1
|
James A, Paul JY, Souvan J, Cooper T, Dale J, Harding R, Deo P. Assessment of root-specific promoters in banana and tobacco and identification of a banana TIP2 promoter with strong root activity. FRONTIERS IN PLANT SCIENCE 2022; 13:1009487. [PMID: 36275524 PMCID: PMC9581176 DOI: 10.3389/fpls.2022.1009487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Genetic modification is one possible strategy to generate bananas (Musa spp.) with resistance to the soil-borne pathogen causing Fusarium wilt. The availability of banana root-specific promoters to target transgene expression to the sites of infection would be beneficial. We have assessed 18 promoter sequences derived from a range of plant species for their expression profiles in banana tissues to identify those with root-specific activity. Promoter sequences were isolated and fused to the β-glucuronidase (GUS) gene to assess their expression levels and tissue specificity in both banana and the model plant tobacco. Two heterologous promoters conferring high root expression levels in banana were identified, including a β-glucosidase 1 (GLU1) promoter from maize and the RB7-type tonoplast intrinsic protein (TIP)-2 promoter from strawberry. Further, a novel Musa TIP2-2 promoter sequence was isolated and characterized which, when fused to the GUS gene, conferred very high GUS expression levels in banana roots. These promoters will expand the options for the control of gene expression in genetically modified bananas, providing a tool to develop plants with resistance not only to soil-borne diseases such as Fusarium wilt, but also for the improvement of other traits, such as nematode resistance, nutrition or abiotic stress resistance.
Collapse
|
2
|
Cai T, Chen H, Yan L, Zhang C, Deng Y, Wu S, Yang Q, Pan R, Raza A, Chen S, Zhuang W. The root-specific NtR12 promoter-based expression of RIP increased the resistance against bacterial wilt disease in tobacco. Mol Biol Rep 2022; 49:11503-11514. [PMID: 36097128 DOI: 10.1007/s11033-022-07817-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/21/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Tobacco is an important economic crop, but the quality and yield have been severely impaired by bacterial wilt disease (BWD) caused by Ralstonia solanacearum. METHODS AND RESULTS Here, we describe a transgenic approach to prevent BWD in tobacco plants. A new root-specific promoter of an NtR12 gene was successfully cloned. The NtR12 promoter drove GUS reporter gene expression to a high level in roots but to less extent in stems, and no significant expression was detected in leaves. The Ribosome-inactivating proteins (RIP) gene from Momordica charantia was also cloned, and its ability to inhibit Ralstonia solanacearum was evaluated using RIP protein produced by the prokaryotic expression system. The RIP gene was constructed downstream of the NtR12 promoter and transformed into the tobacco cultivar "Cuibi No. 1" (CB-1), resulting in many descendants. The resistance against BWD was significantly improved in transgenic tobacco lines expressing NtR12::RIP. CONCLUSION This study confirms that the RIP gene confers resistance to BWD and the NtR12 as a new promoter for its specific expression in root and stem. Our findings pave a novel avenue for transgenic engineering to prevent the harmful impact of diseases and pests in roots and stems.
Collapse
Affiliation(s)
- Tiecheng Cai
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China.,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hua Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China.,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liming Yan
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Chong Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China.,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ye Deng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China.,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shengxin Wu
- Fujian Province Bureau of Tobacco, Tobacco Agriculture and Scientific Research Institute, Fuzhou, 350001, Fujian, China
| | - Qiang Yang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China.,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ronglong Pan
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsin Chu, 30013, Taiwan
| | - Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Shunhui Chen
- Fujian Province Bureau of Tobacco, Tobacco Agriculture and Scientific Research Institute, Fuzhou, 350001, Fujian, China.
| | - Weijian Zhuang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China. .,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
3
|
Kudo H, Matsuo M, Satoh S, Hata T, Hachisu R, Nakamura M, Yamamoto YY, Kimura H, Matsui M, Obokata J. Cryptic promoter activation occurs by at least two different mechanisms in the Arabidopsis genome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:29-39. [PMID: 34252235 DOI: 10.1111/tpj.15420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
In gene-trap screening of plant genomes, promoterless reporter constructs are often expressed without trapping of annotated gene promoters. The molecular basis of this phenomenon, which has been interpreted as the trapping of cryptic promoters, is poorly understood. Here, we found that cryptic promoter activation occurs by at least two different mechanisms using Arabidopsis gene-trap lines in which a firefly luciferase (LUC) open reading frame (ORF) without an apparent promoter sequence was expressed from intergenic regions: one mechanism is 'cryptic promoter capturing', in which the LUC ORF captured pre-existing promoter-like chromatin marked by H3K4me3 and H2A.Z, and the other is 'promoter de novo origination', in which the promoter chromatin was newly formed near the 5' end of the inserted LUC ORF. The latter finding raises a question as to how the inserted LUC ORF sequence is involved in this phenomenon. To examine this, we performed a model experiment with chimeric LUC genes in transgenic plants. Using Arabidopsis psaH1 promoter-LUC constructs, we found that the functional core promoter region, where transcription start sites (TSSs) occur, cannot simply be determined by the upstream nor core promoter sequences; rather, its positioning proximal to the inserted LUC ORF sequence was more critical. This result suggests that the insertion of the coding sequence alters the local distribution of TSSs in the plant genome. The possible impact of the two types of cryptic promoter activation mechanisms on plant genome evolution and endosymbiotic gene transfer is discussed.
Collapse
Affiliation(s)
- Hisayuki Kudo
- Center for G Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Mitsuhiro Matsuo
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Sakyo-ku, Kyoto, 606-8522, Japan
| | - Soichirou Satoh
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Sakyo-ku, Kyoto, 606-8522, Japan
| | - Takayuki Hata
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Sakyo-ku, Kyoto, 606-8522, Japan
| | - Rei Hachisu
- Center for G Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Masayuki Nakamura
- Center for G Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Yoshiharu Y Yamamoto
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagito, Gihu-shi, Gifu, 501-1193, Japan
| | - Hiroshi Kimura
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama City, Kanagawa, 226-8501, Japan
| | - Minami Matsui
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Junichi Obokata
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Sakyo-ku, Kyoto, 606-8522, Japan
| |
Collapse
|
4
|
Lo SF, Fan MJ, Hsing YI, Chen LJ, Chen S, Wen IC, Liu YL, Chen KT, Jiang MJ, Lin MK, Rao MY, Yu LC, Ho THD, Yu SM. Genetic resources offer efficient tools for rice functional genomics research. PLANT, CELL & ENVIRONMENT 2016; 39:998-1013. [PMID: 26301381 DOI: 10.1111/pce.12632] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/13/2015] [Accepted: 08/16/2015] [Indexed: 05/07/2023]
Abstract
Rice is an important crop and major model plant for monocot functional genomics studies. With the establishment of various genetic resources for rice genomics, the next challenge is to systematically assign functions to predicted genes in the rice genome. Compared with the robustness of genome sequencing and bioinformatics techniques, progress in understanding the function of rice genes has lagged, hampering the utilization of rice genes for cereal crop improvement. The use of transfer DNA (T-DNA) insertional mutagenesis offers the advantage of uniform distribution throughout the rice genome, but preferentially in gene-rich regions, resulting in direct gene knockout or activation of genes within 20-30 kb up- and downstream of the T-DNA insertion site and high gene tagging efficiency. Here, we summarize the recent progress in functional genomics using the T-DNA-tagged rice mutant population. We also discuss important features of T-DNA activation- and knockout-tagging and promoter-trapping of the rice genome in relation to mutant and candidate gene characterizations and how to more efficiently utilize rice mutant populations and datasets for high-throughput functional genomics and phenomics studies by forward and reverse genetics approaches. These studies may facilitate the translation of rice functional genomics research to improvements of rice and other cereal crops.
Collapse
Affiliation(s)
- Shuen-Fang Lo
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan, ROC
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan, ROC
| | - Ming-Jen Fan
- Department of Biotechnology, Asia University, Lioufeng Road, Wufeng, Taichung, 413, Taiwan, ROC
| | - Yue-Ie Hsing
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115, Taiwan, ROC
| | - Liang-Jwu Chen
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan, ROC
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 402, Taiwan, ROC
| | - Shu Chen
- Plant Germplasm Division, Taiwan Agricultural Research Institute, Wufeng, Taichung, 413, Taiwan, ROC
| | - Ien-Chie Wen
- Plant Germplasm Division, Taiwan Agricultural Research Institute, Wufeng, Taichung, 413, Taiwan, ROC
| | - Yi-Lun Liu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan, ROC
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan, ROC
| | - Ku-Ting Chen
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan, ROC
| | - Mirng-Jier Jiang
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan, ROC
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan, ROC
| | - Ming-Kuang Lin
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan, ROC
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan, ROC
| | - Meng-Yen Rao
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan, ROC
| | - Lin-Chih Yu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan, ROC
| | - Tuan-Hua David Ho
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan, ROC
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115, Taiwan, ROC
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan, ROC
| | - Su-May Yu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan, ROC
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan, ROC
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan, ROC
| |
Collapse
|
5
|
Gupta NC, Jain PK, Bhat SR, Srinivasan R. Upstream sequence of fatty acyl-CoA reductase (FAR6) of Arabidopsis thaliana drives wound-inducible and stem-specific expression. PLANT CELL REPORTS 2012; 31:839-850. [PMID: 22189440 DOI: 10.1007/s00299-011-1205-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 11/23/2011] [Accepted: 12/03/2011] [Indexed: 05/31/2023]
Abstract
An Arabidopsis mutant line T90, exhibiting a stem-specific and wound-responsive GUS expression was identified from a population of Arabidopsis thaliana tagged with a promoterless β-glucuronidase (GUS) in the T-DNA. Sequence flanking the insertion from the right border was amplified by TAIL PCR and cloned. The insertion was located in the third chromosome, 57 bp upstream of the ATG start codon in 5' untranslated region (UTR) of the fatty acyl-CoA reductase 6 (FAR6) gene. RT-PCR analysis of the FAR6 gene revealed that the gene is expressed predominantly in stem tissue. Semi-quantitative RT-PCR showed that the expression is also induced by wounding in the epidermal layer of mature stem internodes. The transcription initiation site (TSS) was identified by 5' RACE PCR. Different 5' deletion fragments of the promoter sequences were developed and linked to the GUS reporter gene as transcriptional fusions and the expression patterns of GUS were histochemically analyzed in transgenic Arabidopsis plants. Sequences from -510 bp upstream to the transcriptional start site were sufficient to exhibit wound-inducible GUS expression in the stems. The addition of further upstream sequences (-510 to -958, -1,400 or -1,456) enhanced and extended the wound-inducible GUS expression throughout the mature stem.
Collapse
Affiliation(s)
- Navin Chandra Gupta
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | | | | |
Collapse
|
6
|
Santos E, Remy S, Thiry E, Windelinckx S, Swennen R, Sági L. Characterization and isolation of a T-DNA tagged banana promoter active during in vitro culture and low temperature stress. BMC PLANT BIOLOGY 2009; 9:77. [PMID: 19552803 PMCID: PMC2709630 DOI: 10.1186/1471-2229-9-77] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Accepted: 06/24/2009] [Indexed: 05/10/2023]
Abstract
BACKGROUND Next-generation transgenic plants will require a more precise regulation of transgene expression, preferably under the control of native promoters. A genome-wide T-DNA tagging strategy was therefore performed for the identification and characterization of novel banana promoters. Embryogenic cell suspensions of a plantain-type banana were transformed with a promoterless, codon-optimized luciferase (luc+) gene and low temperature-responsive luciferase activation was monitored in real time. RESULTS Around 16,000 transgenic cell colonies were screened for baseline luciferase activity at room temperature 2 months after transformation. After discarding positive colonies, cultures were re-screened in real-time at 26 degrees C followed by a gradual decrease to 8 degrees C. The baseline activation frequency was 0.98%, while the frequency of low temperature-responsive luciferase activity was 0.61% in the same population of cell cultures. Transgenic colonies with luciferase activity responsive to low temperature were regenerated to plantlets and luciferase expression patterns monitored during different regeneration stages. Twenty four banana DNA sequences flanking the right T-DNA borders in seven independent lines were cloned via PCR walking. RT-PCR analysis in one line containing five inserts allowed the identification of the sequence that had activated luciferase expression under low temperature stress in a developmentally regulated manner. This activating sequence was fused to the uidA reporter gene and back-transformed into a commercial dessert banana cultivar, in which its original expression pattern was confirmed. CONCLUSION This promoter tagging and real-time screening platform proved valuable for the identification of novel promoters and genes in banana and for monitoring expression patterns throughout in vitro development and low temperature treatment. Combination of PCR walking techniques was efficient for the isolation of candidate promoters even in a multicopy T-DNA line. Qualitative and quantitative GUS expression analyses of one tagged promoter in a commercial cultivar demonstrated a reproducible promoter activity pattern during in vitro culture. Thus, this promoter could be used during in vitro selection and generation of commercial transgenic plants.
Collapse
Affiliation(s)
- Efrén Santos
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 13, B-3001 Leuven, Belgium
- Current address: Centro de Investigaciones Biotecnológicas del Ecuador, Escuela Superior Politécnica del Litoral (ESPOL), Campus Gustavo Galindo, Km. 30.5 vía Perimetral, Apartado 09-01-5863, Guayaquil, Ecuador
| | - Serge Remy
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 13, B-3001 Leuven, Belgium
| | - Els Thiry
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 13, B-3001 Leuven, Belgium
| | - Saskia Windelinckx
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 13, B-3001 Leuven, Belgium
| | - Rony Swennen
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 13, B-3001 Leuven, Belgium
| | - László Sági
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 13, B-3001 Leuven, Belgium
| |
Collapse
|
7
|
Manavella PA, Dezar CA, Ariel FD, Chan RL. Two ABREs, two redundant root-specific and one W-box cis-acting elements are functional in the sunflower HAHB4 promoter. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:860-7. [PMID: 18586510 DOI: 10.1016/j.plaphy.2008.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Indexed: 05/04/2023]
Abstract
HAHB4 is a sunflower gene encoding a homeodomain-leucine zipper (HD-Zip) transcription factor. It was previously demonstrated that this gene is regulated at the transcriptional level by several abiotic factors and hormones. A previous analysis in the PLACE database revealed the presence of four putative ABREs. In this work these four elements and also one W-box and two root-specific expression elements were characterized as functional. Site-directed mutagenesis on the promoter, stable transformation of Arabidopis plants as well as transient transformation of sunflower leaves, were performed. The analysis of the transformants was carried out by histochemistry and real time RT-PCR. The results indicate that just one ABRE out of the four is responsible for ABA, NaCl and drought regulation. However, NaCl induction occurs also by an additional ABA-independent way involving another two overlapped ABREs. On the other hand, it was determined that the W-box located 5' upstream is responsive to ethylene and only two root-specific expression elements, among the several detected, are functional but redundant. Conservation of molecular mechanisms between sunflower and Arabidopsis is strongly supported by this experimental work.
Collapse
Affiliation(s)
- Pablo A Manavella
- Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CC 242 Paraje El Pozo, 3000 Santa Fe, Argentina
| | | | | | | |
Collapse
|
8
|
Abstract
Promoter trapping is a particular gene trap strategy that represents a valuable tool for the discovery of specific cell-type markers. The principle is to generate a collection of transgenic lines with random insertions of a promoter-less reporter gene and to screen for specific reporter activity in the domain of interest. The use of beta-glucuronidase (GUS) as a reporter gene provides a simple and sensitive assay that allows identification of very restricted expression patterns and makes the promoter trap appropriate to study embryogenesis. Plant embryogenesis starts at the fertilization of the egg cell encapsulated in the maternal tissue and leads to the establishment of a new organism capable of an autonomous life. Uncovering genes specifically expressed in sub-domain of the embryo during its development represents a major technical challenge due, in part, to size and accessibility limitations. Promoter trapping approaches have been successfully used to overcome these problems. The trapped activity represents thereafter a useful genetic marker of the uncovered cell type, which is expected to reveal the properties of a specific promoter shedding light on a new gene function. In this chapter, protocols for examining and documenting GUS reporter gene activities in the embryo are described. Methods for the amplification of sequences flanking insertions and subsequent molecular and genetic characterization are provided.
Collapse
|
9
|
Identification of a root-specific glycosyltransferase from Arabidopsis and characterization of its promoter. J Biosci 2008; 33:185-93. [DOI: 10.1007/s12038-008-0036-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Galbiati M, Simoni L, Pavesi G, Cominelli E, Francia P, Vavasseur A, Nelson T, Bevan M, Tonelli C. Gene trap lines identify Arabidopsis genes expressed in stomatal guard cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:750-62. [PMID: 18036199 DOI: 10.1111/j.1365-313x.2007.03371.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We employed a gene trap approach to identify genes expressed in stomatal guard cells of Arabidopsis thaliana. We examined patterns of reporter gene expression in approximately 20,000 gene trap lines, and recovered five lines with exclusive or preferential expression in stomata. The screen yielded two insertions in annotated genes, encoding the CYTOCHROME P450 86A2 (CYP86A2) mono-oxygenase, and the PLEIOTROPIC DRUG RESISTANCE 3 (AtPDR3) transporter. Expression of the trapped genes in guard cells was confirmed by RT-PCR experiments in purified stomata. Examination of homozygous mutant lines revealed that abscisic acid (ABA)-induced stomatal closure was impaired in the atpdr3 mutant. In three lines, insertions occurred outside transcribed units. Expression analysis of the genes surrounding the trapping inserts identified two genes selectively expressed in guard cells, corresponding to a PP2C PROTEIN PHOSPHATASE and an unknown expressed protein gene. Statistical analyses of the chromosomal regions tagged by the gene trap insertions revealed an over-represented [A/T]AAAG motif, previously described as an essential cis-active element for gene expression in stomata. The lines described in this work identify novel genes involved in the modulation of stomatal activity, provide useful markers for the study of developmental pathways in guard cells, and are a valuable source of guard cell-specific promoters.
Collapse
Affiliation(s)
- Massimo Galbiati
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20 133 Milano, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|