1
|
Whisper mutations: cryptic messages within the genetic code. Oncogene 2015; 35:3753-9. [PMID: 26657150 DOI: 10.1038/onc.2015.454] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/28/2015] [Accepted: 10/28/2015] [Indexed: 01/17/2023]
Abstract
Recent years have seen a great expansion in our understandings of how silent mutations can drive a disease and that mRNAs are not only mere messengers between the genome and the encoded proteins but also encompass regulatory activities. This review focuses on how silent mutations within open reading frames can affect the functional properties of the encoded protein. We describe how mRNAs exert control of cell biological processes governed by the encoded proteins via translation kinetics, protein folding, mRNA stability, spatio-temporal protein expression and by direct interactions with cellular factors. These examples illustrate how additional levels of information lie within the coding sequences and that the degenerative genetic code is not redundant and have co-evolved with the encoded proteins. Hence, so called synonymous mutations are not always silent but 'whisper'.
Collapse
|
2
|
Barnes M, van Rensburg G, Li WM, Mehmood K, Mackedenski S, Chan CM, King DT, Miller AL, Lee CH. Molecular insights into the coding region determinant-binding protein-RNA interaction through site-directed mutagenesis in the heterogeneous nuclear ribonucleoprotein-K-homology domains. J Biol Chem 2014; 290:625-39. [PMID: 25389298 DOI: 10.1074/jbc.m114.614735] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ability of its four heterogeneous nuclear RNP-K-homology (KH) domains to physically associate with oncogenic mRNAs is a major criterion for the function of the coding region determinant-binding protein (CRD-BP). However, the particular RNA-binding role of each of the KH domains remains largely unresolved. Here, we mutated the first glycine to an aspartate in the universally conserved GXXG motif of the KH domain as an approach to investigate their role. Our results show that mutation of a single GXXG motif generally had no effect on binding, but the mutation in any two KH domains, with the exception of the combination of KH3 and KH4 domains, completely abrogated RNA binding in vitro and significantly retarded granule formation in zebrafish embryos, suggesting that any combination of at least two KH domains cooperate in tandem to bind RNA efficiently. Interestingly, we found that any single point mutation in one of the four KH domains significantly impacted CRD-BP binding to mRNAs in HeLa cells, suggesting that the dynamics of the CRD-BP-mRNA interaction vary over time in vivo. Furthermore, our results suggest that different mRNAs bind preferentially to distinct CRD-BP KH domains. The novel insights revealed in this study have important implications on the understanding of the oncogenic mechanism of CRD-BP as well as in the future design of inhibitors against CRD-BP function.
Collapse
Affiliation(s)
- Mark Barnes
- From the Chemistry Program, University of Northern British Columbia, Prince George, British Columbia V2N 4Z9, Canada
| | - Gerrit van Rensburg
- From the Chemistry Program, University of Northern British Columbia, Prince George, British Columbia V2N 4Z9, Canada
| | - Wai-Ming Li
- From the Chemistry Program, University of Northern British Columbia, Prince George, British Columbia V2N 4Z9, Canada
| | - Kashif Mehmood
- From the Chemistry Program, University of Northern British Columbia, Prince George, British Columbia V2N 4Z9, Canada
| | - Sebastian Mackedenski
- From the Chemistry Program, University of Northern British Columbia, Prince George, British Columbia V2N 4Z9, Canada
| | - Ching-Man Chan
- the Division of Life Science and The Key State Laboratory for Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, and
| | - Dustin T King
- From the Chemistry Program, University of Northern British Columbia, Prince George, British Columbia V2N 4Z9, Canada
| | - Andrew L Miller
- the Division of Life Science and The Key State Laboratory for Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, and the Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| | - Chow H Lee
- From the Chemistry Program, University of Northern British Columbia, Prince George, British Columbia V2N 4Z9, Canada,
| |
Collapse
|
3
|
Eukaryotic mRNA decay: methodologies, pathways, and links to other stages of gene expression. J Mol Biol 2013; 425:3750-75. [PMID: 23467123 DOI: 10.1016/j.jmb.2013.02.029] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/24/2013] [Accepted: 02/26/2013] [Indexed: 01/15/2023]
Abstract
mRNA concentration depends on the balance between transcription and degradation rates. On both sides of the equilibrium, synthesis and degradation show, however, interesting differences that have conditioned the evolution of gene regulatory mechanisms. Here, we discuss recent genome-wide methods for determining mRNA half-lives in eukaryotes. We also review pre- and posttranscriptional regulons that coordinate the fate of functionally related mRNAs by using protein- or RNA-based trans factors. Some of these factors can regulate both transcription and decay rates, thereby maintaining proper mRNA homeostasis during eukaryotic cell life.
Collapse
|
4
|
Endoribonuclease activity of human apurinic/apyrimidinic endonuclease 1 revealed by a real-time fluorometric assay. Anal Biochem 2009; 398:69-75. [PMID: 19932678 DOI: 10.1016/j.ab.2009.11.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 10/22/2009] [Accepted: 11/16/2009] [Indexed: 11/21/2022]
Abstract
Apurinic/apyrimidinic endonuclease 1 (APE1) is a multifunctional enzyme with a well-established abasic DNA cleaving activity in the base excision DNA repair pathway and in providing redox activity to several well-known transcription factors. APE1 has recently been shown to cleave at the UA, CA, and UG sites of c-myc RNA in vitro and regulates c-myc messenger RNA (mRNA) in cells. To further understand this new endoribonuclease activity of APE1, we have developed an accurate, sensitive, and rapid real-time endonuclease assay based on a fluorogenic oligodeoxynucleotide substrate with a single ribonucleotide. Using this substrate, we carried out the first kinetic analysis of APE1 endoribonuclease activity. We found that the purified native APE1 cleaves the fluorogenic substrate efficiently, as revealed by a k(cat)/K(m) of 2.62x10(6)M(-1)s(-1), a value that is only 71-fold lower than that obtained with the potent bovine pancreatic RNase A. Ion concentrations ranging from 0.2 to 2mM Mg2+ promoted catalysis, whereas 10 to 20mM Mg2+ was inhibitory to the RNA-cleaving activity of APE1. The monovalent cation K+ was inhibitory except at 20mM, where it significantly stimulated recombinant APE1 activity. These results demonstrate rapid and specific endoribonucleolytic cleavage by APE1 and support the notion that this activity is a previously undefined function of APE1.
Collapse
|
5
|
Elcheva I, Goswami S, Noubissi FK, Spiegelman VS. CRD-BP protects the coding region of betaTrCP1 mRNA from miR-183-mediated degradation. Mol Cell 2009; 35:240-6. [PMID: 19647520 DOI: 10.1016/j.molcel.2009.06.007] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 05/05/2009] [Accepted: 06/08/2009] [Indexed: 01/23/2023]
Abstract
miRNAs are largely known to base pair with the 3'UTR of target mRNAs, downregulating their stability and translation. mRNA of betaTrCP1 ubiquitin ligase is very unstable, but unlike the majority of mRNAs where 3'UTR determines the rate of mRNA turnover, betaTrCP1 mRNA contains cis-acting destabilizing elements within its coding region. Here we show that degradation of mRNA of betaTrCP1 is miRNA dependent and identify miR-183 as a microRNA that interacts with the coding region of betaTrCP1 mRNA. Argonaute2 interacts with the same region of betaTrCP1 mRNA in an miR-183-dependent manner. Inhibition of miR-183 function or disruption of the miR-183-binding site stabilizes betaTrCP1 mRNA and elevates betaTrCP1 levels, resulting in activation of the SCF(betaTrCP) E3 ubiquitin ligase. We previously showed that the RNA-binding protein CRD-BP binds to the coding region of betaTrCP1 mRNA and stabilizes it. Here we demonstrate that CRD-BP prevents degradation of betaTrCP1 mRNA by attenuating its miR-183-dependent interaction with Ago2.
Collapse
Affiliation(s)
- Irina Elcheva
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
6
|
Barnes T, Kim WC, Mantha AK, Kim SE, Izumi T, Mitra S, Lee CH. Identification of Apurinic/apyrimidinic endonuclease 1 (APE1) as the endoribonuclease that cleaves c-myc mRNA. Nucleic Acids Res 2009; 37:3946-58. [PMID: 19401441 PMCID: PMC2709568 DOI: 10.1093/nar/gkp275] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 04/01/2009] [Accepted: 04/13/2009] [Indexed: 11/28/2022] Open
Abstract
Endonucleolytic cleavage of the coding region determinant (CRD) of c-myc mRNA appears to play a critical role in regulating c-myc mRNA turnover. Using (32)P-labeled c-myc CRD RNA as substrate, we have purified and identified two endoribonucleases from rat liver polysomes that are capable of cleaving the transcript in vitro. A 17-kDa enzyme was identified as RNase1. Apurinic/apyrimidinic (AP) DNA endonuclease 1 (APE1) was identified as the 35-kDa endoribonuclease that preferentially cleaves in between UA and CA dinucleotides of c-myc CRD RNA. APE1 was further confirmed to be the 35-kDa endoribonuclease because: (i) the endoribonuclease activity of the purified 35-kDa native enzyme was specifically immuno-depleted with APE1 monoclonal antibody, and (ii) recombinant human APE1 generated identical RNA cleavage patterns as the native liver enzyme. Studies using E96A and H309N mutants of APE1 suggest that the endoribonuclease activity for c-myc CRD RNA shares the same active center with the AP-DNA endonuclease activity. Transient knockdown of APE1 in HeLa cells led to increased steady-state level of c-myc mRNA and its half-life. We conclude that the ability to cleave RNA dinucleotides is a previously unidentified function of APE1 and it can regulate c-myc mRNA level possibly via its endoribonuclease activity.
Collapse
Affiliation(s)
- Tavish Barnes
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia V2N 4Z9, Canada, Sealy Center for Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555 and Health Sciences Center, Louisiana State University, New Orleans, LA 70112, USA
| | - Wan-Cheol Kim
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia V2N 4Z9, Canada, Sealy Center for Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555 and Health Sciences Center, Louisiana State University, New Orleans, LA 70112, USA
| | - Anil K. Mantha
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia V2N 4Z9, Canada, Sealy Center for Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555 and Health Sciences Center, Louisiana State University, New Orleans, LA 70112, USA
| | - Sang-Eun Kim
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia V2N 4Z9, Canada, Sealy Center for Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555 and Health Sciences Center, Louisiana State University, New Orleans, LA 70112, USA
| | - Tadahide Izumi
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia V2N 4Z9, Canada, Sealy Center for Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555 and Health Sciences Center, Louisiana State University, New Orleans, LA 70112, USA
| | - Sankar Mitra
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia V2N 4Z9, Canada, Sealy Center for Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555 and Health Sciences Center, Louisiana State University, New Orleans, LA 70112, USA
| | - Chow H. Lee
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia V2N 4Z9, Canada, Sealy Center for Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555 and Health Sciences Center, Louisiana State University, New Orleans, LA 70112, USA
| |
Collapse
|
7
|
Kim WC, Lee CH. The role of mammalian ribonucleases (RNases) in cancer. Biochim Biophys Acta Rev Cancer 2009; 1796:99-113. [PMID: 19463900 DOI: 10.1016/j.bbcan.2009.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 05/08/2009] [Accepted: 05/13/2009] [Indexed: 01/01/2023]
Abstract
Ribonucleases (RNases) are a group of enzymes that cleave RNAs at phosphodiester bonds resulting in remarkably diverse biological consequences. This review focuses on mammalian RNases that are capable of, or potentially capable of, cleaving messenger RNA (mRNA) as well as other RNAs in cells and play roles in the development of human cancers. The aims of this review are to provide an overview of the roles of currently known mammalian RNases, and the evidence that associate them as regulators of tumor development. The roles of these RNases as oncoproteins and/or tumor suppressors in influencing cell growth, apoptosis, angiogenesis, and other cellular hallmarks of cancer will be presented and discussed. The RNases under discussion include RNases from the conventional mRNA decay pathways, RNases that are activated under cellular stress, RNases from the miRNA pathway, and RNases with multifunctional activity.
Collapse
Affiliation(s)
- Wan-Cheol Kim
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, BC, Canada V2N 4Z9
| | | |
Collapse
|
8
|
Weidensdorfer D, Stöhr N, Baude A, Lederer M, Köhn M, Schierhorn A, Buchmeier S, Wahle E, Hüttelmaier S. Control of c-myc mRNA stability by IGF2BP1-associated cytoplasmic RNPs. RNA (NEW YORK, N.Y.) 2009; 15:104-15. [PMID: 19029303 PMCID: PMC2612774 DOI: 10.1261/rna.1175909] [Citation(s) in RCA: 255] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 10/20/2008] [Indexed: 05/18/2023]
Abstract
The RNA-binding protein IGF2BP1 (IGF-II mRNA binding protein 1) stabilizes the c-myc RNA by associating with the Coding Region instability Determinant (CRD). If and how other proteins cooperate with IGF2BP1 in promoting stabilization of the c-myc mRNA via the CRD remained elusive. Here, we identify various RNA-binding proteins that associate with IGF2BP1 in an RNA-dependent fashion. Four of these proteins (HNRNPU, SYNCRIP, YBX1, and DHX9) were essential to ensure stabilization of the c-myc mRNA via the CRD. These factors associate with IGF2BP1 in a CRD-dependent manner, co-distribute with IGF2BP1 in non-polysomal fractions comprising c-myc mRNA, and colocalize with IGF2BP1 in the cytoplasm. A selective shift of relative c-myc mRNA levels to the polysomal fraction is observed upon IGF2BP1 knockdown. These findings suggest that IGF2BP1 in complex with at least four proteins promotes CRD-mediated mRNA stabilization. Complex formation at the CRD presumably limits the transfer of c-myc mRNA to the polysomal fraction and subsequent translation-coupled decay.
Collapse
Affiliation(s)
- Doreen Weidensdorfer
- NBL3-NWG6 ZAMED, Department of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Cabarcas S, Jacob J, Veras I, Schramm L. Differential expression of the TFIIIB subunits Brf1 and Brf2 in cancer cells. BMC Mol Biol 2008; 9:74. [PMID: 18700021 PMCID: PMC2533013 DOI: 10.1186/1471-2199-9-74] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 08/12/2008] [Indexed: 12/27/2022] Open
Abstract
Background RNA polymerase (pol) III transcription is specifically elevated in a variety of cancers and is a target of regulation by a variety of tumor suppressors and oncogenes. Accurate initiation by RNA pol III is dependent on TFIIIB. In higher eukaryotes, two forms of TFIIIB have been characterized. TFIIIB required for proper initiation from gene internal RNA pol III promoters is comprised of TBP, Bdp1, and Brf1. Proper initiation from gene external RNA pol III promoters requires TBP, Bdp1, and Brf2. We hypothesized that deregulation of RNA polymerase III transcription in cancer may be a consequence of altered TFIIIB expression Results Here, we report: (1) the TFIIIB subunits Brf1 and Brf2 are differentially expressed in a variety of cancer cell lines: (2) the Brf1 and Brf2 promoters differ in activity in cancer cell lines, and (3) VAI transcription is universally elevated, as compared to U6, in breast, prostate and cervical cancer cells. Conclusion Deregulation of TFIIIB-mediated transcription may be an important step in tumor development. We demonstrate that Brf1 and Brf2 mRNA are differentially expressed in a variety of cancer cells and that the Brf2 promoter is more active than the Brf1 promoter in all cell lines tested. We also demonstrate, that Brf1-dependent VAI transcription was significantly higher than the Brf2-dependent U6 snRNA transcription in all cancer cell lines tested. The data presented suggest that Brf2 protein expression levels correlate with U6 promoter activity in the breast, cervical and prostate cell lines tested. Interestingly, the Brf1 protein levels did not vary considerably in HeLa, MCF-7 and DU-145 cells, yet Brf1 mRNA expression varied considerably in breast, prostate and cervical cancer cell lines tested. Thus, Brf1 promoter activity and Brf1 protein expression levels did not correlate well with Brf1-dependent transcription levels. Taken together, we reason that deregulation of Brf1 and Brf2 expression could be a key mechanism responsible for the observed deregulation of RNA pol III transcription in cancer cells.
Collapse
Affiliation(s)
- Stephanie Cabarcas
- Department of Biological Sciences, St, John's University, 8000 Utopia Parkway, Queens, NY 11439, USA.
| | | | | | | |
Collapse
|
10
|
Nguyen-Chi M, Morello D. [Aberrant regulation of mRNA 3' untranslated region in cancers and inflammation]. Med Sci (Paris) 2008; 24:290-6. [PMID: 18334178 DOI: 10.1051/medsci/2008243290] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Almost 10% of mammalian coding mRNAs contain in their 3' untranslated region a sequence rich in adenine and uridine residues known as AU-rich element (ARE). Many of them encode oncogenes (for instance c-Myc and c-Fos), cell cycle regulators (cyclin D1, A1, B1), cytokines (TNFalpha, IL2) and growth factors (GM-CSF) which are overexpressed in cancer or inflammatory diseases due to increased mRNA stability and/or translation. AREs are recognized by a group of proteins, collectively called AUBPs which display various functions. For instance, HuR/ELAV is mainly known to protect ARE-containing mRNAs from degradation, while AUF1, TTP and KSRP act to destabilize their bound target mRNAs and TIA/TIAR to inhibit their translation. Alterations in ARE sequences or AUBP abundance, cellular localization or activity due to post-translational modifications such as phosphorylation can promote or enhance malignancy or perturb immune homeostasis. Here, c-myc and TNFalpha are chosen as examples to illustrate how altered 3' UTR gene regulation impacts on pathologies.
Collapse
Affiliation(s)
- Mai Nguyen-Chi
- Université de Toulouse, CBD, UMR, 5547, CNRS, IFR 109, 118, route de Narbonne, 31062 Toulouse, France.
| | | |
Collapse
|