1
|
Lau K, Reichheld S, Xian M, Sharpe SJ, Cerruti M. Directed Assembly of Elastic Fibers via Coacervate Droplet Deposition on Electrospun Templates. Biomacromolecules 2024; 25:3519-3531. [PMID: 38742604 DOI: 10.1021/acs.biomac.4c00180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Elastic fibers provide critical elasticity to the arteries, lungs, and other organs. Elastic fiber assembly is a process where soluble tropoelastin is coacervated into liquid droplets, cross-linked, and deposited onto and into microfibrils. While much progress has been made in understanding the biology of this process, questions remain regarding the timing of interactions during assembly. Furthermore, it is unclear to what extent fibrous templates are needed to guide coacervate droplets into the correct architecture. The organization and shaping of coacervate droplets onto a fiber template have never been previously modeled or employed as a strategy for shaping elastin fiber materials. Using an in vitro system consisting of elastin-like polypeptides (ELPs), genipin cross-linker, electrospun polylactic-co-glycolic acid (PLGA) fibers, and tannic acid surface coatings for fibers, we explored ELP coacervation, cross-linking, and deposition onto fiber templates. We demonstrate that integration of coacervate droplets into a fibrous template is primarily influenced by two factors: (1) the balance of coacervation and cross-linking and (2) the surface energy of the fiber templates. The success of this integration affects the mechanical properties of the final fiber network. Our resulting membrane materials exhibit highly tunable morphologies and a range of elastic moduli (0.8-1.6 MPa) comparable to native elastic fibers.
Collapse
Affiliation(s)
- Kirklann Lau
- Department of Mining and Materials Engineering, McGill University, 3610 University Street, Wong Building 2250, Montreal, Quebec H3A 0C5, Canada
| | - Sean Reichheld
- Molecular Medicine, Hospital for Sick Children, Peter Gilgan Center for Research and Learning, 686 Bay Street, Room 20.9714, Toronto, Ontario M5G 1X8, Canada
| | - Mingqian Xian
- Department of Mining and Materials Engineering, McGill University, 3610 University Street, Wong Building 2250, Montreal, Quebec H3A 0C5, Canada
| | - Simon J Sharpe
- Molecular Medicine, Hospital for Sick Children, Peter Gilgan Center for Research and Learning, 686 Bay Street, Room 20.9714, Toronto, Ontario M5G 1X8, Canada
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 5207, Toronto, Ontario M5S 1A8, Canada
| | - Marta Cerruti
- Department of Mining and Materials Engineering, McGill University, 3610 University Street, Wong Building 2250, Montreal, Quebec H3A 0C5, Canada
| |
Collapse
|
2
|
Schmelzer CEH, Duca L. Elastic fibers: formation, function, and fate during aging and disease. FEBS J 2021; 289:3704-3730. [PMID: 33896108 DOI: 10.1111/febs.15899] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 01/09/2023]
Abstract
Elastic fibers are extracellular components of higher vertebrates and confer elasticity and resilience to numerous tissues and organs such as large blood vessels, lungs, and skin. Their formation and maturation take place in a complex multistage process called elastogenesis. It requires interactions between very different proteins but also other molecules and leads to the deposition and crosslinking of elastin's precursor on a scaffold of fibrillin-rich microfibrils. Mature fibers are exceptionally resistant to most influences and, under healthy conditions, retain their biomechanical function over the life of the organism. However, due to their longevity, they accumulate damages during aging. These are caused by proteolytic degradation, formation of advanced glycation end products, calcification, oxidative damage, aspartic acid racemization, lipid accumulation, carbamylation, and mechanical fatigue. The resulting changes can lead to diminution or complete loss of elastic fiber function and ultimately affect morbidity and mortality. Particularly, the production of elastokines has been clearly shown to influence several life-threatening diseases. Moreover, the structure, distribution, and abundance of elastic fibers are directly or indirectly influenced by a variety of inherited pathological conditions, which mainly affect organs and tissues such as skin, lungs, or the cardiovascular system. A distinction can be made between microfibril-related inherited diseases that are the result of mutations in diverse microfibril genes and indirectly affect elastogenesis, and elastinopathies that are linked to changes in the elastin gene. This review gives an overview on the formation, structure, and function of elastic fibers and their fate over the human lifespan in health and disease.
Collapse
Affiliation(s)
- Christian E H Schmelzer
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany.,Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Laurent Duca
- UMR CNRS 7369 MEDyC, SFR CAP-Sante, Université de Reims Champagne-Ardenne, France
| |
Collapse
|
3
|
Yıldız A, Kara AA, Acartürk F. Peptide-protein based nanofibers in pharmaceutical and biomedical applications. Int J Biol Macromol 2020; 148:1084-1097. [PMID: 31917213 DOI: 10.1016/j.ijbiomac.2019.12.275] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 12/11/2022]
Abstract
In recent years, electrospun fibers have found wide use, especially in pharmaceutical area and biomedical applications, related to the various advantages such as high surface-volume ratio, high solubility and having wide usage areas they have provided. Biocompatible and biodegradable fibers can be obtained by using peptide-protein structures of plant and animal derived along with synthetic polymers. Plant-derived proteins used in nanofiber production can be listed as, zein, soy protein, and gluten and animal derived proteins can be listed as casein, silk fibroin, hemoglobine, bovine serum albumin, elastin, collagen, gelatin, and keratin. Plant and animal proteins and synthetic peptides used in electrospun fiber production were reviewed in detail. In addition, the important physical properties of these materials for the electrospinning process and their use in pharmaceutical and biomedical areas were discussed.
Collapse
Affiliation(s)
- Ayşegül Yıldız
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Adnan Altuğ Kara
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Füsun Acartürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| |
Collapse
|
4
|
Miekus N, Luise C, Sippl W, Baczek T, Schmelzer CEH, Heinz A. MMP-14 degrades tropoelastin and elastin. Biochimie 2019; 165:32-39. [PMID: 31278967 DOI: 10.1016/j.biochi.2019.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/01/2019] [Indexed: 12/14/2022]
Abstract
Matrix metalloproteinases are a class of enzymes, which degrade extracellular matrix components such as collagens, elastin, laminin or fibronectin. So far, four matrix metalloproteinases have been shown to degrade elastin and its precursor tropoelastin, namely matrix metalloproteinase-2, -7, -9 and -12. This study focuses on investigating the elastinolytic capability of membrane-type 1 matrix metalloproteinase, also known as matrix metalloproteinase-14. We digested recombinant human tropoelastin and human skin elastin with matrix metalloproteinase-14 and analyzed the peptide mixtures using complementary mass spectrometric techniques and bioinformatics tools. The results and additional molecular docking studies show that matrix metalloproteinase-14 cleaves tropoelastin as well as elastin. While tropoelastin was well degraded, fewer cleavages occurred in the highly cross-linked mature elastin. The study also provides insights into the cleavage preferences of the enzyme. Similar to cleavage preferences of matrix metalloproteinases-2, -7, -9 and -12, matrix metalloproteinase-14 prefers small and medium-sized hydrophobic residues including Gly, Ala, Leu and Val at cleavage site P1'. Pro, Gly and Ala were preferably found at P1-P4 and P2'-P4' in both tropoelastin and elastin. Cleavage of mature skin elastin by matrix metalloproteinase-14 released a variety of bioactive elastin peptides, which indicates that the enzyme may play a role in the development and progression of cardiovascular diseases that go along with elastin breakdown.
Collapse
Affiliation(s)
- Natalia Miekus
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany; Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gdańsk, Poland; Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Chiara Luise
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Tomasz Baczek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Christian E H Schmelzer
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany; Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany
| | - Andrea Heinz
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany; Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Hedtke T, Schräder CU, Heinz A, Hoehenwarter W, Brinckmann J, Groth T, Schmelzer CEH. A comprehensive map of human elastin cross-linking during elastogenesis. FEBS J 2019; 286:3594-3610. [PMID: 31102572 DOI: 10.1111/febs.14929] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/09/2019] [Accepted: 05/15/2019] [Indexed: 01/05/2023]
Abstract
Elastin is an essential structural protein in the extracellular matrix of vertebrates. It is the core component of elastic fibers, which enable connective tissues such as those of the skin, lungs or blood vessels to stretch and recoil. This function is provided by elastin's exceptional properties, which mainly derive from a unique covalent cross-linking between hydrophilic lysine-rich motifs of units of the monomeric precursor tropoelastin. To date, elastin's cross-linking is poorly investigated. Here, we purified elastin from human tissue and cleaved it into soluble peptides using proteases with different specificities. We then analyzed elastin's molecular structure by identifying unmodified residues, post-translational modifications and cross-linked peptides by high-resolution mass spectrometry and amino acid analysis. The data revealed the presence of multiple isoforms in parallel and a complex and heterogeneous molecular interconnection. We discovered that the same lysine residues in different monomers were simultaneously involved in various cross-link types or remained unmodified. Furthermore, both types of cross-linking domains, Lys-Pro and Lys-Ala domains, participate not only in bifunctional inter- but also in intra-domain cross-links. We elucidated the sequences of several desmosine-containing peptides and the contribution of distinct domains such as 6, 14 and 25. In contrast to earlier assumptions proposing that desmosine cross-links are formed solely between two domains, we elucidated the structure of a peptide that proves a desmosine formation with participation of three Lys-Ala domains. In summary, these results provide new and detailed insights into the cross-linking process, which takes place within and between human tropoelastin units in a stochastic manner.
Collapse
Affiliation(s)
- Tobias Hedtke
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany.,Biomedical Materials Group, Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Germany
| | - Christoph U Schräder
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Germany
| | - Andrea Heinz
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Germany.,Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Wolfgang Hoehenwarter
- Proteome Analytics Research Group, Leibniz Institute for Plant Biochemistry, Halle (Saale), Germany
| | - Jürgen Brinckmann
- Institute of Virology and Cell Biology & Department of Dermatology, University of Lübeck, Germany
| | - Thomas Groth
- Biomedical Materials Group, Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Germany
| | - Christian E H Schmelzer
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany.,Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Germany.,Institute of Applied Dermatopharmacy at the Martin Luther University Halle-Wittenberg (IADP), Germany
| |
Collapse
|
6
|
Tanaka N, Kurita M, Murakami Y, Usuki T. Chichibabin and IsoChichibabin Pyridinium Syntheses of Isodesmosine, Desmosine, and their Derivatives. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nao Tanaka
- Department of Materials and Life Sciences; Faculty of Science and Technology; Sophia University; 7-1 Kioicho 102-8554 Chiyoda-ku Tokyo Japan
| | - Manami Kurita
- Department of Materials and Life Sciences; Faculty of Science and Technology; Sophia University; 7-1 Kioicho 102-8554 Chiyoda-ku Tokyo Japan
| | - Yuko Murakami
- Department of Materials and Life Sciences; Faculty of Science and Technology; Sophia University; 7-1 Kioicho 102-8554 Chiyoda-ku Tokyo Japan
| | - Toyonobu Usuki
- Department of Materials and Life Sciences; Faculty of Science and Technology; Sophia University; 7-1 Kioicho 102-8554 Chiyoda-ku Tokyo Japan
| |
Collapse
|
7
|
Schräder CU, Heinz A, Majovsky P, Karaman Mayack B, Brinckmann J, Sippl W, Schmelzer CEH. Elastin is heterogeneously cross-linked. J Biol Chem 2018; 293:15107-15119. [PMID: 30108173 DOI: 10.1074/jbc.ra118.004322] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/12/2018] [Indexed: 01/30/2023] Open
Abstract
Elastin is an essential vertebrate protein responsible for the elasticity of force-bearing tissues such as those of the lungs, blood vessels, and skin. One of the key features required for the exceptional properties of this durable biopolymer is the extensive covalent cross-linking between domains of its monomer molecule tropoelastin. To date, elastin's exact molecular assembly and mechanical properties are poorly understood. Here, using bovine elastin, we investigated the different types of cross-links in mature elastin to gain insight into its structure. We purified and proteolytically cleaved elastin from a single tissue sample into soluble cross-linked and noncross-linked peptides that we studied by high-resolution MS. This analysis enabled the elucidation of cross-links and other elastin modifications. We found that the lysine residues within the tropoelastin sequence were simultaneously unmodified and involved in various types of cross-links with different other domains. The Lys-Pro domains were almost exclusively linked via lysinonorleucine, whereas Lys-Ala domains were found to be cross-linked via lysinonorleucine, allysine aldol, and desmosine. Unexpectedly, we identified a high number of intramolecular cross-links between lysine residues in close proximity. In summary, we show on the molecular level that elastin formation involves random cross-linking of tropoelastin monomers resulting in an unordered network, an unexpected finding compared with previous assumptions of an overall beaded structure.
Collapse
Affiliation(s)
- Christoph U Schräder
- From the Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale) 06120, Germany
| | - Andrea Heinz
- From the Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale) 06120, Germany.,the Department of Pharmacy, University of Copenhagen, Copenhagen 2100, Denmark
| | - Petra Majovsky
- the Proteome Analytics Research Group, Leibniz Institute for Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Berin Karaman Mayack
- From the Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale) 06120, Germany
| | - Jürgen Brinckmann
- the Institute of Virology and Cell Biology, Department of Dermatology, University of Lübeck, Lübeck 23538, Germany, and
| | - Wolfgang Sippl
- From the Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale) 06120, Germany
| | - Christian E H Schmelzer
- From the Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale) 06120, Germany, .,the Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale) 06120, Germany
| |
Collapse
|
8
|
Greenland KN, Carvajal MFCA, Preston JM, Ekblad S, Dean WL, Chiang JY, Koder RL, Wittebort RJ. Order, Disorder, and Temperature-Driven Compaction in a Designed Elastin Protein. J Phys Chem B 2018; 122:2725-2736. [PMID: 29461832 DOI: 10.1021/acs.jpcb.7b11596] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Artificial minielastin constructs have been designed that replicate the structure and function of natural elastins in a simpler context, allowing the NMR observation of structure and dynamics of elastin-like proteins with complete residue-specific resolution. We find that the alanine-rich cross-linking domains of elastin have a partially helical structure, but only when capped by proline-rich hydrophobic domains. We also find that the hydrophobic domains, composed of prominent 6-residue repeats VPGVGG and APGVGV found in natural elastins, appear random coil by both NMR chemical shift analysis and circular dichroism. However, these elastin hydrophobic domains exhibit structural bias for a dynamically disordered conformation that is neither helical nor β sheet with a degree of nonrandom structural bias which is dependent on residue type and position in the sequence. Another nonrandom-coil aspect of hydrophobic domain structure lies in the fact that, in contrast to other intrinsically disordered proteins, these hydrophobic domains retain a relatively condensed conformation whether attached to cross-linking domains or not. Importantly, these domains and the proteins containing them constrict with increasing temperature by up to 30% in volume without becoming more ordered. This property is often observed in nonbiological polymers and suggests that temperature-driven constriction is a new type of protein structural change that is linked to elastin's biological functions of coacervation-driven assembly and elastic recoil.
Collapse
Affiliation(s)
- Kelly N Greenland
- Department of Physics , The City College of New York , New York , New York 10031 , United States
| | | | - Jonathan M Preston
- Department of Physics , The City College of New York , New York , New York 10031 , United States
| | - Siri Ekblad
- Department of Physics , The City College of New York , New York , New York 10031 , United States
| | - William L Dean
- Department of Biochemistry and Molecular Genetics and the James Brown Cancer Center , University of Louisville School of Medicine , Louisville , Kentucky 40292 , United States
| | - Jeff Y Chiang
- Department of Physics , The City College of New York , New York , New York 10031 , United States
| | - Ronald L Koder
- Department of Physics , The City College of New York , New York , New York 10031 , United States.,Graduate Programs of Physics, Chemistry and Biochemistry , The Graduate Center of CUNY , New York , New York 10016 , United States
| | - Richard J Wittebort
- Department of Chemistry , University of Louisville , Louisville , Kentucky 40292 , United States
| |
Collapse
|
9
|
Maes E, Dyer JM, McKerchar HJ, Deb-Choudhury S, Clerens S. Protein-protein cross-linking and human health: the challenge of elucidating with mass spectrometry. Expert Rev Proteomics 2017; 14:917-929. [PMID: 28759730 DOI: 10.1080/14789450.2017.1362336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION In several biomedical research fields, the cross-linking of peptides and proteins has an important impact on health and wellbeing. It is therefore of crucial importance to study this class of post-translational modifications in detail. The huge potential of mass spectrometric technologies in the mapping of these protein-protein cross-links is however overshadowed by the challenges that the field has to overcome. Areas covered: In this review, we summarize the different pitfalls and challenges that the protein-protein cross-linking field is confronted with when using mass spectrometry approaches. We additionally focus on native disulfide bridges as an example and provide some examples of cross-links that are important in the biomedical field. Expert commentary: The current flow of methodological improvements, mainly from the chemical cross-linking field, has delivered a significant contribution to deciphering native and insult-induced cross-links. Although an automated data analysis of proteome-wide peptide cross-linking is currently only possible in chemical cross-linking experiments, the field is well on the way towards a more automated analysis of native and insult-induced cross-links in raw mass spectrometry data that will boost its potential in biomedical applications.
Collapse
Affiliation(s)
- Evelyne Maes
- a Food & Bio-Based Products, AgResearch Ltd ., Lincoln , New Zealand
| | - Jolon M Dyer
- a Food & Bio-Based Products, AgResearch Ltd ., Lincoln , New Zealand.,b Biomolecular Interaction Centre , University of Canterbury , Christchurch , New Zealand.,c Riddet Institute, Massey University , Palmerston North , New Zealand.,d Wine, Food & Molecular Biosciences , Lincoln University , Lincoln , New Zealand
| | - Hannah J McKerchar
- a Food & Bio-Based Products, AgResearch Ltd ., Lincoln , New Zealand.,b Biomolecular Interaction Centre , University of Canterbury , Christchurch , New Zealand
| | | | - Stefan Clerens
- a Food & Bio-Based Products, AgResearch Ltd ., Lincoln , New Zealand.,b Biomolecular Interaction Centre , University of Canterbury , Christchurch , New Zealand
| |
Collapse
|
10
|
Ogawa K, Hayashi T, Lin YY, Usuki T. Synthesis of desmosine-containing cyclic peptide for the possible elucidation of elastin crosslinking structure. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.05.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Mora Huertas AC, Schmelzer CEH, Hoehenwarter W, Heyroth F, Heinz A. Molecular-level insights into aging processes of skin elastin. Biochimie 2016; 128-129:163-73. [PMID: 27569260 DOI: 10.1016/j.biochi.2016.08.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
Abstract
Skin aging is characterized by different features including wrinkling, atrophy of the dermis and loss of elasticity associated with damage to the extracellular matrix protein elastin. The aim of this study was to investigate the aging process of skin elastin at the molecular level by evaluating the influence of intrinsic (chronological aging) and extrinsic factors (sun exposure) on the morphology and susceptibility of elastin towards enzymatic degradation. Elastin was isolated from biopsies derived from sun-protected or sun-exposed skin of differently aged individuals. The morphology of the elastin fibers was characterized by scanning electron microscopy. Mass spectrometric analysis and label-free quantification allowed identifying differences in the cleavage patterns of the elastin samples after enzymatic digestion. Principal component analysis and hierarchical cluster analysis were used to visualize differences between the samples and to determine the contribution of extrinsic and intrinsic aging to the proteolytic susceptibility of elastin. Moreover, the release of potentially bioactive peptides was studied. Skin aging is associated with the decomposition of elastin fibers, which is more pronounced in sun-exposed tissue. Marker peptides were identified, which showed an age-related increase or decrease in their abundances and provide insights into the progression of the aging process of elastin fibers. Strong age-related cleavage occurs in hydrophobic tropoelastin domains 18, 20, 24 and 26. Photoaging makes the N-terminal and central parts of the tropoelastin molecules more susceptible towards enzymatic cleavage and, hence, accelerates the age-related degradation of elastin.
Collapse
Affiliation(s)
- Angela C Mora Huertas
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Christian E H Schmelzer
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany; Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany
| | | | - Frank Heyroth
- Interdisciplinary Center of Material Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Andrea Heinz
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
12
|
Heinz A, Huertas ACM, Schräder CU, Pankau R, Gosch A, Schmelzer CEH. Elastins from patients with Williams-Beuren syndrome and healthy individuals differ on the molecular level. Am J Med Genet A 2016; 170:1832-42. [DOI: 10.1002/ajmg.a.37638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/10/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Andrea Heinz
- Faculty of Natural Sciences I, Institute of Pharmacy; Martin Luther University Halle-Wittenberg; Halle (Saale) Germany
| | - Angela C. Mora Huertas
- Faculty of Natural Sciences I, Institute of Pharmacy; Martin Luther University Halle-Wittenberg; Halle (Saale) Germany
| | - Christoph U. Schräder
- Faculty of Natural Sciences I, Institute of Pharmacy; Martin Luther University Halle-Wittenberg; Halle (Saale) Germany
| | - Rainer Pankau
- Finkelstein-Klinik für Kinder-und Jugendmedizin; Heidekreis-Klinikum; Walsrode Germany
| | - Angela Gosch
- Fakultät für angewandte Sozialwissenschaften FK 11; Hochschule München; München Germany
| | - Christian E. H. Schmelzer
- Faculty of Natural Sciences I, Institute of Pharmacy; Martin Luther University Halle-Wittenberg; Halle (Saale) Germany
| |
Collapse
|
13
|
Anatomical heterogeneity of tendon: Fascicular and interfascicular tendon compartments have distinct proteomic composition. Sci Rep 2016; 6:20455. [PMID: 26842662 PMCID: PMC4740843 DOI: 10.1038/srep20455] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/04/2016] [Indexed: 12/14/2022] Open
Abstract
Tendon is a simple aligned fibre composite, consisting of collagen-rich fascicles surrounded by a softer interfascicular matrix (IFM). The composition and interactions between these material phases are fundamental in ensuring tissue mechanics meet functional requirements. However the IFM is poorly defined, therefore tendon structure-function relationships are incompletely understood. We hypothesised that the IFM has a more complex proteome, with faster turnover than the fascicular matrix (FM). Using laser-capture microdissection and mass spectrometry, we demonstrate that the IFM contains more proteins, and that many proteins show differential abundance between matrix phases. The IFM contained more protein fragments (neopeptides), indicating greater matrix degradation in this compartment, which may act to maintain healthy tendon structure. Protein abundance did not alter with ageing, but neopeptide numbers decreased in the aged IFM, indicating decreased turnover which may contribute to age-related tendon injury. These data provide important insights into how differences in tendon composition and turnover contribute to tendon structure-function relationships and the effects of ageing.
Collapse
|
14
|
Wodtke R, Ruiz-Gómez G, Kuchar M, Pisabarro MT, Novotná P, Urbanová M, Steinbach J, Pietzsch J, Löser R. Cyclopeptides containing the DEKS motif as conformationally restricted collagen telopeptide analogues: synthesis and conformational analysis. Org Biomol Chem 2015; 13:1878-96. [PMID: 25503999 DOI: 10.1039/c4ob02348j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The collagen telopeptides play an important role for lysyl oxidase-mediated crosslinking, a process which is deregulated during tumour progression. The DEKS motif which is located within the N-terminal telopeptide of the α1 chain of type I collagen has been suggested to adopt a βI-turn conformation upon docking to its triple-helical receptor domain, which seems to be critical for lysyl oxidase-catalysed deamination and subsequent crosslinking by Schiff-base formation. Herein, the design and synthesis of cyclic peptides which constrain the DEKS sequence in a β-turn conformation will be described. Lysine-side chain attachment to 2-chlorotrityl chloride-modified polystyrene resin followed by microwave-assisted solid-phase peptide synthesis and on-resin cyclisation allowed for an efficient access to head-to-tail cyclised DEKS-derived cyclic penta- and hexapeptides. An N(ε)-(4-fluorobenzoyl)lysine residue was included in the cyclopeptides to allow their potential radiolabelling with fluorine-18 for PET imaging of lysyl oxidase. Conformational analysis by (1)H NMR and chiroptical (electronic and vibrational CD) spectroscopy together with MD simulations demonstrated that the concomitant incorporation of a D-proline and an additional lysine for potential radiolabel attachment accounts for a reliable induction of the desired βI-turn structure in the DEKS motif in both DMSO and water as solvents. The stabilised conformation of the cyclohexapeptide is further reflected by its resistance to trypsin-mediated degradation. In addition, the deaminated analogue containing allysine in place of lysine has been synthesised via the corresponding ε-hydroxynorleucine containing cyclohexapeptide. Both ε-hydroxynorleucine and allysine containing cyclic hexapeptides have been subjected to conformational analysis in the same manner as the lysine-based parent structure. Thus, both a conformationally restricted lysyl oxidase substrate and product have been synthetically accessed, which will enable their potential use for molecular imaging of these important enzymes.
Collapse
Affiliation(s)
- Robert Wodtke
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Schräder CU, Heinz A, Majovsky P, Schmelzer CEH. Fingerprinting desmosine-containing elastin peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:762-773. [PMID: 25604393 DOI: 10.1007/s13361-014-1075-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/21/2014] [Accepted: 12/17/2014] [Indexed: 06/04/2023]
Abstract
Elastin is a vital protein of the extracellular matrix of jawed vertebrates and provides elasticity to numerous tissues. It is secreted in the form of its soluble precursor tropoelastin, which is subsequently cross-linked in the course of the elastic fiber assembly. The process involves the formation of the two tetrafunctional amino acids desmosine (DES) and isodesmosine (IDES), which are unique to elastin. The resulting high degree of cross-linking confers remarkable properties, including mechanical integrity, insolubility, and long-term stability to the protein. These characteristics hinder the structural elucidation of mature elastin. However, MS(2) data of linear and cross-linked peptides released by proteolysis can provide indirect insights into the structure of elastin. In this study, we performed energy-resolved collision-induced dissociation experiments of DES, IDES, their derivatives, and DES-/IDES-containing peptides to determine characteristic product ions. It was found that all investigated compounds yielded the same product ion clusters at elevated collision energies. Elemental composition determination using the exact masses of these ions revealed molecular formulas of the type CxHyN, suggesting that the pyridinium core of DES/IDES remains intact even at relatively high collision energies. The finding of these specific product ions enabled the development of a similarity-based scoring algorithm that was successfully applied on LC-MS/MS data of bovine elastin digests for the identification of DES-/IDES-cross-linked peptides. This approach facilitates the straightforward investigation of native cross-links in elastin.
Collapse
Affiliation(s)
- Christoph U Schräder
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | | | | |
Collapse
|
16
|
Syntheses of natural and deuterated desmosines via palladium-catalyzed cross-coupling reactions. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.01.064] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Heinz A, Schräder CU, Baud S, Keeley FW, Mithieux SM, Weiss AS, Neubert RHH, Schmelzer CEH. Molecular-level characterization of elastin-like constructs and human aortic elastin. Matrix Biol 2014; 38:12-21. [PMID: 25068896 DOI: 10.1016/j.matbio.2014.07.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 07/17/2014] [Accepted: 07/18/2014] [Indexed: 01/09/2023]
Abstract
This study aimed to characterize the structures of two elastin-like constructs, one composed of a cross-linked elastin-like polypeptide and the other one of cross-linked tropoelastin, and native aortic elastin. The structures of the insoluble materials and human aortic elastin were investigated using scanning electron microscopy. Additionally, all samples were digested with enzymes of different specificities, and the resultant peptide mixtures were characterized by ESI mass spectrometry and MALDI mass spectrometry. The MS(2) data was used to sequence linear peptides, and cross-linked species were analyzed with the recently developed software PolyLinX. This enabled the identification of two intramolecularly cross-linked peptides containing allysine aldols in the two constructs. The presence of the tetrafunctional cross-link desmosine was shown for all analyzed materials and its quantification revealed that the cross-linking degree of the two in vitro cross-linked materials was significantly lower than that of native elastin. Molecular dynamics simulations were performed, based on molecular species identified in the samples, to follow the formation of elastin cross-links. The results provide evidence for the significance of the GVGTP hinge region of domain 23 for the formation of elastin cross-links. Overall, this work provides important insight into structural similarities and differences between elastin-like constructs and native elastin. Furthermore, it represents a step toward the elucidation of the complex cross-linking pattern of mature elastin.
Collapse
Affiliation(s)
- Andrea Heinz
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| | - Christoph U Schräder
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Stéphanie Baud
- Laboratoire SiRMa, FRE CNRS/URCA 3481, Université de Reims Champagne-Ardenne, Reims, France; Plateforme de Modélisation Moléculaire Multi-échelle, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Fred W Keeley
- Molecular Structure and Function, Hospital for Sick Children, Toronto, Canada
| | | | - Anthony S Weiss
- School of Molecular Bioscience, University of Sydney, Sydney, Australia; Bosch Institute, University of Sydney, Sydney, Australia; Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - Reinhard H H Neubert
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Christian E H Schmelzer
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|