stricta to its extreme but predictable environment. However, the majority of DE genes were not circadian-regulated. Of these, some were common to other desert species and others were distinct to R. stricta, suggesting that they are important for the adaptation of such plants to arid environments.
Collapse
Affiliation(s)
- Steven A Yates
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Igor Chernukhin
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK
| | | | - Ulrike Bechtold
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Mohammed Baeshen
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Kingdom of Saudi Arabia
| | - Nabih Baeshen
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Kingdom of Saudi Arabia
| | - Mohammad Z Mutwakil
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Kingdom of Saudi Arabia
| | - Jamal Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Kingdom of Saudi Arabia
| | - Tracy Lawson
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK
| | | |
Collapse
|
10
|
Tian C, Kasiborski B, Koul R, Lammers PJ, Bücking H, Shachar-Hill Y. Regulation of the nitrogen transfer pathway in the arbuscular mycorrhizal symbiosis: gene characterization and the coordination of expression with nitrogen flux. PLANT PHYSIOLOGY 2010; 153:1175-87. [PMID: 20448102 PMCID: PMC2899933 DOI: 10.1104/pp.110.156430] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 05/05/2010] [Indexed: 05/19/2023]
Abstract
The arbuscular mycorrhiza (AM) brings together the roots of over 80% of land plant species and fungi of the phylum Glomeromycota and greatly benefits plants through improved uptake of mineral nutrients. AM fungi can take up both nitrate and ammonium from the soil and transfer nitrogen (N) to host roots in nutritionally substantial quantities. The current model of N handling in the AM symbiosis includes the synthesis of arginine in the extraradical mycelium and the transfer of arginine to the intraradical mycelium, where it is broken down to release N for transfer to the host plant. To understand the mechanisms and regulation of N transfer from the fungus to the plant, 11 fungal genes putatively involved in the pathway were identified from Glomus intraradices, and for six of them the full-length coding sequence was functionally characterized by yeast complementation. Two glutamine synthetase isoforms were found to have different substrate affinities and expression patterns, suggesting different roles in N assimilation. The spatial and temporal expression of plant and fungal N metabolism genes were followed after nitrate was added to the extraradical mycelium under N-limited growth conditions using hairy root cultures. In parallel experiments with (15)N, the levels and labeling of free amino acids were measured to follow transport and metabolism. The gene expression pattern and profiling of metabolites involved in the N pathway support the idea that the rapid uptake, translocation, and transfer of N by the fungus successively trigger metabolic gene expression responses in the extraradical mycelium, intraradical mycelium, and host plant.
Collapse
Affiliation(s)
- Chunjie Tian
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Miyazaki Y, Sunagawa M, Higashibata A, Ishioka N, Babasaki K, Yamazaki T. Differentially expressed genes under simulated microgravity in fruiting bodies of the fungus Pleurotus ostreatus. FEMS Microbiol Lett 2010; 307:72-9. [DOI: 10.1111/j.1574-6968.2010.01966.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
12
|
Lucic E, Fourrey C, Kohler A, Martin F, Chalot M, Brun-Jacob A. A gene repertoire for nitrogen transporters in Laccaria bicolor. THE NEW PHYTOLOGIST 2008; 180:343-364. [PMID: 18665901 DOI: 10.1111/j.1469-8137.2008.02580.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Ectomycorrhizal interactions established between the root systems of terrestrial plants and hyphae from soil-borne fungi are the most ecologically widespread plant symbioses. The efficient uptake of a broad range of nitrogen (N) compounds by the fungal symbiont and their further transfer to the host plant is a major feature of this symbiosis. Nevertheless, we far from understand which N form is preferentially transferred and what are the key molecular determinants required for this transfer. Exhaustive in silico analysis of N-compound transporter families were performed within the genome of the ectomycorrhizal model fungus Laccaria bicolor. A broad phylogenetic approach was undertaken for all families and gene regulation was investigated using whole-genome expression arrays. A repertoire of proteins involved in the transport of N compounds in L. bicolor was established that revealed the presence of at least 128 gene models in the genome of L. bicolor. Phylogenetic comparisons with other basidiomycete genomes highlighted the remarkable expansion of some families. Whole-genome expression arrays indicate that 92% of these gene models showed detectable transcript levels. This work represents a major advance in the establishment of a transportome blueprint at a symbiotic interface, which will guide future experiments.
Collapse
Affiliation(s)
- Eva Lucic
- Research Unit INRA/UHP 1136 'Tree-microbe Interactions', Nancy-University, BP 239, F-54506 Vandoeuvre-les-Nancy Cedex, France
| | - Claire Fourrey
- Research Unit INRA/UHP 1136 'Tree-microbe Interactions', Nancy-University, BP 239, F-54506 Vandoeuvre-les-Nancy Cedex, France
| | - Annegret Kohler
- Research Unit INRA/UHP 1136 'Tree-microbe Interactions', Nancy-University, BP 239, F-54506 Vandoeuvre-les-Nancy Cedex, France
| | - Francis Martin
- Research Unit INRA/UHP 1136 'Tree-microbe Interactions', Nancy-University, BP 239, F-54506 Vandoeuvre-les-Nancy Cedex, France
| | - Michel Chalot
- Research Unit INRA/UHP 1136 'Tree-microbe Interactions', Nancy-University, BP 239, F-54506 Vandoeuvre-les-Nancy Cedex, France
| | - Annick Brun-Jacob
- Research Unit INRA/UHP 1136 'Tree-microbe Interactions', Nancy-University, BP 239, F-54506 Vandoeuvre-les-Nancy Cedex, France
| |
Collapse
|
13
|
Petrova A, Alipieva K, Kostadinova E, Antonova D, Lacheva M, Gjosheva M, Popov S, Bankova V. GC-MS studies of the chemical composition of two inedible mushrooms of the genus Agaricus. Chem Cent J 2007; 1:33. [PMID: 18096035 PMCID: PMC2228291 DOI: 10.1186/1752-153x-1-33] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 12/20/2007] [Indexed: 11/16/2022] Open
Abstract
Background Mushrooms in the genus Agaricus have worldwide distribution and include the economically important species A. bisporus. Some Agaricus species are inedible, including A. placomyces and A. pseudopratensis, which are similar in appearance to certain edible species, yet are known to possess unpleasant odours and induce gastrointestinal problems if consumed. We have studied the chemical composition of these mushrooms using GC-MS. Results Our GC-MS studies on the volatile fractions and butanol extracts resulted in the identification of 44 and 34 compounds for A. placomyces and A. pseudopratensis, respectively, including fatty acids and their esters, amino acids, and sugar alcohols. The most abundant constituent in the volatiles and butanol were phenol and urea respectively. We also identified the presence of ergosterol and two Δ7-sterols. In addition, 5α,8α-Epidioxi-24(ξ)-methylcholesta-6,22-diene-3β-ol was isolated for the first time from both mushrooms. Our study is therefore the first report on the chemical composition of these two species. Conclusion The results obtained contribute to the knowledge of the chemical composition of mushrooms belonging to the Agaricus genus, and provide some explanation for the reported mild toxicity of A. placomyces and A. pseudopratensis, a phenonomenon that can be explained by a high phenol content, similar to that found in other Xanthodermatei species.
Collapse
Affiliation(s)
- Assya Petrova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Wagemaker MJM, Eastwood DC, Welagen J, van der Drift C, Jetten MSM, Burton K, Van Griensven LJLD, Op den Camp HJM. The role of ornithine aminotransferase in fruiting body formation of the mushroom Agaricus bisporus. ACTA ACUST UNITED AC 2007; 111:909-18. [PMID: 17703933 DOI: 10.1016/j.mycres.2007.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Accepted: 05/25/2007] [Indexed: 10/23/2022]
Abstract
The complete oat gene and cDNA from the commercial mushroom, Agaricus bisporus, encoding ornithine aminotransferase (OAT) was characterized. The gene encodes a 466 amino acid protein and provides the first fully reported homobasidiomycete OAT protein sequence. The gene is interrupted by ten introns, and no mitochondrial targeting motif was present pointing to a cytoplasmic localization. The function of the gene was demonstrated by complementation of a Saccharomyces cerevisiae mutant unable to utilize ornithine as a sole source of nitrogen with an A. bisporus oat cDNA construct. Northern analysis of the oat gene together with the pruA gene (encoding Delta(1)-pyrroline-5-carboxylate dehydrogenase) showed that transcripts of both genes were lower during the first stages of fruiting body development. The higher expression of the oat gene in later stages of development, suggests the importance of ornithine metabolism for the redistribution of metabolites in the developing mushroom. Hplc analysis of all amino acids revealed that ornithine levels increased during fruiting body development whereas proline levels fell.
Collapse
Affiliation(s)
- Matthijs J M Wagemaker
- Department of Microbiology, IWWR, Radboud University Nijmegen, Toernooiveld 1, NL-6525 ED Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Wagemaker MJM, Eastwood DC, van der Drift C, Jetten MSM, Burton K, Van Griensven LJLD, Op den Camp HJM. Argininosuccinate synthetase and argininosuccinate lyase: two ornithine cycle enzymes from Agaricus bisporus. ACTA ACUST UNITED AC 2007; 111:493-502. [PMID: 17512708 DOI: 10.1016/j.mycres.2007.01.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 01/16/2007] [Accepted: 01/24/2007] [Indexed: 11/19/2022]
Abstract
Accumulation of high quantities of urea in fruiting bodies is a known feature of larger basidiomycetes. Argininosuccinate synthetase (ASS) and argininosuccinate lyase (ASL) are two ornithine cycle enzymes catalysing the last two steps in the arginine biosynthetic pathway. Arginine is the main precursor for urea formation. In this work the nucleotide sequences of the genes and corresponding cDNAs encoding argininosuccinate synthetase (ass) and argininosuccinate lyase (asl) from Agaricus bisporus were determined. Eight and six introns were present in the ass and asl gene, respectively. The location of four introns in the asl gene were conserved among vertebrate asl genes. Deduced amino acid sequences, representing the first homobasidiomycete ASS and ASL protein sequences, were analysed and compared with their counterparts in other organisms. The ass ORF encoded for a protein of 425 amino acids with a calculated molecular mass of 47266Da. An alignment with ASS proteins from other organisms revealed high similarity with fungal and mammalian ASS proteins, 61-63% and 51-55% identity, respectively. The asl open reading frame (ORF) encoded a protein of 464 amino acids with an calculated mass of 52337Da and similar to ASS shared the highest similarity with fungal ASL proteins, 59-60% identity. Northern analyses of ass and asl during fruiting body formation and post-harvest development revealed that expression was significantly up-regulated from developmental stage 3 on for all the tissues studied. The expression reached a maximum at the later stages of fruiting body growth, stages 6 and 7. Both ass and asl genes were up-regulated within 3h after harvest showing that the induction mechanism is very sensitive to the harvest event and emphasizes the importance of the arginine biosynthetic pathway/ornithine cycle in post-harvest physiology.
Collapse
Affiliation(s)
- Matthijs J M Wagemaker
- Department of Microbiology, IWWR, Radboud University Nijmegen, Toernooiveld 1, NL-6525 ED Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
16
|
Wagemaker MJM, Eastwood DC, van der Drift C, Jetten MSM, Burton K, Van Griensven LJLD, Op den Camp HJM. Expression of the urease gene of Agaricus bisporus: a tool for studying fruit body formation and post-harvest development. Appl Microbiol Biotechnol 2006; 71:486-92. [PMID: 16283299 DOI: 10.1007/s00253-005-0185-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 08/26/2005] [Accepted: 09/07/2005] [Indexed: 10/25/2022]
Abstract
Fruit body initials of Agaricus bisporus contain high levels of urea, which decrease in the following developmental stages until stage 4 (harvest) when urea levels increase again. At storage, the high urea content may affect the quality of the mushroom, i.e. by the formation of ammonia from urea through the action of urease (EC 3.5.1.5). Despite the abundance of urea in the edible mushroom A. bisporus, little is known about its physiological role. The urease gene of A. bisporus and its promoter region were identified and cloned. The coding part of the genomic DNA was interrupted by nine introns as confirmed by cDNA analysis. The first full homobasidiomycete urease protein sequence obtained comprised 838 amino acids (molecular mass 90,694 Da, pI 5.8). An alignment with fungal, plant and bacterial ureases revealed a high conservation. The expression of the urease gene, measured by Northern analyses, was studied both during normal development of fruit bodies and during post-harvest senescence. Expression in normal development was significantly up-regulated in developmental stages 5 and 6. During post-harvest senescence, the expression of urease was mainly observed in the stipe tissue; expression decreased on the first day and remained at a basal level through the remaining sampling period.
Collapse
Affiliation(s)
- Matthijs J M Wagemaker
- Department of Microbiology, IWWR Radboud University Nijmegen, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
17
|
Park SK, Peñas MM, Ramírez L, Pisabarro AG. Genetic linkage map and expression analysis of genes expressed in the lamellae of the edible basidiomycete Pleurotus ostreatus. Fungal Genet Biol 2006; 43:376-87. [PMID: 16531085 DOI: 10.1016/j.fgb.2006.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 01/04/2006] [Accepted: 01/16/2006] [Indexed: 10/24/2022]
Abstract
Pleurotus ostreatus is an industrially cultivated basidiomycete with nutritional and environmental applications. Its genome contains 35 Mbp organized in 11 chromosomes. There is currently available a genetic linkage map based predominantly on anonymous molecular markers complemented with the mapping of QTLs controlling growth rate and industrial productivity. To increase the saturation of the existing linkage maps, we have identified and mapped 82 genes expressed in the lamellae. Their manual annotation revealed that 34.1% of the lamellae-expressed and 71.5% of the lamellae-specific genes correspond to previously unknown sequences or to hypothetical proteins without a clearly established function. Furthermore, the expression pattern of some genes provides an experimental basis for studying gene regulation during the change from vegetative to reproductive growth. Finally, the identification of various differentially regulated genes involved in protein metabolism suggests the relevance of these processes in fruit body formation and maturation.
Collapse
Affiliation(s)
- Sang-Kyu Park
- Department of Agrarian Production, Public University of Navarre, E-31006 Pamplona, Spain
| | | | | | | |
Collapse
|