1
|
Gudhka RB, Vats M, Bilodeau CL, McCallum SA, McCoy MA, Roush DJ, Snyder MA, Cramer SM. Probing IgG1 F C-Multimodal Nanoparticle Interactions: A Combined Nuclear Magnetic Resonance and Molecular Dynamics Simulations Approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12188-12203. [PMID: 34633195 DOI: 10.1021/acs.langmuir.1c02114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, NMR and molecular dynamics simulations were employed to study IgG1 FC binding to multimodal surfaces. Gold nanoparticles functionalized with two multimodal cation-exchange ligands (Capto and Nuvia) were synthesized and employed to carry out solution-phase NMR experiments with the FC. Experiments with perdeuterated 15N-labeled FC and the multimodal surfaces revealed micromolar residue-level binding affinities as compared to millimolar binding affinities with these ligands in free solution, likely due to cooperativity and avidity effects. The binding of FC with the Capto ligand nanoparticles was concentrated near an aliphatic cluster in the CH2/CH3 interface, which corresponded to a focused hydrophobic region. In contrast, binding with the Nuvia ligand nanoparticles was more diffuse and corresponded to a large contiguous positive electrostatic potential region on the side face of the FC. Results with lower-ligand-density nanoparticles indicated a decrease in binding affinity for both systems. For the Capto ligand system, several aliphatic residues on the FC that were important for binding to the higher-density surface did not interact with the lower-density nanoparticles. In contrast, no significant difference was observed in the interacting residues on the FC to the high- and low-ligand density Nuvia surfaces. The binding affinities of FC to both multimodal-functionalized nanoparticles decreased in the presence of salt due to the screening of multiple weak interactions of polar and positively charged residues. For the Capto ligand nanoparticle system, this resulted in an even more focused hydrophobic binding region in the interface of the CH2 and CH3 domains. Interestingly, for the Nuvia ligand nanoparticles, the presence of salt resulted in a large transition from a diffuse binding region to the same focused binding region determined for Capto nanoparticles at 150 mM salt. Molecular dynamics simulations corroborated the NMR results and provided important insights into the molecular basis of FC binding to these different multimodal systems containing clustered (observed at high-ligand densities) and nonclustered ligand surfaces. This combined biophysical and simulation approach provided significant insights into the interactions of FC with multimodal surfaces and sets the stage for future analyses with even more complex biotherapeutics.
Collapse
Affiliation(s)
| | | | | | | | - Mark A McCoy
- Mass Spectrometry & Biophysics, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - David J Roush
- Biologics Process R&D, Downstream Purification Development and Engineering, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Mark A Snyder
- Process Chemistry Division, Bio-Rad Laboratories, Hercules, California 94547, United States
| | | |
Collapse
|
2
|
Gudhka RB, Bilodeau CL, McCallum SA, McCoy MA, Roush DJ, Snyder MA, Cramer SM. Identification of preferred multimodal ligand-binding regions on IgG1 F C using nuclear magnetic resonance and molecular dynamics simulations. Biotechnol Bioeng 2020; 118:809-822. [PMID: 33107976 DOI: 10.1002/bit.27611] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/02/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022]
Abstract
In this study, the binding of multimodal chromatographic ligands to the IgG1 FC domain were studied using nuclear magnetic resonance and molecular dynamics simulations. Nuclear magnetic resonance experiments carried out with chromatographic ligands and a perdeuterated 15 N-labeled FC domain indicated that while single-mode ion exchange ligands interacted very weakly throughout the FC surface, multimodal ligands containing negatively charged and aromatic moieties interacted with specific clusters of residues with relatively high affinity, forming distinct binding regions on the FC . The multimodal ligand-binding sites on the FC were concentrated in the hinge region and near the interface of the CH 2 and CH 3 domains. Furthermore, the multimodal binding sites were primarily composed of positively charged, polar, and aliphatic residues in these regions, with histidine residues exhibiting some of the strongest binding affinities with the multimodal ligand. Interestingly, comparison of protein surface property data with ligand interaction sites indicated that the patch analysis on FC corroborated molecular-level binding information obtained from the nuclear magnetic resonance experiments. Finally, molecular dynamics simulation results were shown to be qualitatively consistent with the nuclear magnetic resonance results and to provide further insights into the binding mechanisms. An important contribution to multimodal ligand-FC binding in these preferred regions was shown to be electrostatic interactions and π-π stacking of surface-exposed histidines with the ligands. This combined biophysical and simulation approach has provided a deeper molecular-level understanding of multimodal ligand-FC interactions and sets the stage for future analyses of even more complex biotherapeutics.
Collapse
Affiliation(s)
- Ronak B Gudhka
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Camille L Bilodeau
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Scott A McCallum
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Mark A McCoy
- Biologics and Vaccines, Downstream Purification Development and Engineering, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - David J Roush
- Biologics and Vaccines, Downstream Purification Development and Engineering, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Mark A Snyder
- Process Chromatography Division, Bio-Rad Laboratories, Hercules, California, USA
| | - Steven M Cramer
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|
3
|
Probing multimodal ligand binding regions on ubiquitin using nuclear magnetic resonance, chromatography, and molecular dynamics simulations. J Chromatogr A 2012; 1229:113-20. [DOI: 10.1016/j.chroma.2011.12.101] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 11/15/2011] [Accepted: 12/23/2011] [Indexed: 11/23/2022]
|
4
|
New binding mode to TNF-alpha revealed by ubiquitin-based artificial binding protein. PLoS One 2012; 7:e31298. [PMID: 22363609 PMCID: PMC3282696 DOI: 10.1371/journal.pone.0031298] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 01/05/2012] [Indexed: 12/22/2022] Open
Abstract
A variety of approaches have been employed to generate binding proteins from non-antibody scaffolds. Utilizing a beta-sheet of the human ubiquitin for paratope creation we obtained binding proteins against tumor necrosis factor (TNF)-alpha. The bioactive form of this validated pharmacological target protein is a non-covalently linked homo-trimer. This structural feature leads to the observation of a certain heterogeneity concerning the binding mode of TNF-alpha binding molecules, for instance in terms of monomer/trimer specificity. We analyzed a ubiquitin-based TNF-alpha binder, selected by ribosome display, with a particular focus on its mode of interaction. Using enzyme-linked immunosorbent assays, specific binding to TNF-alpha with nanomolar affinity was observed. In isothermal titration calorimetry we obtained comparable results regarding the affinity and detected an exothermic reaction with one ubiquitin-derived binding molecule binding one TNF-alpha trimer. Using NMR spectroscopy and other analytical methods the 1∶3 stoichiometry could be confirmed. Detailed binding analysis showed that the interaction is affected by the detergent Tween-20. Previously, this phenomenon was reported only for one other type of alternative scaffold-derived binding proteins – designed ankyrin repeat proteins – without further investigation. As demonstrated by size exclusion chromatography and NMR spectroscopy, the presence of the detergent increases the association rate significantly. Since the special architecture of TNF-alpha is known to be modulated by detergents, the access to the recognized epitope is indicated to be restricted by conformational transitions within the target protein. Our results suggest that the ubiquitin-derived binding protein targets a new epitope on TNF-alpha, which differs from the epitopes recognized by TNF-alpha neutralizing antibodies.
Collapse
|
5
|
Shaw BF, Schneider GF, Arthanari H, Narovlyansky M, Moustakas D, Durazo A, Wagner G, Whitesides GM. Complexes of native ubiquitin and dodecyl sulfate illustrate the nature of hydrophobic and electrostatic interactions in the binding of proteins and surfactants. J Am Chem Soc 2011; 133:17681-95. [PMID: 21939262 DOI: 10.1021/ja205735q] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A previous study, using capillary electrophoresis (CE) [J. Am. Chem. Soc. 2008, 130, 17384-17393], reported that six discrete complexes of ubiquitin (UBI) and sodium dodecyl sulfate (SDS) form at different concentrations of SDS along the pathway to unfolding of UBI in solutions of SDS. One complex (which formed between 0.8 and 1.8 mM SDS) consisted of native UBI associated with approximately 11 molecules of SDS. The current study used CE and (15)N/(13)C-(1)H heteronuclear single quantum coherence (HSQC) NMR spectroscopy to identify residues in folded UBI that associate specifically with SDS at 0.8-1.8 mM SDS, and to correlate these associations with established biophysical and structural properties of this well-characterized protein. The ability of the surface charge and hydrophobicity of folded UBI to affect the association with SDS (at concentrations below the CMC) was studied, using CE, by converting lys-ε-NH(3)(+) to lys-ε-NHCOCH(3) groups. According to CE, the acetylation of lysine residues inhibited the binding of 11 SDS ([SDS] < 2 mM) and decreased the number of complexes of composition UBI-(NHAc)(8)·SDS(n) that formed on the pathway of unfolding of UBI-(NHAc)(8) in SDS. A comparison of (15)N-(1)H HSQC spectra at 0 mM and 1 mM SDS with calculated electrostatic surface potentials of folded UBI (e.g., solutions to the nonlinear Poisson-Boltzmann (PB) equation) suggested, however, that SDS binds preferentially to native UBI at hydrophobic residues that are formally neutral (i.e., Leu and Ile), but that have positive electrostatic surface potential (as predicted from solutions to nonlinear PB equations); SDS did not uniformly interact with residues that have formal positive charge (e.g., Lys or Arg). Cationic functional groups, therefore, promote the binding of SDS to folded UBI because these groups exert long-range effects on the positive electrostatic surface potential (which extend beyond their own van der Waals radii, as predicted from PB theory), and not because cationic groups are necessarily the site of ionic interactions with sulfate groups. Moreover, SDS associated with residues in native UBI without regard to their location in α-helix or β-sheet structure (although residues in hydrogen-bonded loops did not bind SDS). No correlation was observed between the association of an amino acid with SDS and the solvent accessibility of the residue or its rate of amide H/D exchange. This study establishes a few (of perhaps several) factors that control the simultaneous molecular recognition of multiple anionic amphiphiles by a folded cytosolic protein.
Collapse
Affiliation(s)
- Bryan F Shaw
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.
| | | | | | | | | | | | | | | |
Collapse
|