1
|
Dwivedi GR, Pathak N, Tiwari N, Negi AS, Kumar A, Pal A, Sharma A, Darokar MP. Synergistic Antibacterial Activity of Gallic Acid Based Chalcone Indl 2 by Inhibiting Efflux Pump Transporters. Chem Biodivers 2024; 21:e202301820. [PMID: 38372508 DOI: 10.1002/cbdv.202301820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/20/2024]
Abstract
As a part of novel discovery of drugs from natural resources, present study was undertaken to explore the antibacterial potential of chalcone Indl-2 in combination with different group of antibiotics. MIC of antibiotics was reduced up to eight folds against the different cultures of E. coli by both chalcones. Among the two compounds, the i. e. 1-(3', 4,'5'-trimethoxyphenyl)-3-(3-Indyl)-prop-2-enone (6, Indl-2), a chalcone derivative of gallic acid (Indl-2) was better along with tetracycline (TET) worked synergistically and was found to inhibit efflux transporters as obvious by ethidium bromide efflux confirmed by ATPase assays and docking studies. In combination, Indl-2 kills the MDREC-KG4 cells, post-antibiotic effect (PAE) of TET was prolonged and mutant prevention concentration (MPC) of TET was also decreased. In-vivo studies revealed that Indl-2 reduces the concentration of TNF-α. In acute oral toxicity study, Indl-2 was non-toxic and well tolerated up-to dose of 2000 mg/kg. Perhaps, the study is going to report gallic acid derived chalcone as synergistic agent acting via inhibiting the primary efflux pumps.
Collapse
Affiliation(s)
- Gaurav Raj Dwivedi
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow, 226015, India
- Microbiology Department, ICMR-Regional Medical Research Centre, Gorakhpur, 273013, U.P., India
| | - Nandini Pathak
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. - 201002, India
| | - Nimisha Tiwari
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow, 226015, India
| | - Arvind Singh Negi
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. - 201002, India
| | - Akhil Kumar
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow, 226015, India
| | - Anirban Pal
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. - 201002, India
| | - Ashok Sharma
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. - 201002, India
| | - Mahendra P Darokar
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. - 201002, India
| |
Collapse
|
2
|
Dwivedi GR, Maurya A, Yadav DK, Khan F, Gupta MK, Gupta P, Darokar MP, Srivastava SK. Comparative Drug Resistance Reversal Potential of Natural Glycosides: Potential of Synergy Niaziridin & Niazirin. Curr Top Med Chem 2019; 19:847-860. [DOI: 10.2174/1568026619666190412120008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/10/2019] [Accepted: 03/14/2019] [Indexed: 11/22/2022]
Abstract
Background:
Due to the limited availability of antibiotics, Gram-negative bacteria (GNB) acquire
different levels of drug resistance. It raised an urgent need to identify such agents, which can reverse the phenomenon
of drug resistance.
Objective:
To understand the mechanism of drug resistance reversal of glycosides; niaziridin and niazirin isolated
from the pods of Moringa oleifera and ouabain (control) against the clinical isolates of multidrug-resistant
Escherichia coli.
Methods:
The MICs were determined following the CLSI guidelines for broth micro-dilution. In-vitro combination
studies were performed by broth checkerboard method followed by Time-Kill studies, the efflux pump
inhibition assay, ATPase inhibitory activity, mutation prevention concentration and in-silico studies.
Results:
The results showed that both glycosides did not possess antibacterial activity of their own, but in combination,
they reduced the MIC of tetracycline up to 16 folds. Both were found to inhibit efflux pumps, but
niaziridin was the best. In real time expression pattern analysis, niaziridin was also found responsible for the
down expression of the two important efflux pump acrB & yojI genes alone as well as in combination.
Niaziridin was also able to over express the porin forming genes (ompA & ompX). These glycosides decreased
the mutation prevention concentration of tetracycline.
Conclusion:
This is the first ever report on glycosides, niazirin and niaziridin acting as drug resistance reversal
agent through efflux pump inhibition and modulation of expression pattern drug resistant genes. This study
may be helpful in preparing an effective antibacterial combination against the drug-resistant GNB from a
widely growing Moringa oleifera.
Collapse
Affiliation(s)
- Gaurav R. Dwivedi
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, India
| | - Anupam Maurya
- Medicinal Chemistry Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, India
| | - Dharmendra K. Yadav
- Metabolic & Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, India
| | - Feroz Khan
- Metabolic & Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, India
| | - Mahendra K. Gupta
- Department of Microbiology, King George Medical University, Lucknow, India
| | - Prashant Gupta
- Department of Microbiology, King George Medical University, Lucknow, India
| | - Mahendra P. Darokar
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, India
| | - Santosh K. Srivastava
- Medicinal Chemistry Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, India
| |
Collapse
|
3
|
Dwivedi GR, Maurya A, Yadav DK, Singh V, Khan F, Gupta MK, Singh M, Darokar MP, Srivastava SK. Synergy of clavine alkaloid 'chanoclavine' with tetracycline against multi-drug-resistant E. coli. J Biomol Struct Dyn 2018; 37:1307-1325. [PMID: 29595093 DOI: 10.1080/07391102.2018.1458654] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The emergence of multi drug resistance (MDR) in Gram-negative bacteria (GNB) and lack of novel classes of antibacterial agents have raised an immediate need to identify antibacterial agents, which can reverse the phenomenon of MDR. The purpose of present study was to evaluate synergy potential and understanding the drug resistance reversal mechanism of chanoclavine isolated from Ipomoea muricata against the multi-drug-resistant clinical isolate of Escherichia coli (MDREC). Although chanoclavine did not show antibacterial activity of its own, but in combination, it could reduce the minimum inhibitory concentration (MIC) of tetracycline (TET) up to 16-folds. Chanoclavine was found to inhibit the efflux pumps which seem to be ATPase-dependent. In real-time expression analysis, chanoclavine showed down-regulation of different efflux pump genes and decreased the mutation prevention concentration of tetracycline. Further, in silico docking studies revealed significant binding affinity of chanoclavine with different proteins known to be involved in drug resistance. In in silico ADME/toxicity studies, chanoclavine was found safe with good intestinal absorption, aqueous solubility, medium blood-brain barrier (BBB), no CYP 2D6 inhibition, no hepatotoxicity, no skin irritancy, and non-mutagenic indicating towards drug likeliness of this molecule. Based on these observations, it is hypothesized that chanoclavine might be inhibiting the efflux of tetracycline from MDREC and thus enabling the more availability of tetracycline inside the cell for its action.
Collapse
Affiliation(s)
- Gaurav Raj Dwivedi
- a Molecular Bioprospection Department , CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow 226015 , India.,b Microbiology Department , ICMR-Regional Medical Research Centre , Bhubaneshwar 751023 , Odisha , India
| | - Anupam Maurya
- c Medicinal Chemistry Department , CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow 226015 , India.,d Pharmacopoeia Commission for Indian Medicine and Homeopathy (PCIM&H) , PLIM Campus, Ghaziabad 201002 , India
| | - Dharmendra Kumar Yadav
- e Metabolic & Structural Biology , CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow 226015 , India.,f College of Pharmacy , Gachon University , Hambakmoeiro 191, Yeonsu-gu, Incheon City 406-799 , Korea
| | - Vigyasa Singh
- a Molecular Bioprospection Department , CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow 226015 , India
| | - Feroz Khan
- e Metabolic & Structural Biology , CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow 226015 , India
| | | | - Mastan Singh
- g Department of Microbiology , King George Medical University , Lucknow , India
| | - Mahendra P Darokar
- a Molecular Bioprospection Department , CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow 226015 , India
| | - Santosh Kumar Srivastava
- c Medicinal Chemistry Department , CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow 226015 , India
| |
Collapse
|
4
|
Gallic acid-based indanone derivative interacts synergistically with tetracycline by inhibiting efflux pump in multidrug resistant E. coli. Appl Microbiol Biotechnol 2015; 100:2311-25. [DOI: 10.1007/s00253-015-7152-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/08/2015] [Accepted: 11/06/2015] [Indexed: 01/03/2023]
|
5
|
Dwivedi GR, Maurya A, Yadav DK, Khan F, Darokar MP, Srivastava SK. Drug Resistance Reversal Potential of Ursolic Acid Derivatives against Nalidixic Acid- and Multidrug-resistant Escherichia coli. Chem Biol Drug Des 2015; 86:272-83. [PMID: 25476148 DOI: 10.1111/cbdd.12491] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 12/01/2014] [Accepted: 12/01/2014] [Indexed: 12/18/2022]
Abstract
As a part of our drug discovery program, ursolic acid was chemically transformed into six semi-synthetic derivatives, which were evaluated for their antibacterial and drug resistance reversal potential in combination with conventional antibiotic nalidixic acid against the nalidixic acid-sensitive and nalidixic acid-resistant strains of Escherichia coli. Although ursolic acid and its all semi-synthetic derivatives did not show antibacterial activity of their own, but in combination, they significantly reduced the minimum inhibitory concentration of nalidixic acid up to eightfold. The 3-O-acetyl-urs-12-en-28-isopropyl ester (UA-4) and 3-O-acetyl-urs-12-en-28-n-butyl ester (UA-5) derivatives of ursolic acid reduced the minimum inhibitory concentration of nalidixic acid by eightfold against nalidixic acid-resistant and four and eightfold against nalidixic acid-sensitive, respectively. The UA-4 and UA-5 were further evaluated for their synergy potential with another antibiotic tetracycline against the multidrug-resistant clinical isolate of Escherichia coli-KG4. The results showed that both these derivatives in combination with tetracycline reduced the cell viability in concentration-dependent manner by significantly inhibiting efflux pump. This was further supported by the in silico binding affinity of UA-4 and UA-5 with efflux pump proteins. These ursolic acid derivatives may find their potential use as synergistic agents in the treatment of multidrug-resistant Gram-negative infections.
Collapse
Affiliation(s)
- Gaurav Raj Dwivedi
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Anupam Maurya
- Medicinal Chemistry Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Dharmendra Kumar Yadav
- Metabolic & Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Feroz Khan
- Metabolic & Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Mahendra P Darokar
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Santosh Kumar Srivastava
- Medicinal Chemistry Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| |
Collapse
|
6
|
Dwivedi GR, Gupta S, Maurya A, Tripathi S, Sharma A, Darokar MP, Srivastava SK. Synergy Potential of Indole Alkaloids and Its Derivative against Drug-resistantEscherichia coli. Chem Biol Drug Des 2015; 86:1471-81. [DOI: 10.1111/cbdd.12613] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/12/2015] [Accepted: 06/19/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Gaurav Raj Dwivedi
- Biotechnology Division; Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP); P.O.- CIMAP Lucknow 226015 India
- School of Environmental Sciences; Babasaheb Bhimrao Ambedkar Central University; Vidya Vihar, Rae Bareli Road Lucknow 226025 India
| | - Shikha Gupta
- Medicinal Chemistry Department; Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP); P.O.- CIMAP Lucknow 226015 India
| | - Anupam Maurya
- Medicinal Chemistry Department; Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP); P.O.- CIMAP Lucknow 226015 India
| | - Shubhandra Tripathi
- Biotechnology Division; Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP); P.O.- CIMAP Lucknow 226015 India
| | - Ashok Sharma
- Biotechnology Division; Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP); P.O.- CIMAP Lucknow 226015 India
| | - Mahendra P. Darokar
- Biotechnology Division; Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP); P.O.- CIMAP Lucknow 226015 India
| | - Santosh K. Srivastava
- Medicinal Chemistry Department; Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP); P.O.- CIMAP Lucknow 226015 India
| |
Collapse
|
7
|
Upadhyay HC, Dwivedi GR, Roy S, Sharma A, Darokar MP, Srivastava SK. Phytol Derivatives as Drug Resistance Reversal Agents. ChemMedChem 2014; 9:1860-8. [DOI: 10.1002/cmdc.201402027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/28/2014] [Indexed: 01/06/2023]
|
8
|
Dwivedi GR, Upadhyay HC, Yadav DK, Singh V, Srivastava SK, Khan F, Darmwal NS, Darokar MP. 4-Hydroxy-α-Tetralone and its Derivative as Drug Resistance Reversal Agents in Multi Drug ResistantEscherichia coli. Chem Biol Drug Des 2014; 83:482-92. [DOI: 10.1111/cbdd.12263] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/15/2013] [Accepted: 11/15/2013] [Indexed: 01/20/2023]
Affiliation(s)
- Gaurav R. Dwivedi
- Molecular Bioprospection Department; CSIR-Central Institute of Medicinal and Aromatic Plants; Kukrail Picnic Spot Road, P.O. CIMAP Lucknow 226015 India
| | - Harish C. Upadhyay
- Medicinal Chemistry Department; CSIR-Central Institute of Medicinal and Aromatic Plants; Kukrail Picnic Spot Road, P.O. CIMAP Lucknow 226015 India
| | - Dharmendra K. Yadav
- Metabolic & Structural Biology Department; CSIR-Centra Institute of Medicinal and Aromatic Plants; Kukrail Picnic Spot Road, P.O. CIMAP Lucknow 226015 India
| | - Vigyasa Singh
- Molecular Bioprospection Department; CSIR-Central Institute of Medicinal and Aromatic Plants; Kukrail Picnic Spot Road, P.O. CIMAP Lucknow 226015 India
| | - Santosh K. Srivastava
- Medicinal Chemistry Department; CSIR-Central Institute of Medicinal and Aromatic Plants; Kukrail Picnic Spot Road, P.O. CIMAP Lucknow 226015 India
| | - Feroz Khan
- Metabolic & Structural Biology Department; CSIR-Centra Institute of Medicinal and Aromatic Plants; Kukrail Picnic Spot Road, P.O. CIMAP Lucknow 226015 India
| | - Nandan S. Darmwal
- Department of Microbiology; Dr. R.M.L. Avadh University; Hawai Patti, Allahabad Road Faizabad 224001 India
| | - Mahendra P. Darokar
- Molecular Bioprospection Department; CSIR-Central Institute of Medicinal and Aromatic Plants; Kukrail Picnic Spot Road, P.O. CIMAP Lucknow 226015 India
| |
Collapse
|
9
|
Maurya A, Dwivedi GR, Darokar MP, Srivastava SK. Antibacterial and Synergy of Clavine Alkaloid Lysergol and its Derivatives Against Nalidixic Acid-ResistantEscherichia coli. Chem Biol Drug Des 2013; 81:484-90. [DOI: 10.1111/cbdd.12103] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 10/09/2012] [Accepted: 12/10/2012] [Indexed: 11/27/2022]
Affiliation(s)
- Anupam Maurya
- Department of Medicinal Chemistry; CSIR-Central Institute of Medicinal and Aromatic Plants; Lucknow; 226015; India
| | - Gaurav R. Dwivedi
- Department of Molecular Bioprospection; CSIR-Central Institute of Medicinal and Aromatic Plants; Lucknow; 226015; India
| | - Mahendra P. Darokar
- Department of Molecular Bioprospection; CSIR-Central Institute of Medicinal and Aromatic Plants; Lucknow; 226015; India
| | - Santosh K. Srivastava
- Department of Medicinal Chemistry; CSIR-Central Institute of Medicinal and Aromatic Plants; Lucknow; 226015; India
| |
Collapse
|
10
|
Sodium or potassium efflux ATPase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1841-53. [DOI: 10.1016/j.bbamem.2010.07.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 07/06/2010] [Accepted: 07/13/2010] [Indexed: 12/20/2022]
|
11
|
Slonczewski JL, Fujisawa M, Dopson M, Krulwich TA. Cytoplasmic pH measurement and homeostasis in bacteria and archaea. Adv Microb Physiol 2009; 55:1-79, 317. [PMID: 19573695 DOI: 10.1016/s0065-2911(09)05501-5] [Citation(s) in RCA: 293] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Of all the molecular determinants for growth, the hydronium and hydroxide ions are found naturally in the widest concentration range, from acid mine drainage below pH 0 to soda lakes above pH 13. Most bacteria and archaea have mechanisms that maintain their internal, cytoplasmic pH within a narrower range than the pH outside the cell, termed "pH homeostasis." Some mechanisms of pH homeostasis are specific to particular species or groups of microorganisms while some common principles apply across the pH spectrum. The measurement of internal pH of microbes presents challenges, which are addressed by a range of techniques under varying growth conditions. This review compares and contrasts cytoplasmic pH homeostasis in acidophilic, neutralophilic, and alkaliphilic bacteria and archaea under conditions of growth, non-growth survival, and biofilms. We present diverse mechanisms of pH homeostasis including cell buffering, adaptations of membrane structure, active ion transport, and metabolic consumption of acids and bases.
Collapse
|
12
|
Takemura Y, Tamura N, Imamura M, Koyama N. Role of the charged amino acid residues in the cytoplasmic loop between putative transmembrane segments 6 and 7 of Na+-ATPase of an alkaliphilic bacterium, Exiguobacterium aurantiacum. FEMS Microbiol Lett 2009; 299:143-8. [PMID: 19702882 DOI: 10.1111/j.1574-6968.2009.01740.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
ATPase activity of the membrane-bound Na(+)-ATPase of an alkaliphilic bacterium, Exiguobacterium aurantiacum, was measured in various concentrations of NaCl. Hill plot analysis showed a Hill number of 1.7 with 5.2 mM as the K(0.5) value for Na(+). When the site-directed mutagenesis of seven charged amino acid residues in the cytoplasmic loop (L6/7) between putative transmembrane segments 6 and 7 of the enzyme was conducted, all the mutated enzymes exhibited Hill numbers close to that of the wild-type enzyme (WT). When reconstituted with lecithin, all the mutants exhibited Na(+)-transport activity. While alanine substitution for several residues gave some significant effects on the enzyme function, the most remarkable effect was observed in the substitution for Glu-733. The K(0.5) value of E733A for Na(+) was 83.2 mM. The mutant exhibited only 8.5% of the ATPase activity and 54.0% of the energy-coupling efficiency for Na(+) transport as compared with those of WT, respectively. Drastic decreases of apparent affinity for Na(+) and energy efficiency of ion transport were also observed in E733K and E733T, respectively.
Collapse
Affiliation(s)
- Youhei Takemura
- Department of Chemistry, Faculty of Science, Chiba University, Chiba, Japan
| | | | | | | |
Collapse
|
13
|
Mulkidjanian AY, Dibrov P, Galperin MY. The past and present of sodium energetics: may the sodium-motive force be with you. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:985-92. [PMID: 18485887 DOI: 10.1016/j.bbabio.2008.04.028] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 04/18/2008] [Accepted: 04/18/2008] [Indexed: 10/22/2022]
Abstract
All living cells routinely expel Na(+) ions, maintaining lower concentration of Na(+) in the cytoplasm than in the surrounding milieu. In the vast majority of bacteria, as well as in mitochondria and chloroplasts, export of Na(+) occurs at the expense of the proton-motive force. Some bacteria, however, possess primary generators of the transmembrane electrochemical gradient of Na(+) (sodium-motive force). These primary Na(+) pumps have been traditionally seen as adaptations to high external pH or to high temperature. Subsequent studies revealed, however, the mechanisms for primary sodium pumping in a variety of non-extremophiles, such as marine bacteria and certain bacterial pathogens. Further, many alkaliphiles and hyperthermophiles were shown to rely on H(+), not Na(+), as the coupling ion. We review here the recent progress in understanding the role of sodium-motive force, including (i) the conclusion on evolutionary primacy of the sodium-motive force as energy intermediate, (ii) the mechanisms, evolutionary advantages and limitations of switching from Na(+) to H(+) as the coupling ion, and (iii) the possible reasons why certain pathogenic bacteria still rely on the sodium-motive force.
Collapse
|
14
|
De Souza AM, Carvalho TLG, Sabino PM, Vives D, Fontes CFL, Lopes AG, Caruso-Neves C. Characterization and partial isolation of ouabain-insensitive Na(+) -ATPase in MDCK I cells. Biochimie 2007; 89:1425-32. [PMID: 17614193 DOI: 10.1016/j.biochi.2007.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Accepted: 05/29/2007] [Indexed: 11/24/2022]
Abstract
We show that MDCK I cells express, besides the classical (Na(+)+K(+))ATPase, a Na(+)-stimulated ATPase activity with the following characteristics: (1) K(0.5) for Na(+) 7.5+/-1.5 mM and V(max) 23.12+/-1.1 nmol Pi/mg per min; (2) insensitive to 1 mM ouabain and 30 mM KCl; and (3) inhibited by furosemide and vanadate (IC(50) 42.1+/-8.0 and 4.3+/-0.3 microM, respectively). This enzyme forms a Na(+)-stimulated, furosemide- and hydroxylamine-sensitive ATP-driven acylphosphate phosphorylated intermediate with molecular weight of 100 kDa. Immunoprecipitation of the (Na(+)+K(+))ATPase with monoclonal anti-alpha(1) antibody reduced its activity in the supernatant by 90%; the Na(+)-ATPase activity was completely maintained. In addition, the formation of the Na(+)-stimulated, furosemide- and hydroxylamine-sensitive ATP-driven acylphosphate intermediate occurred at the same magnitude as that observed before immunoprecipitation. These data suggest that Na(+)-ATPase and (Na(+)+K(+))ATPase activities are independent, with Na(+)-ATPase belonging to a different enzyme entity.
Collapse
Affiliation(s)
- A M De Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
15
|
De Souza AM, Batista EJO, Pinheiro AADS, Carvalhaes M, Lopes AG, De Souza W, Caruso-Neves C. Entamoeba histolytica: ouabain-insensitive Na(+)-ATPase activity. Exp Parasitol 2007; 117:195-200. [PMID: 17574551 DOI: 10.1016/j.exppara.2007.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 04/19/2007] [Accepted: 04/24/2007] [Indexed: 11/18/2022]
Abstract
Our aim was to determine the presence of sodium pumps in Entamoeba histolytica. It is shown through the measurement of ouabain-sensitive ATPase activity and immunoblotting that E. histolytica does not express (Na(+)+K(+))ATPase. On the other hand, we observed a Na(+)-ATPase with the following characteristics: (1) stimulated by Na(+) or K(+), but these effects are not addictive; (2) the apparent affinity is similar for Na(+) and K(+) (K(0.5) = 13.3 +/- 3.7 and 15.4 +/- 3.1mM, respectively), as well as the V(max) (24.9 +/- 1.5 or 27.5 +/- 1.6 nmol Pi mg(-1)min(-1), respectively); (3) insensitive up to 2mM ouabain; and (4) inhibited by furosemide with an IC(50) of 0.12 +/- 0.004 mM. Furthermore, this enzyme forms a Na(+)- or K(+)-stimulated, furosemide- and hydroxylamine-sensitive ATP-driven acylphosphate phosphorylated intermediate.
Collapse
Affiliation(s)
- Aloa M De Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|