1
|
Sato S, Iwaki J, Hirabayashi J. Decoding the multifaceted roles of galectins in self-defense. Semin Immunol 2025; 77:101926. [PMID: 39721561 DOI: 10.1016/j.smim.2024.101926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024]
Abstract
In this review, we aim to explore the multifaceted roles of galectins in host defense from a broader perspective, particularly regarding their functions when host integrity is compromised. Numerous comprehensive reviews on galectin functions in immunity have already been published. For researchers new to the field, this wealth of information may create an impression of galectins as proteins involved in a wide array of biological processes. Furthermore, due to the heterogeneity of galectin ligands, glycans, there is a risk of perceiving galectin-specific functions as ambiguous, potentially obscuring their core biological significance. To address this, we revisit foundational aspects, focusing on the significance of the recognition of galactose, a "late-comer" monosaccharide in evolutionary terms, provide an overview of galectin glycan binding specificity, with emphasis on the potential biological importance of each carbohydrate-recognition domain. We also discuss the biological implications of the galectin location paradox wherein these cytosolic lectins function in host defense despite their glycan ligands being synthesized in the secretory pathway. Additionally, we examine the role of galectins in liquid-liquid phase separation on membranes, which may facilitate their diverse functions in cellular responses. Through this approach, we aim to re-evaluate the complex and diverse biological roles of galectins in host defense.
Collapse
Affiliation(s)
- Sachiko Sato
- Axe of Infectious and Immune Diseases, CHU de Quebec-Université Laval Research Centre, Faculty of Medicine, and Research Centre for Infectious Diseases, Laval University, Quebec City, Canada.
| | - Jun Iwaki
- Tokyo Chemical Industry Co., Ltd., Tokyo, Japan.
| | - Jun Hirabayashi
- Institute for Glyco-core Research, Nagoya University, Tokai Higher Education and Research System, Nagoya, Japan.
| |
Collapse
|
2
|
Hu D, Hirabayashi J. Transformation of Agrocybe cylindracea Galectin into αGalNAc-Specific Lectin. Methods Mol Biol 2022; 2442:233-245. [PMID: 35320530 DOI: 10.1007/978-1-0716-2055-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A multi-specific fungal galectin from the mushroom Agrocybe cylindracea (ACG) binds a broad range of β-galactosides, as well as their derivative GalNAcα1-3Gal. Site-directed mutagenesis of the hydrophilic residues His, Asn, Arg, and Glu, involved in carbohydrate recognition, abolished the binding affinity of the derived mutants to β-galactosides, whereas only N46A caused increased affinity to GalNAcα1-3Gal-containing oligosaccharides and loss of β-galactoside-binding activity. Detailed structural analysis revealed that Pro45, the preceding residue of Asn46 of the wild-type ACG, takes the cis imide conformation to tether Asn46 onto a loop region to make new hydrogen bonds with β-galactosides and to compensate for the lack of evolutionarily conserved Asn. In contrast, in the N46A mutant, Pro45 takes the more stable trans conformation, resulting in "switched" specificity to αGalNAc. Such an altered recognition system in the binding specificity of galectins can be observed in other lectin molecules not only in nature but will also be observed in those engineered in the future.
Collapse
Affiliation(s)
- Dan Hu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, People's Republic of China
| | - Jun Hirabayashi
- National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan.
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan.
| |
Collapse
|
3
|
Structural Characterization of Rat Galectin-5, an N-Tailed Monomeric Proto-Type-like Galectin. Biomolecules 2021; 11:biom11121854. [PMID: 34944498 PMCID: PMC8699261 DOI: 10.3390/biom11121854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/23/2022] Open
Abstract
Galectins are multi-purpose effectors acting via interactions with distinct counterreceptors based on protein-glycan/protein recognition. These processes are emerging to involve several regions on the protein so that the availability of a detailed structural characterization of a full-length galectin is essential. We report here the first crystallographic information on the N-terminal extension of the carbohydrate recognition domain of rat galectin-5, which is precisely described as an N-tailed proto-type-like galectin. In the ligand-free protein, the three amino-acid stretch from Ser2 to Ser5 is revealed to form an extra β-strand (F0), and the residues from Thr6 to Asn12 are part of a loop protruding from strands S1 and F0. In the ligand-bound structure, amino acids Ser2–Tyr10 switch position and are aligned to the edge of the β-sandwich. Interestingly, the signal profile in our glycan array screening shows the sugar-binding site to preferentially accommodate the histo-blood-group B (type 2) tetrasaccharide and N-acetyllactosamine-based di- and oligomers. The crystal structures revealed the characteristically preformed structural organization around the central Trp77 of the CRD with involvement of the sequence signature’s amino acids in binding. Ligand binding was also characterized calorimetrically. The presented data shows that the N-terminal extension can adopt an ordered structure and shapes the hypothesis that a ligand-induced shift in the equilibrium between flexible and ordered conformers potentially acts as a molecular switch, enabling new contacts in this region.
Collapse
|
4
|
Ishizaki S, Kuramitz H, Sugawara K. Voltammetric Sensing of Soybean Agglutinin Using an Electrode Modified with Electron‐Transfer, Carbohydrate‐Mimetic/Cross‐Linker‐Peptide‐Collagen Film. ELECTROANAL 2021. [DOI: 10.1002/elan.202100380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sora Ishizaki
- Maebashi Institute of Technology Gunma 371-0816 Japan
| | - Hideki Kuramitz
- Department of Environmental Biology and Chemistry Graduate School of Science and Engineering for Research University of Toyama Toyama 930-8555 Japan
| | | |
Collapse
|
5
|
Nonaka Y, Ogawa T, Shoji H, Nishi N, Kamitori S, Nakamura T. Crystal structure and conformational stability of a galectin-1 tandem-repeat mutant with a short linker. Glycobiology 2021; 32:251-259. [PMID: 34735570 DOI: 10.1093/glycob/cwab101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/27/2021] [Accepted: 09/07/2021] [Indexed: 11/14/2022] Open
Abstract
Modification of the domain architecture of galectins has been attempted to analyze their biological functions and to develop medical applications. Several types of galectin-1 repeat mutants were previously reported but, however, it was not clear whether the native structure of the wild type was retained. In this study, we determined the crystal structure of a galectin-1 tandem-repeat mutant with a short linker peptide, and compared the unfolding profiles of the wild type and mutant by chemical denaturation. The structure of the mutant was consistent with that of the dimer of the wild type, and both carbohydrate-binding sites were retained. The unfolding curve of the wild type with lactose suggested that the dimer dissociation and the tertiary structure unfolding was concomitant at micromolar protein concentrations. The midpoint denaturant concentration of the wild type was dependent on the protein concentration and lower than that of the mutant. Linking the two subunits significantly stabilized the tertiary structure. The mutant exhibited higher T-cell growth-inhibition activity and comparable hemagglutinating activity. Structural stabilization may prevent the oxidation of the internal cysteine residue.
Collapse
Affiliation(s)
- Yasuhiro Nonaka
- Department of Endocrinology, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Takashi Ogawa
- Department of Endocrinology, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Hiroki Shoji
- Department of Biology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa 920-0293, Japan
| | - Nozomu Nishi
- Life Science Research Center, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Shigehiro Kamitori
- Life Science Research Center, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Takanori Nakamura
- Department of Endocrinology, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| |
Collapse
|
6
|
Nonaka Y, Ogawa T, Shoji H, Nishi N, Kamitori S, Nakamura T. Modulation of the carbohydrate-binding specificity of two Xenopus proto-type galectins by site-directed mutagenesis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140684. [PMID: 34146732 DOI: 10.1016/j.bbapap.2021.140684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 11/29/2022]
Abstract
The galectin family is a representative soluble lectin group, which is responsible for the modulation of various cell functions. Although the carbohydrate-binding specificity of galectins has been well-studied, the relationship between protein structure and specificity remains to be elucidated. We previously reported the characteristics of a Xenopus laevis skin galectin, xgalectin-Va, which had diverged from galectin-1. The carbohydrate selectivity of xgalectin-Va was different from that of human galectin-1 and xgalectin-Ib (a Xenopus laevis galectin-1 homolog). In this study, we clarified the key residues for this selectivity by site-directed mutagenesis. Substitution of two amino acids of xgalectin-Va, Val56Gly/Lys76Arg, greatly enhanced the binding ability to N-acetyllactosamine and conferred significant T-cell growth inhibition activity, although the wild type had no activity. These two residues, Gly54 and Arg74 in galectin-1, would cooperatively contribute to the N-acetyllactosamine recognition. The loop region between the S4 and S5 β-strands was involved in the binding to the TF-antigen disaccharide. The loop substitution successfully changed the carbohydrate selectivity of xgalectin-Va and xgalectin-Ib.
Collapse
Affiliation(s)
- Yasuhiro Nonaka
- Department of Endocrinology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takashi Ogawa
- Department of Endocrinology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Hiroki Shoji
- Department of Biology, Kanazawa Medical University, Ishikawa, Japan
| | - Nozomu Nishi
- Life Science Research Center, Kagawa University, Kagawa, Japan
| | | | - Takanori Nakamura
- Department of Endocrinology, Faculty of Medicine, Kagawa University, Kagawa, Japan.
| |
Collapse
|
7
|
Dang K, Zhang W, Jiang S, Lin X, Qian A. Application of Lectin Microarrays for Biomarker Discovery. ChemistryOpen 2020; 9:285-300. [PMID: 32154049 PMCID: PMC7050261 DOI: 10.1002/open.201900326] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
Many proteins in living organisms are glycosylated. As their glycan patterns exhibit protein-, cell-, and tissue-specific heterogeneity, changes in the glycosylation levels could serve as useful indicators of various pathological and physiological states. Thus, the identification of glycoprotein biomarkers from specific changes in the glycan profiles of glycoproteins is a trending field. Lectin microarrays provide a new glycan analysis platform, which enables rapid and sensitive analysis of complex glycans without requiring the release of glycans from the protein. Recent developments in lectin microarray technology enable high-throughput analysis of glycans in complex biological samples. In this review, we will discuss the basic concepts and recent progress in lectin microarray technology, the application of lectin microarrays in biomarker discovery, and the challenges and future development of this technology. Given the tremendous technical advancements that have been made, lectin microarrays will become an indispensable tool for the discovery of glycoprotein biomarkers.
Collapse
Affiliation(s)
- Kai Dang
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| | - Wenjuan Zhang
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| | - Shanfeng Jiang
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| | - Xiao Lin
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| | - Airong Qian
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| |
Collapse
|
8
|
Iwaki J, Hirabayashi J. Carbohydrate-Binding Specificity of Human Galectins: An Overview by Frontal Affinity Chromatography. TRENDS GLYCOSCI GLYC 2018. [DOI: 10.4052/tigg.1728.1se] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Jun Iwaki
- National Institute of Advanced Industrial Science and Technology
| | - Jun Hirabayashi
- National Institute of Advanced Industrial Science and Technology
| |
Collapse
|
9
|
KARAÇALI S. Human embryonic stem cell N-glycan features relevant to pluripotency. Turk J Biol 2016. [DOI: 10.3906/biy-1509-57] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
10
|
Nakakita SI, Itoh A, Nakakita Y, Nonaka Y, Ogawa T, Nakamura T, Nishi N. Cooperative Interactions of Oligosaccharide and Peptide Moieties of a Glycopeptide Derived from IgE with Galectin-9. J Biol Chem 2015; 291:968-79. [PMID: 26582205 DOI: 10.1074/jbc.m115.694448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Indexed: 01/06/2023] Open
Abstract
We previously showed that galectin-9 suppresses degranulation of mast cells through protein-glycan interaction with IgE. To elucidate the mechanism of the interaction in detail, we focused on identification and structural analysis of IgE glycans responsible for the galectin-9-induced suppression using mouse monoclonal IgE (TIB-141). TIB-141 in combination with the antigen induced degranulation of RBL-2H3 cells, which was almost completely inhibited by human and mouse galectin-9. Sequential digestion of TIB-141 with lysyl endopeptidase and trypsin resulted in the identification of a glycopeptide (H-Lys13-Try3; 48 amino acid residues) with a single N-linked oligosaccharide near the N terminus capable of neutralizing the effect of galectin-9 and another glycopeptide with two N-linked oligosaccharides (H-Lys13-Try1; 16 amino acid residues) having lower activity. Enzymatic elimination of the oligosaccharide chain from H-Lys13-Try3 and H-Lys13-Try1 completely abolished the activity. Removal of the C-terminal 38 amino acid residues of H-Lys13-Try3 with glutamyl endopeptidase, however, also resulted in loss of the activity. We determined the structures of N-linked oligosaccharides of H-Lys13-Try1. The galectin-9-binding fraction of pyridylaminated oligosaccharides contained asialo- and monosialylated bi/tri-antennary complex type oligosaccharides with a core fucose residue. The structures of the oligosaccharides were consistent with the sugar-binding specificity of galectin-9, whereas the nonbinding fraction contained monosialylated and disialylated biantennary complex type oligosaccharides with a core fucose residue. Although the oligosaccharides linked to H-Lys13-Try3 could not be fully characterized, these results indicate the possibility that cooperative binding of oligosaccharide and neighboring polypeptide structures of TIB-141 to galectin-9 affects the overall affinity and specificity of the IgE-lectin interaction.
Collapse
Affiliation(s)
| | - Aiko Itoh
- Division of Research Instrument and Equipment, Life Science Research Center, and
| | | | - Yasuhiro Nonaka
- the Department of Endocrinology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Takashi Ogawa
- the Department of Endocrinology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Takanori Nakamura
- the Department of Endocrinology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Nozomu Nishi
- Division of Research Instrument and Equipment, Life Science Research Center, and
| |
Collapse
|
11
|
Nonaka Y, Ogawa T, Yoshida H, Shoji H, Nishi N, Kamitori S, Nakamura T. Crystal structure of a Xenopus laevis skin proto-type galectin, close to but distinct from galectin-1. Glycobiology 2015; 25:792-803. [DOI: 10.1093/glycob/cwv020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 03/22/2015] [Indexed: 12/31/2022] Open
|
12
|
Hu D, Huang H, Tateno H, Nakakita SI, Sato T, Narimatsu H, Yao X, Hirabayashi J. Engineering of a 3′-sulpho-Galβ1-4GlcNAc-specific probe by a single amino acid substitution of a fungal galectin. ACTA ACUST UNITED AC 2015; 157:197-200. [DOI: 10.1093/jb/mvv023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Rapoport EM, Matveeva VK, Kaltner H, André S, Vokhmyanina OA, Pazynina GV, Severov VV, Ryzhov IM, Korchagina EY, Belyanchikov IM, Gabius HJ, Bovin NV. Comparative lectinology: Delineating glycan-specificity profiles of the chicken galectins using neoglycoconjugates in a cell assay. Glycobiology 2015; 25:726-34. [PMID: 25681326 DOI: 10.1093/glycob/cwv012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/05/2015] [Indexed: 12/22/2022] Open
Abstract
A major aspect of carbohydrate-dependent galectin functionality is their cross-linking capacity. Using a cell surface as biorelevant platform for galectin binding and a panel of 40 glycans as sensor part of a fluorescent polyacrylamide neoglycopolymer for profiling galectin reactivity, properties of related proteins can be comparatively analyzed. The group of the chicken galectins (CGs) is an especially suited system toward this end due to its relatively small size, compared with mammalian galectins. The experiments reveal particularly strong reactivity toward N-acetyllactosamine repeats for all tested CGs and shared reactivity of CG-1A and CG-2 to histo-blood group ABH determinants. In cross-species comparison, CG-1B's properties closely resembled those of human galectin-1, as was the case for the galectin-2 (but not galectin-3) ortholog pair. Although binding-site architectures are rather similar, reactivity patterns can well differ.
Collapse
Affiliation(s)
- Eugenia M Rapoport
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, ul. Miklukho-Maklaya16/10, Moscow, Russia
| | - Varvara K Matveeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, ul. Miklukho-Maklaya16/10, Moscow, Russia
| | - Herbert Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Veterinärstr. 13, Munich 80539, Germany
| | - Sabine André
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Veterinärstr. 13, Munich 80539, Germany
| | - Olga A Vokhmyanina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, ul. Miklukho-Maklaya16/10, Moscow, Russia
| | - Galina V Pazynina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, ul. Miklukho-Maklaya16/10, Moscow, Russia
| | - Vyacheslav V Severov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, ul. Miklukho-Maklaya16/10, Moscow, Russia
| | - Ivan M Ryzhov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, ul. Miklukho-Maklaya16/10, Moscow, Russia
| | - Elena Yu Korchagina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, ul. Miklukho-Maklaya16/10, Moscow, Russia
| | - Ivan M Belyanchikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, ul. Miklukho-Maklaya16/10, Moscow, Russia
| | - Hans-J Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Veterinärstr. 13, Munich 80539, Germany
| | - Nicolai V Bovin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, ul. Miklukho-Maklaya16/10, Moscow, Russia
| |
Collapse
|
14
|
Hirabayashi J, Tateno H, Shikanai T, Aoki-Kinoshita KF, Narimatsu H. The Lectin Frontier Database (LfDB), and data generation based on frontal affinity chromatography. Molecules 2015; 20:951-73. [PMID: 25580689 PMCID: PMC6272529 DOI: 10.3390/molecules20010951] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/31/2014] [Indexed: 12/03/2022] Open
Abstract
Lectins are a large group of carbohydrate-binding proteins, having been shown to comprise at least 48 protein scaffolds or protein family entries. They occur ubiquitously in living organisms—from humans to microorganisms, including viruses—and while their functions are yet to be fully elucidated, their main underlying actions are thought to mediate cell-cell and cell-glycoconjugate interactions, which play important roles in an extensive range of biological processes. The basic feature of each lectin’s function resides in its specific sugar-binding properties. In this regard, it is beneficial for researchers to have access to fundamental information about the detailed oligosaccharide specificities of diverse lectins. In this review, the authors describe a publicly available lectin database named “Lectin frontier DataBase (LfDB)”, which undertakes the continuous publication and updating of comprehensive data for lectin-standard oligosaccharide interactions in terms of dissociation constants (Kd’s). For Kd determination, an advanced system of frontal affinity chromatography (FAC) is used, with which quantitative datasets of interactions between immobilized lectins and >100 fluorescently labeled standard glycans have been generated. The FAC system is unique in its clear principle, simple procedure and high sensitivity, with an increasing number (>67) of associated publications that attest to its reliability. Thus, LfDB, is expected to play an essential role in lectin research, not only in basic but also in applied fields of glycoscience.
Collapse
Affiliation(s)
- Jun Hirabayashi
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology, Central-2, 1-1-1, Umezono, Tsukuba, Ibaraki 305-8568, Japan.
| | - Hiroaki Tateno
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology, Central-2, 1-1-1, Umezono, Tsukuba, Ibaraki 305-8568, Japan.
| | - Toshihide Shikanai
- Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology, Central-2, 1-1-1, Umezono, Tsukuba, Ibaraki 305-8568, Japan.
| | - Kiyoko F Aoki-Kinoshita
- Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan.
| | - Hisashi Narimatsu
- Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology, Central-2, 1-1-1, Umezono, Tsukuba, Ibaraki 305-8568, Japan.
| |
Collapse
|
15
|
Iwaki J, Hirabayashi J. Evaluation of galectin binding by frontal affinity chromatography (FAC). Methods Mol Biol 2014; 1207:63-74. [PMID: 25253133 DOI: 10.1007/978-1-4939-1396-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Frontal affinity chromatography (FAC) is a simple and versatile procedure enabling quantitative determination of diverse biological interactions in terms of dissociation constants (K d), even though these interactions are relatively weak. The method is best applied to glycans and their binding proteins, with the analytical system operating on the basis of highly reproducible isocratic elution by liquid chromatography. Its application to galectins has been successfully developed to characterize their binding specificities in detail. As a result, their minimal requirements for recognition of disaccharides, i.e., β-galactosides, as well as characteristic features of individual galectins, have been elucidated. In this chapter, we describe standard procedures to determine the K d's for interactions between a series of standard glycans and various galectins.
Collapse
Affiliation(s)
- Jun Iwaki
- Lectin Application and Analysis Team, Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology, AIST Tsukuba Central 2, 1-1-1, Umezono, Tsukuba, Ibaraki, 305-8568, Japan
| | | |
Collapse
|
16
|
Cagnoni AJ, Kovensky J, Uhrig ML. Design and synthesis of hydrolytically stable multivalent ligands bearing thiodigalactoside analogues for peanut lectin and human galectin-3 binding. J Org Chem 2014; 79:6456-67. [PMID: 24937526 DOI: 10.1021/jo500883v] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we describe the design and synthesis of a novel family of hydrolytically stable glycoclusters bearing thiodigalactoside (TDG) analogues as recognition elements of β-galactoside binding lectins. The TDG analogue was synthesized by thioglycosylation of a 6-S-acetyl-α-D-glucosyl bromide with the isothiouronium salt of 2,3,4,6-tetra-O-acetyl-β-D-galactose. Further propargylation of the TDG analogue allowed the coupling to azido-functionalized oligosaccharide scaffolds through copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) under microwave activation. The final mono-, di-, and tetravalent ligands were resistant to enzymatic hydrolisis by Escherichia coli β-galactosidase. Binding affinities to peanut agglutinin and human galectin-3 were measured by isothermal titration calorimetry which showed K(a) constants in the micromolar range as well as a multivalent effect. Monovalent ligand exhibited a binding affinity higher than that of thiodigalactoside. Docking studies performed with a model ligand on both β-galactoside binding lectins showed additional interactions between the triazole ring and lectin amino acid residues, suggesting a positive effect of this aromatic residue on the biological activity.
Collapse
Affiliation(s)
- Alejandro J Cagnoni
- CIHIDECAR-CONICET, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Pabellón 2, Ciudad Universitaria 1428 Buenos Aires, Argentina
| | | | | |
Collapse
|
17
|
Fukata Y, Itoh A, Nonaka Y, Ogawa T, Nakamura T, Matsushita O, Nishi N. Direct cytocidal effect of galectin-9 localized on collagen matrices on human immune cell lines. Biochim Biophys Acta Gen Subj 2014; 1840:1892-901. [PMID: 24462947 DOI: 10.1016/j.bbagen.2014.01.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND There is a continuous demand for new immunosuppressive agents for organ transplantation. Galectin-9, a member of the galactoside-binding animal lectin family, has been shown to suppress pathogenic T-cell responses in autoimmune disease models and experimental allograft transplantation. In this study, an attempt has been made to develop new collagen matrices, which can cause local, contact-dependent immune suppression, using galectin-9 and collagen-binding galectin-9 fusion proteins as active ingredients. METHODS Galectin-9 and galectin-9 fusion proteins having collagen-binding domains (CBDs) derived from bacterial collagenases and a collagen-binding peptide (CBP) were tested for their ability to bind to collagen matrices, and to induce Jurkat cell death in solution and in the collagen-bound state. RESULTS Galectin-9-CBD fusion proteins exhibited collagen-binding activity comparable to or lower than that of the respective CBDs, while their cytocidal activity toward Jurkat cells in solution was 80~10% that of galectin-9. Galectin-9 itself exhibited oligosaccharide-dependent collagen-binding activity. The growth of Jurkat cells cultured on collagen membranes treated with galectin-9 was inhibited by~90%. The effect was dependent on direct cell-to-membrane contact. Galectin-9-CBD/CBP fusion proteins bound to collagen membranes via CBD/CBP moieties showed a low or negligible effect on Jurkat cell growth. CONCLUSIONS Among the proteins tested, galectin-9 exhibited the highest cytocidal effect on Jurkat cells in the collagen-bound state. The effect was not due to galectin-9 released into the culture medium but was dependent on direct cell-to-membrane contact. GENERAL SIGNIFICANCE The study demonstrates the possible use of galectin-9-modified collagen matrices for local, contact-dependent immune suppression in transplantation.
Collapse
Affiliation(s)
- Youko Fukata
- Division of Research Instrument and Equipment, Life Science Research Center, Kagawa University, Kagawa, Japan
| | - Aiko Itoh
- Division of Research Instrument and Equipment, Life Science Research Center, Kagawa University, Kagawa, Japan
| | - Yasuhiro Nonaka
- Department of Endocrinology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takashi Ogawa
- Department of Endocrinology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takanori Nakamura
- Department of Endocrinology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Osamu Matsushita
- Department of Bacteriology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Nozomu Nishi
- Division of Research Instrument and Equipment, Life Science Research Center, Kagawa University, Kagawa, Japan.
| |
Collapse
|
18
|
Conformational Selection in Glycomimetics: Human Galectin-1 Only Recognizessyn-Ψ-Type Conformations of β-1,3-Linked Lactose and ItsC-Glycosyl Derivative. Chemistry 2013; 19:14581-90. [DOI: 10.1002/chem.201301244] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 07/24/2013] [Indexed: 01/09/2023]
|
19
|
Tailoring GalNAcα1-3Galβ-specific lectins from a multi-specific fungal galectin: dramatic change of carbohydrate specificity by a single amino-acid substitution. Biochem J 2013; 453:261-70. [PMID: 23611418 DOI: 10.1042/bj20121901] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Galectins exhibit multiple roles through recognition of diverse structures of β-galactosides. However, this broad specificity often hinders their practical use as probes. In the present study we report a dramatic improvement in the carbohydrate specificity of a multi-specific fungal galectin from the mushroom Agrocybe cylindricea, which binds not only to simple β-galactosides, but also to their derivatives. Site-directed mutagenesis targeting five residues involved in β-galactose binding revealed that replacement of Asn46 with alanine (N46A) increased the binding to GalNAcα1-3Galβ-containing glycans, while eliminating binding to all other β-galactosides, as shown by glycoconjugate microarray analysis. Quantitative analysis by frontal affinity chromatography showed that the mutant N46A had enhanced affinity towards blood group A tetraose (type 2), A hexaose (type 1) and Forssman pentasaccharide with dissociation constants of 5.0 × 10⁻⁶ M, 3.8 × 10⁻⁶ M and 1.0 × 10⁻⁵ M respectively. Surprisingly, all the other mutants generated by saturation mutagenesis of Asn46 exhibited essentially the same specificity as N46A. Moreover, alanine substitution for Pro45, which forms the cis-conformation upon β-galactose binding, exhibited the same specificity as N46A. From a practical viewpoint, the derived N46A mutant proved to be unique as a specific probe to detect GalNAcα1-3Galβ-containing glycans by methods such as flow cytometry, cell staining and lectin microarray.
Collapse
|
20
|
Reuel NF, Mu B, Zhang J, Hinckley A, Strano MS. Nanoengineered glycan sensors enabling native glycoprofiling for medicinal applications: towards profiling glycoproteins without labeling or liberation steps. Chem Soc Rev 2013; 41:5744-79. [PMID: 22868627 DOI: 10.1039/c2cs35142k] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanoengineered glycan sensors may help realize the long-held goal of accurate and rapid glycoprotein profiling without labeling or glycan liberation steps. Current methods of profiling oligosaccharides displayed on protein surfaces, such as liquid chromatography, mass spectrometry, capillary electrophoresis, and microarray methods, are limited by sample pretreatment and quantitative accuracy. Microarrayed platforms can be improved with methods that better estimate kinetic parameters rather than simply reporting relative binding information. These quantitative glycan sensors are enabled by an emerging class of nanoengineered materials that differ in their mode of signal transduction from traditional methods. Platforms that respond to mass changes include a quartz crystal microbalance and cantilever sensors. Electronic response can be detected from electrochemical, field effect transistor, and pore impedance sensors. Optical methods include fluorescent frontal affinity chromatography, surface plasmon resonance methods, and fluorescent carbon nanotubes. After a very brief primer on glycobiology and its connection to medicine, these emerging systems are critically reviewed for their potential use as core sensors in future glycoprofiling tools.
Collapse
Affiliation(s)
- Nigel F Reuel
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
21
|
Makyio H, Takeuchi T, Tamura M, Nishiyama K, Takahashi H, Natsugari H, Arata Y, Kasai KI, Yamada Y, Wakatsuki S, Kato R. Structural basis of preferential binding of fucose-containing saccharide by the Caenorhabditis elegans galectin LEC-6. Glycobiology 2013; 23:797-805. [DOI: 10.1093/glycob/cwt017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Hirabayashi J, Yamada M, Kuno A, Tateno H. Lectin microarrays: concept, principle and applications. Chem Soc Rev 2013; 42:4443-58. [PMID: 23443201 DOI: 10.1039/c3cs35419a] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The lectin microarray is a novel platform for glycan analysis, having emerged only in recent years. Unlike other conventional methods, e.g., liquid chromatography and mass spectrometry, it enables rapid and high-sensitivity profiling of complex glycan features without the need for liberation of glycans. Target samples include an extensive range of glycoconjugates involved in cells, tissues, body fluids, as well as synthetic glycans and their mimics. Various procedures for rapid differential glycan profiling have been developed for glycan-related biomarkers. Such glycoproteomics targeting allows precise diagnosis of chronic diseases potentially related to cancer. Application of this method to evaluation of various types of stem cells resulted in the discovery of a new pluripotent cell-specific glycan marker. To explore this technology a more fundamental and extensive understanding of lectins is necessary in relation to the structural uniqueness of glycans. In this chapter, the essence of the lectin microarray is described with some focus on an evanescent-field-activated fluorescence detection principle as a system to achieve in situ (i.e., washing free) aqueous-phase observation under equilibrium conditions. The developed lectin microarray system allows even researchers with poor experience in glycan profiling to perform extensive high-throughput analysis targeting various forms of glycans and even cells.
Collapse
Affiliation(s)
- Jun Hirabayashi
- National Institute of Advanced Science and Technology, Central-2, 1-1-1, Umezono, Tsukuba, Ibaraki 305-8568, Japan.
| | | | | | | |
Collapse
|
23
|
Nonaka Y, Ogawa T, Oomizu S, Nakakita SI, Nishi N, Kamitori S, Hirashima M, Nakamura T. Self-association of the galectin-9 C-terminal domain via the opposite surface of the sugar-binding site. J Biochem 2013; 153:463-71. [PMID: 23389308 DOI: 10.1093/jb/mvt009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Galectin-9 is a lectin, which has various biological functions such as T-cell differentiation and apoptosis. Multivalency of carbohydrate binding is required for galectin-9 to function. Although galectin-1 (a proto-type galectin) forms an oligomer to obtain its multivalency, galectin-9 (a tandem-repeat-type one) has two carbohydrate recognition domains (CRD) in one polypeptide. However, a single CRD of galectin-9, especially the C-terminal one, exhibited pro-apoptotic activity suggesting oligomer formation capability. In this study, we monitored the nuclear magnetic resonance (NMR) signals of the backbone atoms of the galectin-9 C-terminal CRD (G9CCRD). Protein concentration dependence of the signals suggested that a region (F1-F4 strands) opposite to the ligand-binding site was involved in the self-association of G9CCRD. Site-directed mutagenesis in this region (Leu210, Trp277 and Leu279 to Thr; G9CCRD-3T) inhibited the self-association of G9CCRD, and improved the solubility, whereas it reduced its pro-apoptotic activity towards T cells. The high pro-apoptotic activity of G9CCRD seems to be due to the ability to form an oligomer. In addition, the same substitution in two-CRD-containing galectin-9 (G9Null-3T) also diminished the self-association and improved its solubility, although it hardly reduced the anti-proliferative and pro-apoptotic activities. G9CCRD contributes the self-association of full-length galectin-9 at high protein concentrations.
Collapse
Affiliation(s)
- Yasuhiro Nonaka
- Department of Endocrinology, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Hasehira K, Tateno H, Onuma Y, Ito Y, Asashima M, Hirabayashi J. Structural and quantitative evidence for dynamic glycome shift on production of induced pluripotent stem cells. Mol Cell Proteomics 2012; 11:1913-23. [PMID: 23023295 DOI: 10.1074/mcp.m112.020586] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We recently reported that induced pluripotent stem cells (iPSCs) prepared from different human origins acquired similar glycan profiles to one another as well as to human embryonic stem cells. Although the results strongly suggested attainment of specific glycan expressions associated with the acquisition of pluripotency, the detailed glycan structures remained to be elucidated. Here, we perform a quantitative glycome analysis targeting both N- and O-linked glycans derived from 201B7 human iPSCs and human dermal fibroblasts as undifferentiated and differentiated cells, respectively. Overall, the fractions of high mannose-type N-linked glycans were significantly increased upon induction of pluripotency. Moreover, it became evident that the type of linkage of Sia on N-linked glycans was dramatically changed from α-2-3 to α-2-6, and the expression of α-1-2 fucose and type 1 LacNAc structures became clearly apparent, while no such glycan epitopes were detected in fibroblasts. The expression profiles of relevant glycosyltransferase genes were fully consistent with these results. These observations indicate unambiguously the manifestation of a "glycome shift" upon conversion to iPSCs, which may not merely be the result of the initialization of gene expression, but could be involved in a more aggressive manner either in the acquisition or maintenance of the undifferentiated state of iPSCs.
Collapse
Affiliation(s)
- Kayo Hasehira
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Microglial carbohydrate-binding receptors for neural repair. Cell Tissue Res 2012; 349:215-27. [DOI: 10.1007/s00441-012-1342-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 01/25/2012] [Indexed: 01/04/2023]
|
27
|
Engineering of the glycan-binding specificity of Agrocybe cylindracea galectin towards α(2,3)-linked sialic acid by saturation mutagenesis. ACTA ACUST UNITED AC 2011; 150:545-52. [DOI: 10.1093/jb/mvr094] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|