1
|
Hayashi K, Longenecker KL, Liu YL, Faust B, Prashar A, Hampl J, Stoll V, Vivona S. Complex of human Melanotransferrin and SC57.32 Fab fragment reveals novel interdomain arrangement with ferric N-lobe and open C-lobe. Sci Rep 2021; 11:566. [PMID: 33436675 PMCID: PMC7804310 DOI: 10.1038/s41598-020-79090-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/01/2020] [Indexed: 01/29/2023] Open
Abstract
Melanotransferrin (MTf) is an iron-binding member of the transferrin superfamily that can be membrane-anchored or secreted in serum. On cells, it can mediate transferrin-independent iron uptake and promote proliferation. In serum, it is a transcytotic iron transporter across the blood-brain barrier. MTf has been exploited as a drug delivery carrier to the brain and as an antibody-drug conjugate (ADC) target due to its oncogenic role in melanoma and its elevated expression in triple-negative breast cancer (TNBC). For treatment of TNBC, an MTf-targeting ADC completed a phase I clinical trial (NCT03316794). The structure of its murine, unconjugated Fab fragment (SC57.32) is revealed here in complex with MTf. The MTf N-lobe is in an active and iron-bound, closed conformation while the C-lobe is in an open conformation incompatible with iron binding. This combination of active and inactive domains displays a novel inter-domain arrangement in which the C2 subdomain angles away from the N-lobe. The C2 subdomain also contains the SC57.32 glyco-epitope, which comprises ten protein residues and two N-acetylglucosamines. Our report reveals novel features of MTf and provides a point of reference for MTf-targeting, structure-guided drug design.
Collapse
Affiliation(s)
- Kristyn Hayashi
- Research and Development, AbbVie Inc., South San Francisco, CA, 94080, USA
| | | | - Yi-Liang Liu
- Research and Development, AbbVie Inc., South San Francisco, CA, 94080, USA
| | - Bryan Faust
- Research and Development, AbbVie Inc., South San Francisco, CA, 94080, USA
| | - Aditi Prashar
- Research and Development, AbbVie Inc., South San Francisco, CA, 94080, USA
| | - Johannes Hampl
- Research and Development, AbbVie Inc., South San Francisco, CA, 94080, USA
| | - Vincent Stoll
- Research and Development, AbbVie Inc., North Chicago, IL, 60064, USA
| | - Sandro Vivona
- Research and Development, AbbVie Inc., South San Francisco, CA, 94080, USA.
| |
Collapse
|
2
|
Abdizadeh H, Atilgan AR, Atilgan C, Dedeoglu B. Computational approaches for deciphering the equilibrium and kinetic properties of iron transport proteins. Metallomics 2018; 9:1513-1533. [PMID: 28967944 DOI: 10.1039/c7mt00216e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
With the advances in three-dimensional structure determination techniques, high quality structures of the iron transport proteins transferrin and the bacterial ferric binding protein (FbpA) have been deposited in the past decade. These are proteins of relatively large size, and developments in hardware and software have only recently made it possible to study their dynamics using standard computational resources. We review computational techniques towards understanding the equilibrium and kinetic properties of iron transport proteins under different environmental conditions. At the level of detail that requires quantum chemical treatments, the octahedral geometry around iron has been scrutinized and it has been established that the iron coordinating tyrosines are in an unusual deprotonated state. At the atomistic level, both the N-lobe and the full bilobal structure of transferrin have been studied under varying conditions of pH, ionic strength and binding of other metal ions by molecular dynamics (MD) simulations. These studies have allowed questions to be answered, among others, on the function of second shell residues in iron release, the role of synergistic anions in preparing the active site for iron binding, and the differences between the kinetics of the N- and the C-lobe. MD simulations on FbpA have led to the detailed observation of the binding kinetics of phosphate to the apo form, and to the conformational preferences of the holo form under conditions mimicking the environmental niches provided by the periplasmic space. To study the dynamics of these proteins with their receptors, one must resort to coarse-grained methodologies, since these systems are prohibitively large for atomistic simulations. A study of the complex of human transferrin (hTf) with its pathogenic receptor by such methods has revealed a potential mechanistic explanation for the defense mechanism that arises in evolutionary warfare. Meanwhile, the motions in the transferrin receptor bound hTf have been shown to disfavor apo hTf dissociation, explaining why the two proteins remain in complex during the recycling process from the endosome to the cell surface. Open problems and possible technological applications related to metal ion binding-release in iron transport proteins that may be handled by hybrid use of quantum mechanical, MD and coarse-grained approaches are discussed.
Collapse
Affiliation(s)
- H Abdizadeh
- Faculty of Engineering and Natural Sciences, Sabancı University, Orhanlı 34956, Tuzla, Istanbul, Turkey.
| | | | | | | |
Collapse
|
3
|
Abstract
Iron is an essential element for several metabolic pathways and physiological processes. The maintenance of iron homeostasis within the human body requires a dynamic and highly sophisticated interplay of several proteins, as states of iron deficiency or excess are both potentially deleterious to health. Among these is plasma transferrin, which is central to iron metabolism not only through iron transport between body tissues in a soluble nontoxic form but also through its protective scavenger role in sequestering free toxic iron. The transferrin saturation (TSAT), an index that takes into account both plasma iron and its main transport protein, is considered an important biochemical marker of body iron status. Its increasing use in many health systems is due to the increased availability of measurement methods, such as calorimetry, turbidimetry, nephelometry, and immunochemistry to estimate its value. However, despite its frequent use in clinical practice to detect states of iron deficiency or iron overload, careful attention should be paid to the inherent limitations of the test especially in certain settings such as inflammation in order to avoid misinterpretation and erroneous conclusions. Beyond its usual clinical use, an emerging body of evidence has linked TSAT levels to major clinical outcomes such as cardiovascular mortality. This has the potential to extend the utility of TSAT index to risk stratification and prognostication. However, most of the current evidence is mainly driven by observational studies where the risk of residual confounding cannot be fully eliminated. Indeed, future efforts are required to fully explore this capability in well-designed clinical trials or prospective large-scale cohorts.
Collapse
Affiliation(s)
- M E Elsayed
- Graduate Entry Medical School, University of Limerick, Limerick, Ireland; University Hospital Limerick, Limerick, Ireland
| | - M U Sharif
- Graduate Entry Medical School, University of Limerick, Limerick, Ireland; University Hospital Limerick, Limerick, Ireland
| | - A G Stack
- Graduate Entry Medical School, University of Limerick, Limerick, Ireland; University Hospital Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland.
| |
Collapse
|
4
|
Transferrin: Endocytosis and Cell Signaling in Parasitic Protozoa. BIOMED RESEARCH INTERNATIONAL 2015; 2015:641392. [PMID: 26090431 PMCID: PMC4450279 DOI: 10.1155/2015/641392] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/18/2014] [Indexed: 12/31/2022]
Abstract
Iron is the fourth most abundant element on Earth and the most abundant metal in the human body. This element is crucial for life because almost all organisms need iron for several biological activities. This is the case with pathogenic organisms, which are at the vanguard in the battle with the human host for iron. The latest regulates Fe concentration through several iron-containing proteins, such as transferrin. The transferrin receptor transports iron to each cell that needs it and maintains it away from pathogens. Parasites have developed several strategies to obtain iron as the expression of specific transferrin receptors localized on plasma membrane, internalized through endocytosis. Signal transduction pathways related to the activation of the receptor have functional importance in proliferation. The study of transferrin receptors and other proteins with action in the signaling networks is important because these proteins could be used as therapeutic targets due to their specificity or to differences with the human counterpart. In this work, we describe proteins that participate in signal transduction processes, especially those that involve transferrin endocytosis, and we compare these processes with those found in T. brucei, T. cruzi, Leishmania spp., and E. histolytica parasites.
Collapse
|
5
|
Merceron R, Awama AM, Montserret R, Marcillat O, Gouet P. The substrate-free and -bound crystal structures of the duplicated taurocyamine kinase from the human parasite Schistosoma mansoni. J Biol Chem 2015; 290:12951-63. [PMID: 25837252 DOI: 10.1074/jbc.m114.628909] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Indexed: 01/01/2023] Open
Abstract
The taurocyamine kinase from the blood fluke Schistosoma mansoni (SmTK) belongs to the phosphagen kinase (PK) family and catalyzes the reversible Mg(2+)-dependent transfer of a phosphoryl group between ATP and taurocyamine. SmTK is derived from gene duplication, as are all known trematode TKs. Our crystallographic study of SmTK reveals the first atomic structure of both a TK and a PK with a bilobal structure. The two unliganded lobes present a canonical open conformation and interact via their respective C- and N-terminal domains at a helix-mediated interface. This spatial arrangement differs from that observed in true dimeric PKs, in which both N-terminal domains make contact. Our structures of SmTK complexed with taurocyamine or l-arginine compounds explain the mechanism by which an arginine residue of the phosphagen specificity loop is crucial for substrate specificity. An SmTK crystal was soaked with the dead end transition state analog (TSA) components taurocyamine-NO3 (2-)-MgADP. One SmTK monomer was observed with two bound TSAs and an asymmetric conformation, with the first lobe semiclosed and the second closed. However, isothermal titration calorimetry and enzyme kinetics experiments showed that the two lobes function independently. A small angle x-ray scattering model of SmTK-TSA in solution with two closed active sites was generated.
Collapse
Affiliation(s)
- Romain Merceron
- From the Institut de Biologie et Chimie des Protéines, BMSSI-IBCP, UMR 5086 CNRS Université Lyon 1, 7, Passage du Vercors, 69367 Lyon Cedex 07, France and
| | - Ayman M Awama
- the Institut de Chimie et Biochimie Moléculaire et Supramoléculaire, UMR 5246 CNRS Université Lyon 1, 69622 Villeurbanne, France
| | - Roland Montserret
- From the Institut de Biologie et Chimie des Protéines, BMSSI-IBCP, UMR 5086 CNRS Université Lyon 1, 7, Passage du Vercors, 69367 Lyon Cedex 07, France and
| | - Olivier Marcillat
- the Institut de Chimie et Biochimie Moléculaire et Supramoléculaire, UMR 5246 CNRS Université Lyon 1, 69622 Villeurbanne, France
| | - Patrice Gouet
- From the Institut de Biologie et Chimie des Protéines, BMSSI-IBCP, UMR 5086 CNRS Université Lyon 1, 7, Passage du Vercors, 69367 Lyon Cedex 07, France and
| |
Collapse
|
6
|
Ibrahim HR, Tatsumoto S, Ono H, Van Immerseel F, Raspoet R, Miyata T. A novel antibiotic-delivery system by using ovotransferrin as targeting molecule. Eur J Pharm Sci 2014; 66:59-69. [PMID: 25315410 DOI: 10.1016/j.ejps.2014.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/04/2014] [Accepted: 10/02/2014] [Indexed: 01/09/2023]
Abstract
Synthetic antibiotics and antimicrobial agents, such as sulfonamide and triclosan (TCS), have provided new avenues in the treatment of bacterial infections, as they target lethal intracellular pathways. Sulfonamide antibiotics block synthesis of folic acid by inhibiting dihydrofolate reductase (DHFR) while TCS block fatty acid synthesis through inhibition of enoyl-ACP reductase (FabI). They are water-insoluble agents and high doses are toxic, limiting their therapeutic efficiency. In this study, an antibiotic drug-targeting strategy based on utilizing ovotransferrin (OTf) as a carrier to allow specific targeting of the drug to microbial or mammalian cells via the transferrin receptor (TfR) is explored, with potential to alleviate insolubility and toxicity problems. Complexation, through non-covalent interaction, with OTf turned sulfa antibiotics or TCS into completely soluble in aqueous solution. OTf complexes showed superior bactericidal activity against several bacterial strains compared to the activity of free agents. Strikingly, a multi-drug resistant Salmonella strain become susceptible to antibiotics-OTf complexes while a tolC-knockout mutant strain become susceptible to OTf and more sensitive to the complexes. The antibiotic bound to OTf was, thus exported through the multi-drug efflux pump TolC in Salmonella wild-type strain. Further, antibiotics-OTf complexes were able to efficiently kill intracellular pathogens after infecting human colon carcinoma cells (HCT-116). The results demonstrate, for the first time, that the TfR mediated endocytosis of OTf can be utilized to specifically target drugs directly to pathogens or intracellularly infected cells and highlights the potency of the antibiotic-OTf complex for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Hisham R Ibrahim
- Department of Biochemistry and Biotechnology, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan.
| | - Sayuri Tatsumoto
- Department of Biochemistry and Biotechnology, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Hajime Ono
- Department of Biochemistry and Biotechnology, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Filip Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke 9820, Belgium
| | - Ruth Raspoet
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke 9820, Belgium
| | - Takeshi Miyata
- Department of Biochemistry and Biotechnology, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| |
Collapse
|
7
|
An overview on the marine neurotoxin, saxitoxin: genetics, molecular targets, methods of detection and ecological functions. Mar Drugs 2013; 11:991-1018. [PMID: 23535394 PMCID: PMC3705384 DOI: 10.3390/md11040991] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 02/17/2013] [Accepted: 02/19/2013] [Indexed: 11/17/2022] Open
Abstract
Marine neurotoxins are natural products produced by phytoplankton and select species of invertebrates and fish. These compounds interact with voltage-gated sodium, potassium and calcium channels and modulate the flux of these ions into various cell types. This review provides a summary of marine neurotoxins, including their structures, molecular targets and pharmacologies. Saxitoxin and its derivatives, collectively referred to as paralytic shellfish toxins (PSTs), are unique among neurotoxins in that they are found in both marine and freshwater environments by organisms inhabiting two kingdoms of life. Prokaryotic cyanobacteria are responsible for PST production in freshwater systems, while eukaryotic dinoflagellates are the main producers in marine waters. Bioaccumulation by filter-feeding bivalves and fish and subsequent transfer through the food web results in the potentially fatal human illnesses, paralytic shellfish poisoning and saxitoxin pufferfish poisoning. These illnesses are a result of saxitoxin’s ability to bind to the voltage-gated sodium channel, blocking the passage of nerve impulses and leading to death via respiratory paralysis. Recent advances in saxitoxin research are discussed, including the molecular biology of toxin synthesis, new protein targets, association with metal-binding motifs and methods of detection. The eco-evolutionary role(s) PSTs may serve for phytoplankton species that produce them are also discussed.
Collapse
|