1
|
Banerjee S, Smalley NE, Saenjamsai P, Fehr A, Dandekar AA, Cabeen MT, Chandler JR. Quorum sensing regulation by the nitrogen phosphotransferase system in Pseudomonas aeruginosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.01.636002. [PMID: 39975224 PMCID: PMC11838483 DOI: 10.1101/2025.02.01.636002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
In the opportunistic pathogen Pseudomonas aeruginosa, the nitrogen-related phosphotransferase system (PTSNtr) influences multiple virulence behaviors. The PTSNtr is comprised of three enzymes: first PtsP, then the PtsO phosphocarrier, and the final PtsN phosphoacceptor. We previously showed that ptsP inactivation increases LasI-LasR quorum sensing, a system by which P. aeruginosa regulates genes in response to population density. LasI synthesizes a diffusible autoinducer that binds and activates the LasR receptor, which activates a feedback loop by increasing lasI expression. In this study, we examined the impact of the PTSNtr on quorum sensing. Disruption of ptsP increased the expression of some, but not all, tested quorum-controlled genes, including lasI, phzM (pyocyanin biosynthesis), hcnA (hydrogen cyanide biosynthesis), and, to a lesser extent, rsaL (quorum sensing regulator). Expression of these genes remained dependent on LasR and the autoinducer, whether provided endogenously or exogenously. Increased lasI expression in ΔptsP (or ΔptsO) cells was partly due to the presence of unphosphorylated PtsN, which alone was sufficient to elevate lasI expression. However, we observed residual increases in ΔptsP or ΔptsO cells even in the absence of PtsN, suggesting that PtsP and PtsO can regulate gene expression independent of PtsN. Indeed, genetically disrupting the PtsO phosphorylation site impacted gene expression in the absence of PtsN, and transcriptomic evidence suggested that PtsO and PtsN have distinct regulons. Our results expand our view of how the PTSNtr components function both within and apart from the classic phosphorylation cascade to regulate key virulence behaviors in P. aeruginosa.
Collapse
Affiliation(s)
- Samalee Banerjee
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS
| | | | | | - Anthony Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS
| | - Ajai A. Dandekar
- Department of Microbiology, University of Washington, Seattle, WA
| | - Matthew T. Cabeen
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma
| | | |
Collapse
|
2
|
Moreno R, Yuste L, Morales G, Rojo F. Inactivation of Pseudomonas putida KT2440 pyruvate dehydrogenase relieves catabolite repression and improves the usefulness of this strain for degrading aromatic compounds. Microb Biotechnol 2024; 17:e14514. [PMID: 38923400 PMCID: PMC11196380 DOI: 10.1111/1751-7915.14514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
Pyruvate dehydrogenase (PDH) catalyses the irreversible decarboxylation of pyruvate to acetyl-CoA, which feeds the tricarboxylic acid cycle. We investigated how the loss of PDH affects metabolism in Pseudomonas putida. PDH inactivation resulted in a strain unable to utilize compounds whose assimilation converges at pyruvate, including sugars and several amino acids, whereas compounds that generate acetyl-CoA supported growth. PDH inactivation also resulted in the loss of carbon catabolite repression (CCR), which inhibits the assimilation of non-preferred compounds in the presence of other preferred compounds. Pseudomonas putida can degrade many aromatic compounds, most of which produce acetyl-CoA, making it useful for biotransformation and bioremediation. However, the genes involved in these metabolic pathways are often inhibited by CCR when glucose or amino acids are also present. Our results demonstrate that the PDH-null strain can efficiently degrade aromatic compounds even in the presence of other preferred substrates, which the wild-type strain does inefficiently, or not at all. As the loss of PDH limits the assimilation of many sugars and amino acids and relieves the CCR, the PDH-null strain could be useful in biotransformation or bioremediation processes that require growth with mixtures of preferred substrates and aromatic compounds.
Collapse
Affiliation(s)
- Renata Moreno
- Department of Microbial BiotechnologyCentro Nacional de Biotecnología, CSICMadridSpain
| | - Luis Yuste
- Department of Microbial BiotechnologyCentro Nacional de Biotecnología, CSICMadridSpain
| | - Gracia Morales
- Department of Microbial BiotechnologyCentro Nacional de Biotecnología, CSICMadridSpain
- Present address:
European UniversityMadridSpain
| | - Fernando Rojo
- Department of Microbial BiotechnologyCentro Nacional de Biotecnología, CSICMadridSpain
| |
Collapse
|
3
|
Batianis C, van Rosmalen RP, Major M, van Ee C, Kasiotakis A, Weusthuis RA, Martins Dos Santos VAP. A tunable metabolic valve for precise growth control and increased product formation in Pseudomonas putida. Metab Eng 2023; 75:47-57. [PMID: 36244546 DOI: 10.1016/j.ymben.2022.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022]
Abstract
Metabolic engineering of microorganisms aims to design strains capable of producing valuable compounds under relevant industrial conditions and in an economically competitive manner. From this perspective, and beyond the need for a catalyst, biomass is essentially a cost-intensive, abundant by-product of a microbial conversion. Yet, few broadly applicable strategies focus on the optimal balance between product and biomass formation. Here, we present a genetic control module that can be used to precisely modulate growth of the industrial bacterial chassis Pseudomonas putida KT2440. The strategy is based on the controllable expression of the key metabolic enzyme complex pyruvate dehydrogenase (PDH) which functions as a metabolic valve. By tuning the PDH activity, we accurately controlled biomass formation, resulting in six distinct growth rates with parallel overproduction of excess pyruvate. We deployed this strategy to identify optimal growth patterns that improved the production yield of 2-ketoisovalerate and lycopene by 2.5- and 1.38-fold, respectively. This ability to dynamically steer fluxes to balance growth and production substantially enhances the potential of this remarkable microbial chassis for a wide range of industrial applications.
Collapse
Affiliation(s)
- Christos Batianis
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
| | - Rik P van Rosmalen
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
| | - Monika Major
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
| | - Cheyenne van Ee
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
| | - Alexandros Kasiotakis
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
| | - Ruud A Weusthuis
- Bioprocess Engineering, Wageningen University and Research, Wageningen, the Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands; Bioprocess Engineering, Wageningen University and Research, Wageningen, the Netherlands; LifeGlimmer GmbH, Berlin, Germany.
| |
Collapse
|
4
|
Gravina F, Degaut FL, Gerhardt ECM, Pedrosa FO, Souza EM, Antônio de Souza G, Huergo LF. The protein-protein interaction network of the Escherichia coli EIIA Ntr regulatory protein reveals a role in cell motility and metabolic control. Res Microbiol 2021; 172:103882. [PMID: 34563668 DOI: 10.1016/j.resmic.2021.103882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 01/17/2023]
Abstract
The nitrogen-related PTSNtr system, present in many Proteobacteria including Escherichia coli, acts as a phosphorelay cascade composed of the EINtr, NPr and EIIANtr proteins. Phosphotransfer initiates with phosphoenolpyruvate-dependent EINtr autophosphorylation, the phosphoryl group is then transferred to NPr and finally to a conserved histidine residue on EIIANtr. The reporter metabolites L-glutamine and 2-oxoglutarate reciprocally regulate EINtr autophosphorylation (Lee et al. 2013) and consequently the phosphorylation status of the PTSNtr components is controlled by the availability of nitrogen and carbon. The final phosphate acceptor, EIIANtr, regulates a range of cellular process by acting as the central hub of a complex protein-protein interaction network. Contact between EIIANtr and its target proteins is usually regulated by the EIIANtr phosphorylation status. In this study we performed ligand fishing assays coupled to label-free quantitative proteomics to examine the protein-protein interaction network of E. coli EIIANtr and a phosphomimic variant of the protein. The ligand fishing data, along with phenotypic analysis, indicated that EIIANtr interacts with proteins related to chemotaxis and thereby regulates cell motility. Important metabolic enzymes were also identified as potential EIIANtr binding partners.
Collapse
Affiliation(s)
- Fernanda Gravina
- Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Brazil
| | - Flávia L Degaut
- Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Brazil
| | | | - Fabio O Pedrosa
- Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Brazil
| | - Emanuel M Souza
- Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Brazil
| | | | - Luciano F Huergo
- Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Brazil; Setor Litoral, UFPR Matinhos, PR, Brazil.
| |
Collapse
|
5
|
Mitra R, Xu T, Chen GQ, Xiang H, Han J. An updated overview on the regulatory circuits of polyhydroxyalkanoates synthesis. Microb Biotechnol 2021; 15:1446-1470. [PMID: 34473895 PMCID: PMC9049629 DOI: 10.1111/1751-7915.13915] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022] Open
Abstract
Polyhydroxyalkanoates (PHA) are a promising and sustainable alternative to the petroleum‐based synthetic plastics. Regulation of PHA synthesis is receiving considerable importance as engineering the regulatory factors might help developing strains with improved PHA‐producing abilities. PHA synthesis is dedicatedly regulated by a number of regulatory networks. They tightly control the PHA content, granule size and their distribution in cells. Most PHA‐accumulating microorganisms have multiple regulatory networks that impart a combined effect on PHA metabolism. Among them, several factors ranging from global to specific regulators, have been identified and characterized till now. This review is an attempt to categorically summarize the diverse regulatory circuits that operate in some important PHA‐producing microorganisms. However, in several organisms, the detailed mechanisms involved in the regulation of PHA synthesis is not well‐explored and hence further research is needed. The information presented in this review might help researcher to identify the prevailing research gaps in PHA regulation.
Collapse
Affiliation(s)
- Ruchira Mitra
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,International College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Xu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guo-Qiang Chen
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Han
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Xu C, Weston BR, Tyson JJ, Cao Y. Cell cycle control and environmental response by second messengers in Caulobacter crescentus. BMC Bioinformatics 2020; 21:408. [PMID: 32998723 PMCID: PMC7526171 DOI: 10.1186/s12859-020-03687-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background Second messengers, c-di-GMP and (p)ppGpp, are vital regulatory molecules in bacteria, influencing cellular processes such as biofilm formation, transcription, virulence, quorum sensing, and proliferation. While c-di-GMP and (p)ppGpp are both synthesized from GTP molecules, they play antagonistic roles in regulating the cell cycle. In C. crescentus, c-di-GMP works as a major regulator of pole morphogenesis and cell development. It inhibits cell motility and promotes S-phase entry by inhibiting the activity of the master regulator, CtrA. Intracellular (p)ppGpp accumulates under starvation, which helps bacteria to survive under stressful conditions through regulating nucleotide levels and halting proliferation. (p)ppGpp responds to nitrogen levels through RelA-SpoT homolog enzymes, detecting glutamine concentration using a nitrogen phosphotransferase system (PTS Ntr). This work relates the guanine nucleotide-based second messenger regulatory network with the bacterial PTS Ntr system and investigates how bacteria respond to nutrient availability. Results We propose a mathematical model for the dynamics of c-di-GMP and (p)ppGpp in C. crescentus and analyze how the guanine nucleotide-based second messenger system responds to certain environmental changes communicated through the PTS Ntr system. Our mathematical model consists of seven ODEs describing the dynamics of nucleotides and PTS Ntr enzymes. Our simulations are consistent with experimental observations and suggest, among other predictions, that SpoT can effectively decrease c-di-GMP levels in response to nitrogen starvation just as well as it increases (p)ppGpp levels. Thus, the activity of SpoT (or its homologues in other bacterial species) can likely influence the cell cycle by influencing both c-di-GMP and (p)ppGpp. Conclusions In this work, we integrate current knowledge and experimental observations from the literature to formulate a novel mathematical model. We analyze the model and demonstrate how the PTS Ntr system influences (p)ppGpp, c-di-GMP, GMP and GTP concentrations. While this model does not consider all aspects of PTS Ntr signaling, such as cross-talk with the carbon PTS system, here we present our first effort to develop a model of nutrient signaling in C. crescentus.
Collapse
Affiliation(s)
- Chunrui Xu
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, 24061, VA, USA
| | - Bronson R Weston
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, 24061, VA, USA
| | - John J Tyson
- Department of Biological Sciences, Virginia Tech, Blacksburg, 24061, VA, USA
| | - Yang Cao
- Department of Computer Science, Virginia Tech, Blacksburg, 24061, VA, USA.
| |
Collapse
|
7
|
Global control of bacterial nitrogen and carbon metabolism by a PTS Ntr-regulated switch. Proc Natl Acad Sci U S A 2020; 117:10234-10245. [PMID: 32341157 DOI: 10.1073/pnas.1917471117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The nitrogen-related phosphotransferase system (PTSNtr) of Rhizobium leguminosarum bv. viciae 3841 transfers phosphate from PEP via PtsP and NPr to two output regulators, ManX and PtsN. ManX controls central carbon metabolism via the tricarboxylic acid (TCA) cycle, while PtsN controls nitrogen uptake, exopolysaccharide production, and potassium homeostasis, each of which is critical for cellular adaptation and survival. Cellular nitrogen status modulates phosphorylation when glutamine, an abundant amino acid when nitrogen is available, binds to the GAF sensory domain of PtsP, preventing PtsP phosphorylation and subsequent modification of ManX and PtsN. Under nitrogen-rich, carbon-limiting conditions, unphosphorylated ManX stimulates the TCA cycle and carbon oxidation, while unphosphorylated PtsN stimulates potassium uptake. The effects are reversed with the phosphorylation of ManX and PtsN, occurring under nitrogen-limiting, carbon-rich conditions; phosphorylated PtsN triggers uptake and nitrogen metabolism, the TCA cycle and carbon oxidation are decreased, while carbon-storage polymers such as surface polysaccharide are increased. Deleting the GAF domain from PtsP makes cells "blind" to the cellular nitrogen status. PTSNtr constitutes a switch through which carbon and nitrogen metabolism are rapidly, and reversibly, regulated by protein:protein interactions. PTSNtr is widely conserved in proteobacteria, highlighting its global importance.
Collapse
|
8
|
Mærk M, Jakobsen ØM, Sletta H, Klinkenberg G, Tøndervik A, Ellingsen TE, Valla S, Ertesvåg H. Identification of Regulatory Genes and Metabolic Processes Important for Alginate Biosynthesis in Azotobacter vinelandii by Screening of a Transposon Insertion Mutant Library. Front Bioeng Biotechnol 2020; 7:475. [PMID: 32010681 PMCID: PMC6979010 DOI: 10.3389/fbioe.2019.00475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/23/2019] [Indexed: 12/23/2022] Open
Abstract
Azotobacter vinelandii produces the biopolymer alginate, which has a wide range of industrial and pharmaceutical applications. A random transposon insertion mutant library was constructed from A. vinelandii ATCC12518Tc in order to identify genes and pathways affecting alginate biosynthesis, and about 4,000 mutant strains were screened for altered alginate production. One mutant, containing a mucA disruption, displayed an elevated alginate production level, and several mutants with decreased or abolished alginate production were identified. The regulatory proteins AlgW and AmrZ seem to be required for alginate production in A. vinelandii, similarly to Pseudomonas aeruginosa. An algB mutation did however not affect alginate yield in A. vinelandii although its P. aeruginosa homolog is needed for full alginate production. Inactivation of the fructose phosphoenolpyruvate phosphotransferase system protein FruA resulted in a mutant that did not produce alginate when cultivated in media containing various carbon sources, indicating that this system could have a role in regulation of alginate biosynthesis. Furthermore, impaired or abolished alginate production was observed for strains with disruptions of genes involved in peptidoglycan biosynthesis/recycling and biosynthesis of purines, isoprenoids, TCA cycle intermediates, and various vitamins, suggesting that sufficient access to some of these compounds is important for alginate production. This hypothesis was verified by showing that addition of thiamine, succinate or a mixture of lysine, methionine and diaminopimelate increases alginate yield in the non-mutagenized strain. These results might be used in development of optimized alginate production media or in genetic engineering of A. vinelandii strains for alginate bioproduction.
Collapse
Affiliation(s)
- Mali Mærk
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | | | | | | | - Svein Valla
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Helga Ertesvåg
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
9
|
Abstract
SixA, a well-conserved protein found in proteobacteria, actinobacteria, and cyanobacteria, is the only reported example of a bacterial phosphohistidine phosphatase. A single protein target of SixA has been reported to date: the Escherichia coli histidine kinase ArcB. The present work analyzes an ArcB-independent growth defect of a sixA deletion in E. coli A screen for suppressors, analysis of various mutants, and phosphorylation assays indicate that SixA modulates phosphorylation of the nitrogen-related phosphotransferase system (PTSNtr). The PTSNtr is a widely conserved bacterial pathway that regulates diverse metabolic processes through the phosphorylation states of its protein components, EINtr, NPr, and EIIANtr, which receive phosphoryl groups on histidine residues. However, a mechanism for dephosphorylating this system has not been reported. The results presented here suggest a model in which SixA removes phosphoryl groups from the PTSNtr by acting on NPr. This work uncovers a new role for the phosphohistidine phosphatase SixA and, through factors that affect SixA expression or activity, may point to additional inputs that regulate the PTSNtr IMPORTANCE One common means to regulate protein activity is through phosphorylation. Protein phosphatases exist to reverse this process, returning the protein to the unphosphorylated form. The vast majority of protein phosphatases that have been identified target phosphoserine, phosphotheronine, and phosphotyrosine. A widely conserved phosphohistidine phosphatase was identified in Escherichia coli 20 years ago but remains relatively understudied. The present work shows that this phosphatase modulates the nitrogen-related phosphotransferase system, a pathway that is regulated by nitrogen and carbon metabolism and affects diverse aspects of bacterial physiology. Until now, there was no known mechanism for removing phosphoryl groups from this pathway.
Collapse
|
10
|
Durante-Rodríguez G, de Lorenzo V, Nikel PI. A Post-translational Metabolic Switch Enables Complete Decoupling of Bacterial Growth from Biopolymer Production in Engineered Escherichia coli. ACS Synth Biol 2018; 7:2686-2697. [PMID: 30346720 DOI: 10.1021/acssynbio.8b00345] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Most of the current methods for controlling the formation rate of a key protein or enzyme in cell factories rely on the manipulation of target genes within the pathway. In this article, we present a novel synthetic system for post-translational regulation of protein levels, FENIX, which provides both independent control of the steady-state protein level and inducible accumulation of target proteins. The FENIX device is based on the constitutive, proteasome-dependent degradation of the target polypeptide by tagging with a short synthetic, hybrid NIa/SsrA amino acid sequence in the C-terminal domain. Protein production is triggered via addition of an orthogonal inducer ( i.e., 3-methylbenzoate) to the culture medium. The system was benchmarked in Escherichia coli by tagging two fluorescent proteins (GFP and mCherry), and further exploited to completely uncouple poly(3-hydroxybutyrate) (PHB) accumulation from bacterial growth. By tagging PhaA (3-ketoacyl-CoA thiolase, first step of the route), a dynamic metabolic switch at the acetyl-coenzyme A node was established in such a way that this metabolic precursor could be effectively redirected into PHB formation upon activation of the system. The engineered E. coli strain reached a very high specific rate of PHB accumulation (0.4 h-1) with a polymer content of ca. 72% (w/w) in glucose cultures in a growth-independent mode. Thus, FENIX enables dynamic control of metabolic fluxes in bacterial cell factories by establishing post-translational synthetic switches in the pathway of interest.
Collapse
Affiliation(s)
- Gonzalo Durante-Rodríguez
- Environmental Microbiology Group, Centro de Investigaciones Biológicas (CIB-CSIC), 28040 Madrid, Spain
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Pablo I. Nikel
- Systems Environmental Microbiology Group, The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
11
|
Pérez‐Pantoja D, Kim J, Platero R, de Lorenzo V. The interplay of EIIANtrwith C‐source regulation of thePupromoter ofPseudomonas putidamt‐2. Environ Microbiol 2018; 20:4555-4566. [DOI: 10.1111/1462-2920.14410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 09/04/2018] [Accepted: 09/09/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Danilo Pérez‐Pantoja
- Programa Institucional de Fomento a la Investigación, Desarrollo e InnovaciónUniversidad Tecnológica Metropolitana Ignacio Valdivieso 2409, San Joaquín, Santiago Chile
| | - Juhyun Kim
- Systems Biology ProgramCentro Nacional de Biotecnología‐CSIC Campus de Cantoblanco, Madrid 28049 Spain
| | - Raúl Platero
- Systems Biology ProgramCentro Nacional de Biotecnología‐CSIC Campus de Cantoblanco, Madrid 28049 Spain
| | - Víctor de Lorenzo
- Systems Biology ProgramCentro Nacional de Biotecnología‐CSIC Campus de Cantoblanco, Madrid 28049 Spain
| |
Collapse
|
12
|
Sánchez-Pascuala A, de Lorenzo V, Nikel PI. Refactoring the Embden-Meyerhof-Parnas Pathway as a Whole of Portable GlucoBricks for Implantation of Glycolytic Modules in Gram-Negative Bacteria. ACS Synth Biol 2017; 6:793-805. [PMID: 28121421 PMCID: PMC5440799 DOI: 10.1021/acssynbio.6b00230] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
The
Embden–Meyerhof–Parnas (EMP) pathway is generally
considered to be the biochemical standard for glucose catabolism.
Alas, its native genomic organization and the control of gene expression
in Escherichia coli are both very intricate, which
limits the portability of the EMP pathway to other biotechnologically
important bacterial hosts that lack the route. In this work, the genes
encoding all the enzymes of the linear EMP route have been individually
recruited from the genome of E. coli K-12, edited in silico to remove their endogenous regulatory signals,
and synthesized de novo following a standard (GlucoBrick)
that enables their grouping in the form of functional modules at the
user’s will. After verifying their activity in several glycolytic
mutants of E. coli, the versatility of these
GlucoBricks was demonstrated in quantitative physiology tests and
biochemical assays carried out in Pseudomonas putida KT2440 and P. aeruginosa PAO1 as the heterologous
hosts. Specific configurations of GlucoBricks were also adopted to
streamline the downward circulation of carbon from hexoses to pyruvate
in E. coli recombinants, thereby resulting in
a 3-fold increase of poly(3-hydroxybutyrate) synthesis from glucose.
Refactoring whole metabolic blocks in the fashion described in this
work thus eases the engineering of biochemical processes where the
optimization of carbon traffic is facilitated by the operation of
the EMP pathway—which yields more ATP than other glycolytic
routes such as the Entner–Doudoroff pathway.
Collapse
Affiliation(s)
- Alberto Sánchez-Pascuala
- Systems and Synthetic Biology
Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Víctor de Lorenzo
- Systems and Synthetic Biology
Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Pablo I. Nikel
- Systems and Synthetic Biology
Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
13
|
Löwe H, Schmauder L, Hobmeier K, Kremling A, Pflüger-Grau K. Metabolic engineering to expand the substrate spectrum of Pseudomonas putida toward sucrose. Microbiologyopen 2017; 6. [PMID: 28349670 PMCID: PMC5552902 DOI: 10.1002/mbo3.473] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/22/2017] [Accepted: 02/27/2017] [Indexed: 02/02/2023] Open
Abstract
Sucrose is an important disaccharide used as a substrate in many industrial applications. It is a major component of molasses, a cheap by-product of the sugar industry. Unfortunately, not all industrially relevant organisms, among them Pseudomonas putida, are capable of metabolizing sucrose. We chose a metabolic engineering approach to circumvent this blockage and equip P. putida with the activities necessary to consume sucrose. Therefore, we constructed a pair of broad-host range mini-transposons (pSST - sucrose splitting transposon), carrying either cscA, encoding an invertase able to split sucrose into glucose and fructose, or additionally cscB, encoding a sucrose permease. Introduction of cscA was sufficient to convey sucrose consumption and the additional presence of cscB had no further effect, though the sucrose permease was built and localized to the membrane. Sucrose was split extracellularly by the activity of the invertase CscA leaking out of the cell. The transposons were also used to confer sucrose consumption to Cupriavidus necator. Interestingly, in this strain, CscB acted as a glucose transporter, such that C. necator also gained the ability to grow on glucose. Thus, the pSST transposons are functional tools to extend the substrate spectrum of Gram-negative bacterial strains toward sucrose.
Collapse
Affiliation(s)
- Hannes Löwe
- Fachgebiet für Systembiotechnologie, Fakultät für Maschienenwesen, Technische Universität München, Garching, Germany
| | - Lukas Schmauder
- Fachgebiet für Systembiotechnologie, Fakultät für Maschienenwesen, Technische Universität München, Garching, Germany
| | - Karina Hobmeier
- Fachgebiet für Systembiotechnologie, Fakultät für Maschienenwesen, Technische Universität München, Garching, Germany
| | - Andreas Kremling
- Fachgebiet für Systembiotechnologie, Fakultät für Maschienenwesen, Technische Universität München, Garching, Germany
| | - Katharina Pflüger-Grau
- Fachgebiet für Systembiotechnologie, Fakultät für Maschienenwesen, Technische Universität München, Garching, Germany
| |
Collapse
|
14
|
Enzyme IIA Ntr Regulates Salmonella Invasion Via 1,2-Propanediol And Propionate Catabolism. Sci Rep 2017; 7:44827. [PMID: 28333132 PMCID: PMC5363084 DOI: 10.1038/srep44827] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/15/2017] [Indexed: 11/08/2022] Open
Abstract
Many Proteobacteria possess a nitrogen-metabolic phosphotransferase system (PTSNtr) consisting of EINtr, NPr, and EIIANtr (encoded by ptsP, ptsO, and ptsN, respectively). The PTSNtr plays diverse regulatory roles, but the substrate phosphorylated by EIIANtr and its primary functions have not yet been identified. To comprehensively understand the roles of PTSNtr in Salmonella Typhimurium, we compared the whole transcriptomes of wild-type and a ΔptsN mutant. Genome-wide RNA sequencing revealed that 3.5% of the annotated genes were up- or down-regulated by three-fold or more in the absence of EIIANtr. The ΔptsN mutant significantly down-regulated the expression of genes involved in vitamin B12 synthesis, 1,2-propanediol utilization, and propionate catabolism. Moreover, the invasiveness of the ΔptsN mutant increased about 5-fold when 1,2-propanediol or propionate was added, which was attributable to the increased stability of HilD, the transcriptional regulator of Salmonella pathogenicity island-1. Interestingly, an abundance of 1,2-propanediol or propionate promoted the production of EIIANtr, suggesting the possibility of a positive feedback loop between EIIANtr and two catabolic pathways. These results demonstrate that EIIANtr is a key factor for the utilization of 1,2-propanediol and propionate as carbon and energy sources, and thereby modulates the invasiveness of Salmonella via 1,2-propanediol or propionate catabolism.
Collapse
|
15
|
Yoo W, Yoon H, Seok YJ, Lee CR, Lee HH, Ryu S. Fine-tuning of amino sugar homeostasis by EIIA(Ntr) in Salmonella Typhimurium. Sci Rep 2016; 6:33055. [PMID: 27628932 PMCID: PMC5024086 DOI: 10.1038/srep33055] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/17/2016] [Indexed: 11/08/2022] Open
Abstract
The nitrogen-metabolic phosphotransferase system, PTS(Ntr), consists of the enzymes I(Ntr), NPr and IIA(Ntr) that are encoded by ptsP, ptsO, and ptsN, respectively. Due to the proximity of ptsO and ptsN to rpoN, the PTS(Ntr) system has been postulated to be closely related with nitrogen metabolism. To define the correlation between PTS(Ntr) and nitrogen metabolism, we performed ligand fishing with EIIA(Ntr) as a bait and revealed that D-glucosamine-6-phosphate synthase (GlmS) directly interacted with EIIA(Ntr). GlmS, which converts D-fructose-6-phosphate (Fru6P) into D-glucosamine-6-phosphate (GlcN6P), is a key enzyme producing amino sugars through glutamine hydrolysis. Amino sugar is an essential structural building block for bacterial peptidoglycan and LPS. We further verified that EIIA(Ntr) inhibited GlmS activity by direct interaction in a phosphorylation-state-dependent manner. EIIA(Ntr) was dephosphorylated in response to excessive nitrogen sources and was rapidly degraded by Lon protease upon amino sugar depletion. The regulation of GlmS activity by EIIA(Ntr) and the modulation of glmS translation by RapZ suggest that the genes comprising the rpoN operon play a key role in maintaining amino sugar homeostasis in response to nitrogen availability and the amino sugar concentration in the bacterial cytoplasm.
Collapse
Affiliation(s)
- Woongjae Yoo
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, and Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon 16499, Korea
| | - Yeong-Jae Seok
- Department of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 08826, Korea
| | - Chang-Ro Lee
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido 17058, Republic of Korea
| | - Hyung Ho Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, and Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
16
|
Ronneau S, Petit K, De Bolle X, Hallez R. Phosphotransferase-dependent accumulation of (p)ppGpp in response to glutamine deprivation in Caulobacter crescentus. Nat Commun 2016; 7:11423. [PMID: 27109061 PMCID: PMC4848567 DOI: 10.1038/ncomms11423] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 03/24/2016] [Indexed: 01/17/2023] Open
Abstract
The alarmone (p)ppGpp is commonly used by bacteria to quickly respond to nutrient starvation. Although (p)ppGpp synthetases such as SpoT have been extensively studied, little is known about the molecular mechanisms stimulating alarmone synthesis upon starvation. Here, we describe an essential role of the nitrogen-related phosphotransferase system (PTSNtr) in controlling (p)ppGpp accumulation in Caulobacter crescentus. We show that cells sense nitrogen starvation by way of detecting glutamine deprivation using the first enzyme (EINtr) of PTSNtr. Decreasing intracellular glutamine concentration triggers phosphorylation of EINtr and its downstream components HPr and EIIANtr. Once phosphorylated, both HPr∼P and EIIANtr∼P stimulate (p)ppGpp accumulation by modulating SpoT activities. This burst of second messenger primarily impacts the non-replicative phase of the cell cycle by extending the G1 phase. This work highlights a new role for bacterial PTS systems in stimulating (p)ppGpp accumulation in response to metabolic cues and in controlling cell cycle progression and cell growth. The small molecule (p)ppGpp is commonly produced by bacteria as a signal of nutrient starvation. Here, Ronneau et al. show that (p)ppGpp accumulation in the model bacterium Caulobacter crescentus is modulated by a nitrogen-related phosphotransferase system in response to glutamine deprivation.
Collapse
Affiliation(s)
- Séverin Ronneau
- Bacterial Cell cycle and Development (BCcD), URBM, University of Namur, 61 Rue de Bruxelles, Namur 5000, Belgium
| | - Kenny Petit
- Bacterial Cell cycle and Development (BCcD), URBM, University of Namur, 61 Rue de Bruxelles, Namur 5000, Belgium
| | - Xavier De Bolle
- Bacterial Cell cycle and Development (BCcD), URBM, University of Namur, 61 Rue de Bruxelles, Namur 5000, Belgium
| | - Régis Hallez
- Bacterial Cell cycle and Development (BCcD), URBM, University of Namur, 61 Rue de Bruxelles, Namur 5000, Belgium
| |
Collapse
|
17
|
Wolf S, Pflüger-Grau K, Kremling A. Modeling the Interplay of Pseudomonas putida EIIA Ntr with the Potassium Transporter KdpFABC. J Mol Microbiol Biotechnol 2015; 25:178-94. [DOI: 10.1159/000381214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The nitrogen phosphotransferase system (PTS<sup>Ntr</sup>) of <i>Pseudomonas putida</i> is a key regulatory device that participates in controlling many physiological processes in a posttranscriptional fashion. One of the target functions of the PTS<sup>Ntr</sup> is the regulation of potassium transport. This is mediated by the direct interaction of one of its components with the sensor kinase KdpD of the two-component system controlling transcription of the <i>kdpFABC</i> genes. From a detailed experimental analysis of the activity of the <i>kdpF</i> promoter in <i>P. putida</i> wild-type and <i>pts</i> mutant strains with varying potassium concentrations, we had highly time-resolved data at hand, describing the influence of the PTS<sup>Ntr</sup> on the transcription of the KdpFABC potassium transporter. Here, this data was used to construct a mathematical model based on a black box approach. The model was able to describe the data quantitatively with convincing accuracy. The qualitative interpretation of the model allowed the prediction of two general points describing the interplay between the PTS<sup>Ntr</sup> and the KdpFABC potassium transporter: (1) the influence of cell number on the performance of the <i>kdpF</i> promoter is mainly by dilution by growth and (2) potassium uptake is regulated not only by the activity of the KdpD/KdpE two-component system (in turn influenced by PtsN). An additional controller with integrative behavior is predicted by the model structure. This suggests the presence of a novel physiological mechanism during regulation of potassium uptake with the KdpFABC transporter and may serve as a starting point for further investigations.
Collapse
|
18
|
Lüttmann D, Göpel Y, Görke B. Cross-Talk between the Canonical and the Nitrogen-Related Phosphotransferase Systems Modulates Synthesis of the KdpFABC Potassium Transporter in Escherichia coli. J Mol Microbiol Biotechnol 2015; 25:168-77. [DOI: 10.1159/000375497] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Many Proteobacteria possess the regulatory nitrogen-related phosphotransferase system (PTS<sup>Ntr</sup>), which operates in parallel to the transport PTS. PTS<sup>Ntr</sup> is composed of the proteins EI<sup>Ntr</sup> and NPr and the final phosphate acceptor EIIA<sup>Ntr</sup>. Both PTSs can exchange phosphoryl groups among each other. Proteins governing K<sup>+</sup> uptake represent a major target of PTS<sup>Ntr</sup> in <i>Escherichia coli</i>. Nonphosphorylated EIIA<sup>Ntr</sup> binds and stimulates the K<sup>+</sup> sensor KdpD, which activates expression of the <i>kdpFABC</i> operon encoding a K<sup>+</sup> transporter. Here we show that this regulation also operates in an <i>ilvG</i><sup><i>+</i></sup> strain ruling out previous concern about interference with a nonfunctional <i>ilvG</i> allele present in many strains. Furthermore, we analyzed phosphorylation of EIIA<sup>Ntr</sup>. In wild-type cells EIIA<sup>Ntr</sup> is predominantly phosphorylated, regardless of the growth stage and the utilized carbon source. However, cross-phosphorylation of EIIA<sup>Ntr</sup> by the transport PTS becomes apparent in the absence of EI<sup>Ntr</sup>: EIIA<sup>Ntr</sup> is predominantly nonphosphorylated when cells grow on a PTS sugar and phosphorylated when a non-PTS carbohydrate is utilized. These differences in phosphorylation are transduced into corresponding <i>kdpFABC</i> transcription levels. Thus, the transport PTS may affect phosphorylation of EIIA<sup>Ntr</sup> and accordingly modulate processes controlled by EIIA<sup>Ntr</sup>. Our data suggest that this cross-talk becomes most relevant under conditions that would inhibit activity of EI<sup>Ntr</sup>.
Collapse
|
19
|
The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. Microbiol Mol Biol Rev 2015; 78:231-56. [PMID: 24847021 DOI: 10.1128/mmbr.00001-14] [Citation(s) in RCA: 304] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The bacterial phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) carries out both catalytic and regulatory functions. It catalyzes the transport and phosphorylation of a variety of sugars and sugar derivatives but also carries out numerous regulatory functions related to carbon, nitrogen, and phosphate metabolism, to chemotaxis, to potassium transport, and to the virulence of certain pathogens. For these different regulatory processes, the signal is provided by the phosphorylation state of the PTS components, which varies according to the availability of PTS substrates and the metabolic state of the cell. PEP acts as phosphoryl donor for enzyme I (EI), which, together with HPr and one of several EIIA and EIIB pairs, forms a phosphorylation cascade which allows phosphorylation of the cognate carbohydrate bound to the membrane-spanning EIIC. HPr of firmicutes and numerous proteobacteria is also phosphorylated in an ATP-dependent reaction catalyzed by the bifunctional HPr kinase/phosphorylase. PTS-mediated regulatory mechanisms are based either on direct phosphorylation of the target protein or on phosphorylation-dependent interactions. For regulation by PTS-mediated phosphorylation, the target proteins either acquired a PTS domain by fusing it to their N or C termini or integrated a specific, conserved PTS regulation domain (PRD) or, alternatively, developed their own specific sites for PTS-mediated phosphorylation. Protein-protein interactions can occur with either phosphorylated or unphosphorylated PTS components and can either stimulate or inhibit the function of the target proteins. This large variety of signal transduction mechanisms allows the PTS to regulate numerous proteins and to form a vast regulatory network responding to the phosphorylation state of various PTS components.
Collapse
|
20
|
Martínez-García E, Nikel PI, Aparicio T, de Lorenzo V. Pseudomonas 2.0: genetic upgrading of P. putida KT2440 as an enhanced host for heterologous gene expression. Microb Cell Fact 2014; 13:159. [PMID: 25384394 PMCID: PMC4230525 DOI: 10.1186/s12934-014-0159-3] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 10/27/2014] [Indexed: 11/10/2022] Open
Abstract
Background Because of its adaptability to sites polluted with toxic chemicals, the model soil bacterium Pseudomonas putida is naturally endowed with a number of metabolic and stress-endurance qualities which have considerable value for hosting energy-demanding and redox reactions thereof. The growing body of knowledge on P. putida strain KT2440 has been exploited for the rational design of a derivative strain in which the genome has been heavily edited in order to construct a robust microbial cell factory. Results Eleven non-adjacent genomic deletions, which span 300 genes (i.e., 4.3% of the entire P. putida KT2440 genome), were eliminated; thereby enhancing desirable traits and eliminating attributes which are detrimental in an expression host. Since ATP and NAD(P)H availability – as well as genetic instability, are generally considered to be major bottlenecks for the performance of platform strains, a suite of functions that drain high-energy phosphate from the cells and/or consume NAD(P)H were targeted in particular, the whole flagellar machinery. Four prophages, two transposons, and three components of DNA restriction-modification systems were eliminated as well. The resulting strain (P. putida EM383) displayed growth properties (i.e., lag times, biomass yield, and specific growth rates) clearly superior to the precursor wild-type strain KT2440. Furthermore, it tolerated endogenous oxidative stress, acquired and replicated exogenous DNA, and survived better in stationary phase. The performance of a bi-cistronic GFP-LuxCDABE reporter system as a proxy of combined metabolic vitality, revealed that the deletions in P. putida strain EM383 brought about an increase of >50% in the overall physiological vigour. Conclusion The rationally modified P. putida strain allowed for the better functional expression of implanted genes by directly improving the metabolic currency that sustains the gene expression flow, instead of resorting to the classical genetic approaches (e.g., increasing the promoter strength in the DNA constructs of interest). Electronic supplementary material The online version of this article (doi:10.1186/s12934-014-0159-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Esteban Martínez-García
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.
| | - Pablo I Nikel
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.
| | - Tomás Aparicio
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
21
|
Martínez-García E, Nikel PI, Aparicio T, de Lorenzo V. Pseudomonas 2.0: genetic upgrading of P. putida KT2440 as an enhanced host for heterologous gene expression. Microb Cell Fact 2014. [PMID: 25384394 DOI: 10.1186/s12934-014-0159-3.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Because of its adaptability to sites polluted with toxic chemicals, the model soil bacterium Pseudomonas putida is naturally endowed with a number of metabolic and stress-endurance qualities which have considerable value for hosting energy-demanding and redox reactions thereof. The growing body of knowledge on P. putida strain KT2440 has been exploited for the rational design of a derivative strain in which the genome has been heavily edited in order to construct a robust microbial cell factory. RESULTS Eleven non-adjacent genomic deletions, which span 300 genes (i.e., 4.3% of the entire P. putida KT2440 genome), were eliminated; thereby enhancing desirable traits and eliminating attributes which are detrimental in an expression host. Since ATP and NAD(P)H availability - as well as genetic instability, are generally considered to be major bottlenecks for the performance of platform strains, a suite of functions that drain high-energy phosphate from the cells and/or consume NAD(P)H were targeted in particular, the whole flagellar machinery. Four prophages, two transposons, and three components of DNA restriction-modification systems were eliminated as well. The resulting strain (P. putida EM383) displayed growth properties (i.e., lag times, biomass yield, and specific growth rates) clearly superior to the precursor wild-type strain KT2440. Furthermore, it tolerated endogenous oxidative stress, acquired and replicated exogenous DNA, and survived better in stationary phase. The performance of a bi-cistronic GFP-LuxCDABE reporter system as a proxy of combined metabolic vitality, revealed that the deletions in P. putida strain EM383 brought about an increase of >50% in the overall physiological vigour. CONCLUSION The rationally modified P. putida strain allowed for the better functional expression of implanted genes by directly improving the metabolic currency that sustains the gene expression flow, instead of resorting to the classical genetic approaches (e.g., increasing the promoter strength in the DNA constructs of interest).
Collapse
Affiliation(s)
- Esteban Martínez-García
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.
| | - Pablo I Nikel
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.
| | - Tomás Aparicio
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
22
|
Pflüger-Grau K, de Lorenzo V. From the phosphoenolpyruvate phosphotransferase system to selfish metabolism: a story retraced in Pseudomonas putida. FEMS Microbiol Lett 2014; 356:144-53. [PMID: 24801646 DOI: 10.1111/1574-6968.12459] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 04/28/2014] [Accepted: 04/30/2014] [Indexed: 12/17/2022] Open
Abstract
Although DNA is the ultimate repository of biological information, deployment of its instructions is constrained by the metabolic and physiological status of the cell. To this end, bacteria have evolved intricate devices that connect exogenous signals (e.g. nutrients, physicochemical conditions) with endogenous conditions (metabolic fluxes, biochemical networks) that coordinately influence expression or performance of a large number of cellular functions. The phosphoenolpyruvate:carbohydrate-phosphotransferase system (PTS) is a bacterial multi-protein phosphorylation chain which computes extracellular (e.g. sugars) and intracellular (e.g. phosphoenolpyruvate, nitrogen) signals and translates them into post-translational regulation of target activities through protein-protein interactions. The PTS of Pseudomonas putida KT2440 encompasses one complete sugar (fructose)-related system and the three enzymes that form the so-called nitrogen-related PTS (PTS(N) (tr) ), which lacks connection to transport of substrates. These two PTS branches cross-talk to each other, as the product of the fruB gene (a polyprotein EI-HPr-EIIA) can phosphorylate PtsN (EIIA(N) (tr) ) in vivo. This gives rise to a complex actuator device where diverse physiological inputs are ultimately translated into phosphorylation or not of PtsN (EIIA(N) (tr) ) which, in turn, checks the activity of key metabolic and regulatory proteins. Such a control of bacterial physiology highlights the prominence of biochemical homeostasis over genetic ruling -and not vice versa.
Collapse
|
23
|
Karstens K, Zschiedrich CP, Bowien B, Stülke J, Görke B. Phosphotransferase protein EIIANtr interacts with SpoT, a key enzyme of the stringent response, in Ralstonia eutropha H16. MICROBIOLOGY-SGM 2014; 160:711-722. [PMID: 24515609 DOI: 10.1099/mic.0.075226-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
EIIA(Ntr) is a member of a truncated phosphotransferase (PTS) system that serves regulatory functions and exists in many Proteobacteria in addition to the sugar transport PTS. In Escherichia coli, EIIA(Ntr) regulates K(+) homeostasis through interaction with the K(+) transporter TrkA and sensor kinase KdpD. In the β-Proteobacterium Ralstonia eutropha H16, EIIA(Ntr) influences formation of the industrially important bioplastic poly(3-hydroxybutyrate) (PHB). PHB accumulation is controlled by the stringent response and induced under conditions of nitrogen deprivation. Knockout of EIIA(Ntr) increases the PHB content. In contrast, absence of enzyme I or HPr, which deliver phosphoryl groups to EIIA(Ntr), has the opposite effect. To clarify the role of EIIA(Ntr) in PHB formation, we screened for interacting proteins that co-purify with Strep-tagged EIIA(Ntr) from R. eutropha cells. This approach identified the bifunctional ppGpp synthase/hydrolase SpoT1, a key enzyme of the stringent response. Two-hybrid and far-Western analyses confirmed the interaction and indicated that only non-phosphorylated EIIA(Ntr) interacts with SpoT1. Interestingly, this interaction does not occur between the corresponding proteins of E. coli. Vice versa, interaction of EIIA(Ntr) with KdpD appears to be absent in R. eutropha, although R. eutropha EIIA(Ntr) can perfectly substitute its homologue in E. coli in regulation of KdpD activity. Thus, interaction with KdpD might be an evolutionary 'ancient' task of EIIA(Ntr) that was subsequently replaced by interaction with SpoT1 in R. eutropha. In conclusion, EIIA(Ntr) might integrate information about nutritional status, as reflected by its phosphorylation state, into the stringent response, thereby controlling cellular PHB content in R. eutropha.
Collapse
Affiliation(s)
- Katja Karstens
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-University, 37077 Göttingen, Germany
| | - Christopher P Zschiedrich
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-University, 37077 Göttingen, Germany
| | - Botho Bowien
- Department of Molecular Physiology, Institute of Microbiology and Genetics, Georg-August-University, 37077 Göttingen, Germany
| | - Jörg Stülke
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-University, 37077 Göttingen, Germany
| | - Boris Görke
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, Center of Molecular Biology, University of Vienna, 1030 Vienna, Austria.,Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-University, 37077 Göttingen, Germany
| |
Collapse
|
24
|
A role for EIIA Ntr in controlling fluxes in the central metabolism of E. coli K12. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2879-2889. [DOI: 10.1016/j.bbamcr.2013.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/04/2013] [Accepted: 07/15/2013] [Indexed: 11/21/2022]
|
25
|
Untiet V, Karunakaran R, Krämer M, Poole P, Priefer U, Prell J. ABC transport is inactivated by the PTS(Ntr) under potassium limitation in Rhizobium leguminosarum 3841. PLoS One 2013; 8:e64682. [PMID: 23724079 PMCID: PMC3665714 DOI: 10.1371/journal.pone.0064682] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 04/17/2013] [Indexed: 11/29/2022] Open
Abstract
PTSNtr is a regulatory phosphotransferase system in many bacteria. Mutation of the PTSNtr enzymes causes pleiotropic growth phenotypes, dry colony morphology and a posttranslational inactivation of ABC transporters in Rhizobium leguminosarum 3841. The PTSNtr proteins EINtr and 2 copies of EIIANtr have been described previously. Here we identify the intermediate phosphocarrier protein NPr and show its phosphorylation by EINtrin vitro. Furthermore we demonstrate that phosphorylation of EINtr and NPr is required for ABC transport activation and that the N-terminal GAF domain of EINtr is not required for autophosphorylation. Previous studies have shown that non-phosphorylated EIIANtr is able to modulate the transcriptional activation of the high affinity potassium transporter KdpABC. In R. leguminosarum 3841 kdpABC expression strictly depends on EIIANtr. Here we demonstrate that under strong potassium limitation ABC transport is inactivated, presumably by non-phosphorylated EIIANtr. This is to our knowledge the first report where PTSNtr dictates an essential cellular function. This is achieved by the inverse regulation of two important ATP dependent transporter classes.
Collapse
Affiliation(s)
| | | | | | - Philip Poole
- Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | | | - Jürgen Prell
- Soil Ecology, RWTH Aachen, Aachen, Germany
- * E-mail:
| |
Collapse
|
26
|
Erni B. The bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS): an interface between energy and signal transduction. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2012. [DOI: 10.1007/s13738-012-0185-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Kremling A, Pflüger-Grau K, Chavarría M, Puchalka J, dos Santos VM, de Lorenzo V. Modeling and analysis of flux distributions in the two branches of the phosphotransferase system in Pseudomonas putida. BMC SYSTEMS BIOLOGY 2012; 6:149. [PMID: 23216700 PMCID: PMC3562155 DOI: 10.1186/1752-0509-6-149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 10/31/2012] [Indexed: 11/30/2022]
Abstract
Background Signal transduction plays a fundamental role in the understanding of cellular physiology. The bacterial phosphotransferase system (PTS) together with the PEP/pyruvate node in central metabolism represents a signaling unit that acts as a sensory element and measures the activity of the central metabolism. Pseudomonas putida possesses two PTS branches, the C-branch (PTSFru) and a second branch (PTSNtr), which communicate with each other by phosphate exchange. Recent experimental results showed a cross talk between the two branches. However, the functional role of the crosstalk remains open. Results A mathematical model was set up to describe the available data of the state of phosphorylation of PtsN, one of the PTS proteins, for different environmental conditions and different strain variants. Additionally, data from flux balance analysis was used to determine some of the kinetic parameters of the involved reactions. Based on the calculated and estimated parameters, the flux distribution during growth of the wild type strain on fructose could be determined. Conclusion Our calculations show that during growth of the wild type strain on the PTS substrate fructose, the major part of the phosphoryl groups is provided by the second branch of the PTS. This theoretical finding indicates a new role of the second branch of the PTS and will serve as a basis for further experimental studies.
Collapse
Affiliation(s)
- Andreas Kremling
- Fachgebiet Systembiotechnologie, Technische Universität München, Garching b, München, Germany.
| | | | | | | | | | | |
Collapse
|
28
|
Lüttmann D, Göpel Y, Görke B. The phosphotransferase protein EIIA(Ntr) modulates the phosphate starvation response through interaction with histidine kinase PhoR in Escherichia coli. Mol Microbiol 2012; 86:96-110. [PMID: 22812494 DOI: 10.1111/j.1365-2958.2012.08176.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Many Proteobacteria possess the paralogous PTS(Ntr), in addition to the sugar transport phosphotransferase system (PTS). In the PTS(Ntr) phosphoryl-groups are transferred from phosphoenolpyruvate to protein EIIA(Ntr) via the phosphotransferases EI(Ntr) and NPr. The PTS(Ntr) has been implicated in regulation of diverse physiological processes. In Escherichia coli, the PTS(Ntr) plays a role in potassium homeostasis. In particular, EIIA(Ntr) binds to and stimulates activity of a two-component histidine kinase (KdpD) resulting in increased expression of the genes encoding the high-affinity K(+) transporter KdpFABC. Here, we show that the phosphate (pho) regulon is likewise modulated by PTS(Ntr). The pho regulon, which comprises more than 30 genes, is activated by the two-component system PhoR/PhoB under conditions of phosphate starvation. Mutants lacking EIIA(Ntr) are unable to fully activate the pho genes and exhibit a growth delay upon adaptation to phosphate limitation. In contrast, pho expression is increased above the wild-type level in mutants deficient for EIIA(Ntr) phosphorylation suggesting that non-phosphorylated EIIA(Ntr) modulates pho. Protein interaction analyses reveal binding of EIIA(Ntr) to histidine kinase PhoR. This interaction increases the amount of phosphorylated response regulator PhoB. Thus, EIIA(Ntr) is an accessory protein that modulates the activities of two distinct sensor kinases, KdpD and PhoR, in E. coli.
Collapse
Affiliation(s)
- Denise Lüttmann
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-University, Grisebachstrasse 8, 37077 Göttingen, Germany
| | | | | |
Collapse
|
29
|
Chavarría M, Fuhrer T, Sauer U, Pflüger-Grau K, de Lorenzo V. Cra regulates the cross-talk between the two branches of the phosphoenolpyruvate : phosphotransferase system of Pseudomonas putida. Environ Microbiol 2012; 15:121-32. [PMID: 22708906 DOI: 10.1111/j.1462-2920.2012.02808.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The gene that encodes the catabolite repressor/activator, Cra (FruR), of Pseudomonas putida is divergent from the fruBKA operon for the uptake of fructose via the phosphoenolpyruvate : carbohydrate phosphotransferase system (PTS(Fru)). The expression of the fru cluster has been studied in cells growing on substrates that change the intracellular concentrations of fructose-1-P (F1P), the principal metabolic intermediate that counteracts the DNA-binding ability of Cra on an upstream operator. While the levels of the regulator were not affected by any of the growth conditions tested, the transcription of fruB was stimulated by fructose but not by the gluconeogenic substrate, succinate. The analysis of the P(fruB) promoter activity in a strain lacking the Cra protein and the determination of key metabolites revealed that this regulator represses the expression of PTS(Fru) in a fashion that is dependent on the endogenous concentrations of F1P. Because FruB (i.e. the EI-HPr-EIIA(Fru) polyprotein) can deliver a high-energy phosphate to the EIIA(Ntr) (PtsN) enzyme of the PTS(Ntr) branch, the cross-talk between the two phosphotransferase systems was examined under metabolic regimes that allowed for the high or low transcription of the fruBKA operon. While fructose caused cross-talk, succinate prevented it almost completely. Furthermore, PtsN phosphorylation by FruB occurred in a Δcra mutant regardless of growth conditions. These results traced the occurrence of the cross-talk to intracellular pools of Cra effectors, in particular F1P. The Cra/F1P duo seems to not only control the expression of the PTS(Fru) but also checks the activity of the PTS(Ntr) in vivo.
Collapse
Affiliation(s)
- Max Chavarría
- Systems Biology Program, Centro Nacional de Biotecnología, 28049 Cantoblanco-Madrid, Spain
| | | | | | | | | |
Collapse
|
30
|
Regulatory tasks of the phosphoenolpyruvate-phosphotransferase system of Pseudomonas putida in central carbon metabolism. mBio 2012; 3:mBio.00028-12. [PMID: 22434849 PMCID: PMC3312210 DOI: 10.1128/mbio.00028-12] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Two branches of the phosphoenolpyruvate-phosphotransferase system (PTS) operate in the soil bacterium Pseudomonas putida KT2440. One branch encompasses a complete set of enzymes for fructose intake (PTSFru), while the other (N-related PTS, or PTSNtr) controls various cellular functions unrelated to the transport of carbohydrates. The potential of these two systems for regulating central carbon catabolism has been investigated by measuring the metabolic fluxes of isogenic strains bearing nonpolar mutations in PTSFru or PTSNtr genes and grown on either fructose (a PTS substrate) or glucose, the transport of which is not governed by the PTS in this bacterium. The flow of carbon from each sugar was distinctly split between the Entner-Doudoroff, pentose phosphate, and Embden-Meyerhof-Parnas pathways in a ratio that was maintained in each of the PTS mutants examined. However, strains lacking PtsN (EIIANtr) displayed significantly higher fluxes in the reactions of the pyruvate shunt, which bypasses malate dehydrogenase in the TCA cycle. This was consistent with the increased activity of the malic enzyme and the pyruvate carboxylase found in the corresponding PTS mutants. Genetic evidence suggested that such a metabolic effect of PtsN required the transfer of high-energy phosphate through the system. The EIIANtr protein of the PTSNtr thus helps adjust central metabolic fluxes to satisfy the anabolic and energetic demands of the overall cell physiology. This study demonstrates that EIIANtr influences the biochemical reactions that deliver carbon between the upper and lower central metabolic domains for the consumption of sugars by P. putida. These findings indicate that the EIIANtr protein is a key player for orchestrating the fate of carbon in various physiological destinations in this bacterium. Additionally, these results highlight the importance of the posttranslational regulation of extant enzymatic complexes for increasing the robustness of the corresponding metabolic networks.
Collapse
|
31
|
|