1
|
Sugita R, Guérineau V, Touboul D, Yoshizawa S, Takai K, Tomikawa C. tRNA Val allows four-way decoding with unmodified uridine at the wobble position in Lactobacillus casei. RNA (NEW YORK, N.Y.) 2024; 30:1608-1619. [PMID: 39255994 PMCID: PMC11571807 DOI: 10.1261/rna.080155.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
Modifications at the wobble position (position 34) of tRNA facilitate interactions that enable or stabilize non-Watson-Crick base pairs. In bacterial tRNA, 5-hydroxyuridine (ho5U) derivatives xo5U [x: methyl (mo5U), carboxymethyl (cmo5U), and methoxycarbonylmethyl (mcmo5U)] present at the wobble positions of tRNAs are responsible for the recognition of NYN codon families. These modifications of U34 allow base-pairing not only with A and G but also with U, and in some cases, C. mo5U was originally found in Gram-positive bacteria, and cmo5U and mcmo5U were found in Gram-negative bacteria. tRNAs of Mycoplasma species, mitochondria, and chloroplasts adopt four-way decoding in which unmodified U34 recognizes codons ending in A, G, C, and U. Lactobacillus casei, Gram-positive bacteria, and lactic acid bacteria lack the modification enzyme genes for xo5U biosynthesis. Nevertheless, L. casei has only one type of tRNAVal with the anticodon UAC [tRNAVal(UAC)]. However, the genome of L. casei encodes an undetermined tRNA (tRNAUnd) gene, and the sequence corresponding to the anticodon region is GAC. Here, we confirm that U34 in L. casei tRNAVal is unmodified and that there is no tRNAUnd expression in the cells. In addition, in vitro transcribed tRNAUnd was not aminoacylated by L. casei valyl-tRNA synthetase, suggesting that tRNAUnd is not able to accept valine, even if expressed in cells. Correspondingly, native tRNAVal(UAC) with unmodified U34 bound to all four valine codons in the ribosome A site. This suggests that L. casei tRNAVal decodes all valine codons by four-way decoding, similarly to tRNAs from Mycoplasma species, mitochondria, and chloroplasts.
Collapse
Affiliation(s)
- Riko Sugita
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Vincent Guérineau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - David Touboul
- Laboratoire de Chimie Moléculaire, CNRS UMR 9168, Ecole Polytechnique, IP-Paris, Route de Saclay, 91120 Palaiseau, France
| | - Satoko Yoshizawa
- Université Paris-Saclay, ENS Paris-Saclay, CNRS UMR8113, Laboratory of Biology and Applied Pharmacology (LBPA), 91190 Gif-sur-Yvette, France
| | - Kazuyuki Takai
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Chie Tomikawa
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
2
|
Soma A, Kubota A, Tomoe D, Ikeuchi Y, Kawamura F, Arimoto H, Shiwa Y, Kanesaki Y, Nanamiya H, Yoshikawa H, Suzuki T, Sekine Y. yaaJ, the tRNA-Specific Adenosine Deaminase, Is Dispensable in Bacillus subtilis. Genes (Basel) 2023; 14:1515. [PMID: 37628567 PMCID: PMC10454642 DOI: 10.3390/genes14081515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/11/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023] Open
Abstract
Post-transcriptional modifications of tRNA are crucial for their core function. The inosine (I; 6-deaminated adenosine) at the first position in the anticodon of tRNAArg(ICG) modulates the decoding capability and is generally considered essential for reading CGU, CGC, and CGA codons in eubacteria. We report here that the Bacillus subtilis yaaJ gene encodes tRNA-specific adenosine deaminase and is non-essential for viability. A β-galactosidase reporter assay revealed that the translational activity of CGN codons was not impaired in the yaaJ-deletion mutant. Furthermore, tRNAArg(CCG) responsible for decoding the CGG codon was dispensable, even in the presence or absence of yaaJ. These results strongly suggest that tRNAArg with either the anticodon ICG or ACG has an intrinsic ability to recognize all four CGN codons, providing a fundamental concept of non-canonical wobbling mediated by adenosine and inosine nucleotides in the anticodon. This is the first example of the four-way wobbling by inosine nucleotide in bacterial cells. On the other hand, the absence of inosine modification induced +1 frameshifting, especially at the CGA codon. Additionally, the yaaJ deletion affected growth and competency. Therefore, the inosine modification is beneficial for translational fidelity and proper growth-phase control, and that is why yaaJ has been actually conserved in B. subtilis.
Collapse
Affiliation(s)
- Akiko Soma
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Chiba 271-8510, Japan
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Atsushi Kubota
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Daisuke Tomoe
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Yoshiho Ikeuchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Fujio Kawamura
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Chiba 271-8510, Japan
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Hijiri Arimoto
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Yuh Shiwa
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo 156-8502, Japan
- Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Yu Kanesaki
- Shizuoka Instrumental Analysis Center, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hideaki Nanamiya
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
- Fukushima Translational Research Foundation, Capital Front Bldg., 7-4, 1-35, Sakae-machi, Fukushima 960-8031, Japan
| | - Hirofumi Yoshikawa
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yasuhiko Sekine
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
3
|
Diwan GD, Agashe D. Wobbling Forth and Drifting Back: The Evolutionary History and Impact of Bacterial tRNA Modifications. Mol Biol Evol 2019; 35:2046-2059. [PMID: 29846694 PMCID: PMC6063277 DOI: 10.1093/molbev/msy110] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Along with tRNAs, enzymes that modify anticodon bases are a key aspect of translation across the tree of life. tRNA modifications extend wobble pairing, allowing specific (“target”) tRNAs to recognize multiple codons and cover for other (“nontarget”) tRNAs, often improving translation efficiency and accuracy. However, the detailed evolutionary history and impact of tRNA modifying enzymes has not been analyzed. Using ancestral reconstruction of five tRNA modifications across 1093 bacteria, we show that most modifications were ancestral to eubacteria, but were repeatedly lost in many lineages. Most modification losses coincided with evolutionary shifts in nontarget tRNAs, often driven by increased bias in genomic GC and associated codon use, or by genome reduction. In turn, the loss of tRNA modifications stabilized otherwise highly dynamic tRNA gene repertoires. Our work thus traces the complex history of bacterial tRNA modifications, providing the first clear evidence for their role in the evolution of bacterial translation.
Collapse
Affiliation(s)
- Gaurav D Diwan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India.,SASTRA University, Thanjavur, India
| | - Deepa Agashe
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| |
Collapse
|
4
|
Reynolds NM, Vargas-Rodriguez O, Söll D, Crnković A. The central role of tRNA in genetic code expansion. Biochim Biophys Acta Gen Subj 2017; 1861:3001-3008. [PMID: 28323071 DOI: 10.1016/j.bbagen.2017.03.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/14/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND The development of orthogonal translation systems (OTSs) for genetic code expansion (GCE) has allowed for the incorporation of a diverse array of non-canonical amino acids (ncAA) into proteins. Transfer RNA, the central molecule in the translation of the genetic message into proteins, plays a significant role in the efficiency of ncAA incorporation. SCOPE OF REVIEW Here we review the biochemical basis of OTSs for genetic code expansion. We focus on the role of tRNA and discuss strategies used to engineer tRNA for the improvement of ncAA incorporation into proteins. MAJOR CONCLUSIONS The engineering of orthogonal tRNAs for GCE has significantly improved the incorporation of ncAAs. However, there are numerous unintended consequences of orthogonal tRNA engineering that cannot be predicted ab initio. GENERAL SIGNIFICANCE Genetic code expansion has allowed for the incorporation of a great diversity of ncAAs and novel chemistries into proteins, making significant contributions to our understanding of biological molecules and interactions. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
Affiliation(s)
- Noah M Reynolds
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA.
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA; Department of Chemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Ana Crnković
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA.
| |
Collapse
|
5
|
Liu LC, Grundy FJ, Henkin TM. Non-Conserved Residues in Clostridium acetobutylicum tRNA(Ala) Contribute to tRNA Tuning for Efficient Antitermination of the alaS T Box Riboswitch. Life (Basel) 2015; 5:1567-82. [PMID: 26426057 PMCID: PMC4695836 DOI: 10.3390/life5041567] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 11/16/2022] Open
Abstract
The T box riboswitch regulates expression of amino acid-related genes in Gram-positive bacteria by monitoring the aminoacylation status of a specific tRNA, the binding of which affects the folding of the riboswitch into mutually exclusive terminator or antiterminator structures. Two main pairing interactions between the tRNA and the leader RNA have been demonstrated to be necessary, but not sufficient, for efficient antitermination. In this study, we used the Clostridium acetobutylicum alaS gene, which encodes alanyl-tRNA synthetase, to investigate the specificity of the tRNA response. We show that the homologous C. acetobutylicum tRNAAla directs antitermination of the C. acetobutylicum alaS gene in vitro, but the heterologous Bacillus subtilis tRNAAla (with the same anticodon and acceptor end) does not. Base substitutions at positions that vary between these two tRNAs revealed synergistic and antagonistic effects. Variation occurs primarily at positions that are not conserved in tRNAAla species, which indicates that these non-conserved residues contribute to optimal antitermination of the homologous alaS gene. This study suggests that elements in tRNAAla may have coevolved with the homologous alaS T box leader RNA for efficient antitermination.
Collapse
Affiliation(s)
- Liang-Chun Liu
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| | - Frank J Grundy
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| | - Tina M Henkin
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
6
|
Brill J, Hoffmann T, Putzer H, Bremer E. T-box-mediated control of the anabolic proline biosynthetic genes of Bacillus subtilis. Microbiology (Reading) 2011; 157:977-987. [DOI: 10.1099/mic.0.047357-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacillus subtilis possesses interlinked routes for the synthesis of proline. The ProJ–ProA–ProH route is responsible for the production of proline as an osmoprotectant, and the ProB–ProA–ProI route provides proline for protein synthesis. We show here that the transcription of the anabolic proBA and proI genes is controlled in response to proline limitation via a T-box-mediated termination/antitermination regulatory mechanism, a tRNA-responsive riboswitch. Primer extension analysis revealed mRNA leader transcripts of 270 and 269 nt for the proBA and proI genes, respectively, both of which are synthesized from SigA-type promoters. These leader transcripts are predicted to fold into two mutually exclusive secondary mRNA structures, forming either a terminator or an antiterminator configuration. Northern blot analysis allowed the detection of both the leader and the full-length proBA and proI transcripts. Assessment of the level of the proBA transcripts revealed that the amount of the full-length mRNA species strongly increased in proline-starved cultures. Genetic studies with a proB–treA operon fusion reporter strain demonstrated that proBA transcription is sensitively tied to proline availability and is derepressed as soon as cellular starvation for proline sets in. Both the proBA and the proI leader sequences contain a CCU proline-specific specifier codon prone to interact with the corresponding uncharged proline-specific tRNA. By replacing the CCU proline specifier codon in the proBA T-box leader with UUC, a codon recognized by a Phe-specific tRNA, we were able to synthetically re-engineer the proline-specific control of proBA transcription to a control that was responsive to starvation for phenylalanine.
Collapse
Affiliation(s)
- Jeanette Brill
- Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, Karl-von-Frisch-Str. 8, D-35032 Marburg, Germany
| | - Tamara Hoffmann
- Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, Karl-von-Frisch-Str. 8, D-35032 Marburg, Germany
| | - Harald Putzer
- CNRS UPR 9073 Insitut de Biologie Physico-Chimique (affiliated with Université de Paris 7 – Denis Diderot), 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Erhard Bremer
- Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, Karl-von-Frisch-Str. 8, D-35032 Marburg, Germany
| |
Collapse
|
7
|
Auzat I, Dröge A, Weise F, Lurz R, Tavares P. Origin and function of the two major tail proteins of bacteriophage SPP1. Mol Microbiol 2008; 70:557-69. [PMID: 18786146 DOI: 10.1111/j.1365-2958.2008.06435.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The majority of bacteriophages have a long non-contractile tail (Siphoviridae) that serves as a conduit for viral DNA traffic from the phage capsid to the host cell at the beginning of infection. The 160-nm-long tail tube of Bacillus subtilis bacteriophage SPP1 is shown to be composed of two major tail proteins (MTPs), gp17.1 and gp17.1*, at a ratio of about 3:1. They share a common amino-terminus, but the latter species has approximately 10 kDa more than gp17.1. A CCC.UAA sequence with overlapping proline codons at the 3' end of gene 17.1 drives a programmed translational frameshift to another open reading frame. The recoding event generates gp17.1*. Phages carrying exclusively gp17.1 or gp17.1* are viable, but tails are structurally distinct. gp17.1 and the carboxyl-terminus of gp17.1* have a distinct evolutionary history correlating with different functions: the polypeptide sequence identical in the two proteins is responsible for assembly of the tail tube while the additional module of gp17.1* shields the structure exterior exposed to the environment. The carboxyl-terminal extension is an elaboration present in some tailed bacteriophages. Different extensions were found to combine in a mosaic fashion with the MTP essential module in a subset of Siphoviridae genomes.
Collapse
Affiliation(s)
- Isabelle Auzat
- Unité de Virologie Moléculaire et Structurale, CNRS UMR 2472, INRA UMR1157 and IFR 115, Bâtiment 14B, CNRS, 91198 Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
8
|
Ledoux S, Uhlenbeck OC. Different aa-tRNAs are selected uniformly on the ribosome. Mol Cell 2008; 31:114-23. [PMID: 18614050 DOI: 10.1016/j.molcel.2008.04.026] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 01/16/2008] [Accepted: 04/25/2008] [Indexed: 10/21/2022]
Abstract
Ten E. coli aminoacyl-tRNAs (aa-tRNAs) were assessed for their ability to decode cognate codons on E. coli ribosomes by using three assays that evaluate the key steps in the decoding pathway. Despite a wide variety of structural features, each aa-tRNA exhibited similar kinetic and thermodynamic properties in each assay. This surprising kinetic and thermodynamic uniformity is likely to reflect the importance of ribosome conformational changes in defining the rates and affinities of the decoding process as well as the evolutionary "tuning" of each aa-tRNA sequence to modify their individual interactions with the ribosome at each step.
Collapse
Affiliation(s)
- Sarah Ledoux
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208, USA
| | | |
Collapse
|
9
|
Näsvall SJ, Chen P, Björk GR. The wobble hypothesis revisited: uridine-5-oxyacetic acid is critical for reading of G-ending codons. RNA (NEW YORK, N.Y.) 2007; 13:2151-64. [PMID: 17942742 PMCID: PMC2080601 DOI: 10.1261/rna.731007] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 08/29/2007] [Indexed: 05/24/2023]
Abstract
According to Crick's wobble hypothesis, tRNAs with uridine at the wobble position (position 34) recognize A- and G-, but not U- or C-ending codons. However, U in the wobble position is almost always modified, and Salmonella enterica tRNAs containing the modified nucleoside uridine-5-oxyacetic acid (cmo(5)U34) at this position are predicted to recognize U- (but not C-) ending codons, in addition to A- and G-ending codons. We have constructed a set of S. enterica mutants with only the cmo(5)U-containing tRNA left to read all four codons in the proline, alanine, valine, and threonine family codon boxes. From the phenotypes of these mutants, we deduce that the proline, alanine, and valine tRNAs containing cmo(5)U read all four codons including the C-ending codons, while the corresponding threonine tRNA does not. A cmoB mutation, leading to cmo(5)U deficiency in tRNA, was introduced. Monitoring A-site selection rates in vivo revealed that the presence of cmo(5)U34 stimulated the reading of CCU and CCC (Pro), GCU (Ala), and GUC (Val) codons. Unexpectedly, cmo(5)U is critical for efficient decoding of G-ending Pro, Ala, and Val codons. Apparently, whereas G34 pairs with U in mRNA, the reverse pairing (U34-G) requires a modification of U34.
Collapse
Affiliation(s)
- S Joakim Näsvall
- Department of Molecular Biology, Umeå University, S-901 87 Umeå, Sweden
| | | | | |
Collapse
|
10
|
Takai K. Classification of the possible pairs between the first anticodon and the third codon positions based on a simple model assuming two geometries with which the pairing effectively potentiates the decoding complex. J Theor Biol 2006; 242:564-80. [PMID: 16764891 DOI: 10.1016/j.jtbi.2006.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 02/11/2006] [Accepted: 04/11/2006] [Indexed: 11/24/2022]
Abstract
Crick's wobble theory states that some specific pairs between the bases at the first position of the anticodon (position 34) and the third position of the codon (position III) are allowed and the others are disallowed during the correct codon recognition. However, later researches have shown that the pairing rule, or the wobble rule, is different from the supposed one. Despite the continuing efforts including computer-aided model building studies and analyses of three-dimensional structures in the crystals of the ribosomes, the structural backgrounds of the wobble rule are still unclear. Here, I classify the possible pairs into 6 classes according to the increases accompanying the formation of the pairs in the potential productivity of the decoding complex on the basis of a simple model that was originally proposed previously and is refined here. In the model, the conformation with the base at position 34 displaced toward the minor groove side from the position for the Watson-Crick pairs is supposed to be equivalent to the conformation with the Watson-Crick pairs. It is also reasoned and supposed that some weak pairs may sometimes be allowed depending on the structural context. It is demonstrated that most of the experimental results reported so far are consistent with the model. I discuss on which experimental facts can be reasoned with the model and which need further explanations. I expect that the model will be a good basis for further understanding of the wobble rule and its structural backgrounds.
Collapse
Affiliation(s)
- Kazuyuki Takai
- Cell-free Science and Technology Research Center, Ehime University, 3, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|