1
|
Rethinam S. Recent development in fibrin nanoparticles (F-NPs) and in vitro study targeting of oral cancer. Nat Prod Res 2025; 39:3348-3350. [PMID: 38899581 DOI: 10.1080/14786419.2024.2368757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/09/2024] [Indexed: 06/21/2024]
Abstract
Fibrin is limited by some factors that limit its clinical applicability, such as rapid degradation, poor water solubility, and low oral bioavailability. However, they can be applied clinically when they are included in the development of biocompatible fibrin nanoparticles (F-NPs). In this present study, F-NPs were prepared using co-precipitation techniques and In vitro studies using oral cancer cell lines also proved the anticancer activity of F-NPs. The study devised a technology for converting slaughterhouse waste into a value-added material such as anti-cancer F-NPs.
Collapse
Affiliation(s)
- Senthil Rethinam
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamilnadu, India
| |
Collapse
|
2
|
Bhoopathy J, Vedakumari SW, Pravin YR, Prabhu AD. Radiopaque Silk Sericin Nanoparticles for Computed Tomography Imaging of Solid Tumors. ACS APPLIED BIO MATERIALS 2025. [PMID: 40353554 DOI: 10.1021/acsabm.5c00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Computed tomography (CT) is a non-invasive technology which is commonly used for cancer diagnosis owing to its high efficiency and widespread availability. But the inability to differentiate soft tissues with similar densities is the major limitation of CT. In the present study, silk sericin nanoparticles (SNP) prepared using the ethanol desolvation method were functionalized using diatrizoic acid (DTA). The prepared DTA-functionalized SNP (D-SNP) were spherical in shape with a mean hydrodynamic diameter of 52.6 nm. D-SNP were non-hemolytic and non-cytotoxic when treated with human erythrocytes and fibroblasts. D-SNP showed excellent in vitro CT imaging performance, with enhanced CT signals with the increase in the concentration of D-SNP, resulting in brighter CT images. In vivo experiments carried out using B16-F10 melanoma-bearing mice showed enhanced tumor visibility after 30 min of administration of D-SNP, thereby elucidating their efficient role as a CT contrast agent. The biosafety profile of D-SNP was studied by injecting the nanoparticles in BALB/c mice which did not show any change in hematology and serum biochemical analysis, which proved the non-toxic nature of D-SNP. Thus, D-SNP can be efficiently used for CT imaging of solid tumors.
Collapse
Affiliation(s)
- Jayavardhini Bhoopathy
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Sathyaraj Weslen Vedakumari
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Yovan Raja Pravin
- Center for Global Health Research, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, Tamil Nadu, India
| | - Alex Daniel Prabhu
- Department of Radiology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chennai 603103, Tamil Nadu, India
| |
Collapse
|
3
|
Bhoopathy J, Vedakumari SW, Pravin YR, Prabhu AD, Robert A. Synthesis and characterization of sericin-based magnetic nanoparticles for MR imaging application - An in vivo study. Int J Biol Macromol 2025; 310:143415. [PMID: 40268030 DOI: 10.1016/j.ijbiomac.2025.143415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/11/2025] [Accepted: 04/20/2025] [Indexed: 04/25/2025]
Abstract
In the present study, sericin modified magnetic nanoparticles (SMNPs) were prepared using sericin obtained from silk cocoons and iron nanoparticles prepared using goat blood. SMNPs had an average hydrodynamic diameter of 34.5 nm. The nanoparticles were characterized using transmission electron microscope (TEM), dynamic light scattering and vibrating sample magnetometer (VSM). SMNPs proved their non-hemolytic behaviour when treated with red blood cells (RBCs) isolated from human blood. Magnetic resonance imaging (MRI) analysis of various concentrations of SMNPs proved the feasibility of using them as T2-weighted contrast agent. MRI results showed a dark signal intensity at the tumor site in melanoma tumor-bearing mice after injecting them with nanoparticles. SMNPs did not induce any toxicity when administered to BALB/c mice. Our results indicate that SMNPs can be used as a potential contrast agent for MRI applications with excellent biocompatibility and biosafety profile.
Collapse
Affiliation(s)
- Jayavardhini Bhoopathy
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Sathyaraj Weslen Vedakumari
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India.
| | - Yovan Raja Pravin
- Center for Global Health Research, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, Tamil Nadu, India.
| | - Alex Daniel Prabhu
- Department of Radiology, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai 603103, Tamil Nadu, India
| | - Arockia Robert
- Department of Radiography Imaging Technology, School of Allied Health Sciences, Dhanalashmi Srinivasan University, Trichy 621112, Tamil Nadu, India
| |
Collapse
|
4
|
Hense D, Strube OI. Glutaraldehyde Cross-Linking of Salt-Induced Fibrinogen Hydrogels. ACS Biomater Sci Eng 2024; 10:6927-6937. [PMID: 39422201 PMCID: PMC11558561 DOI: 10.1021/acsbiomaterials.4c01412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Covalent cross-linking is a common strategy to improve the mechanical properties of biological polymers. The most prominent field of application of such materials is in medicine, for example, in the form of bioprinting, drug delivery, and wound sealants. One biological polymer of particular interest is the blood clotting protein fibrinogen. In the natural process, fibrinogen polymerizes to fibrous hydrogel fibrin. Although the material shows great potential, its costs are very high due to the required enzyme thrombin. Recently, we introduced several approaches to trigger a thrombin-free fibrillogenesis of fibrinogen to a fibrin-like material. Inspired by the natural pathway of blood clotting in which covalent cross-linking stabilizes the clot, this "pseudofibrin" is now developed even further by covalently cross-linking the fibers. In particular, the effect of inexpensive glutaraldehyde on fiber morphology, rheological properties, and irreversible gel dissolution is investigated. Additionally, new insights into the reaction kinetics between fibrinogen and glutaraldehyde are gained. It could be shown that the fibrous structure of pseudofibrin can be retained during cross-linking and that glutaraldehyde significantly improves rheological properties of the hydrogels. Even more important, cross-linking with glutaraldehyde can prevent dissolution of the gels at elevated temperatures.
Collapse
Affiliation(s)
- Dominik Hense
- Institute for Chemical Engineering, University of Innsbruck, Innrain 80-82, Innsbruck, AT 6020, Austria
| | - Oliver I. Strube
- Institute for Chemical Engineering, University of Innsbruck, Innrain 80-82, Innsbruck, AT 6020, Austria
| |
Collapse
|
5
|
Sung ZY, Liao YQ, Hou JH, Lai HH, Weng SM, Jao HW, Lu BJ, Chen CH. Advancements in fertility preservation strategies for pediatric male cancer patients: a review of cryopreservation and transplantation of immature testicular tissue. Reprod Biol Endocrinol 2024; 22:47. [PMID: 38637872 PMCID: PMC11025181 DOI: 10.1186/s12958-024-01219-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/06/2024] [Indexed: 04/20/2024] Open
Abstract
Recently, there has been increasing emphasis on the gonadotoxic effects of cancer therapy in prepubertal boys. As advances in oncology treatments continue to enhance survival rates for prepubertal boys, the need for preserving their functional testicular tissue for future reproduction becomes increasingly vital. Therefore, we explore cutting-edge strategies in fertility preservation, focusing on the cryopreservation and transplantation of immature testicular tissue as a promising avenue. The evolution of cryopreservation techniques, from controlled slow freezing to more recent advancements in vitrification, with an assessment of their strengths and limitations was exhibited. Detailed analysis of cryoprotectants, exposure times, and protocols underscores their impact on immature testicular tissue viability. In transplantation strategy, studies have revealed that the scrotal site may be the preferred location for immature testicular tissue grafting in both autotransplantation and xenotransplantation scenarios. Moreover, the use of biomaterial scaffolds during graft transplantation has shown promise in enhancing graft survival and stimulating spermatogenesis in immature testicular tissue over time. This comprehensive review provides a holistic approach to optimize the preservation strategy of human immature testicular tissue in the future.
Collapse
Affiliation(s)
- Zih-Yi Sung
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Yong-Qi Liao
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Jung-Hsiu Hou
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan, ROC
| | - Hong-Hsien Lai
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Sung-Ming Weng
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Hai-Wei Jao
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan, ROC
| | - Buo-Jia Lu
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan, ROC
| | - Chi-Huang Chen
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan, ROC.
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC.
| |
Collapse
|
6
|
Pallavi P, Harini K, Crowder S, Ghosh D, Gowtham P, Girigoswami K, Girigoswami A. Rhodamine-Conjugated Anti-Stokes Gold Nanoparticles with Higher ROS Quantum Yield as Theranostic Probe to Arrest Cancer and MDR Bacteria. Appl Biochem Biotechnol 2023; 195:6979-6993. [PMID: 36976503 DOI: 10.1007/s12010-023-04475-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Photodynamic therapy (PDT) has recently become significant as a clinical modality for cancer therapy and multidrug-resistant (MDR) infections, replacing conventional chemotherapy and radiation therapy protocols. PDT involves the excitation of certain nontoxic molecules called photosensitizers (PS), applying a specific wavelength of light to generate reactive oxygen species (ROS) to treat cancer cells and other pathogens. Rhodamine 6G (R6G) is a well-known laser dye with poor aqueous solubility, and lower sensitivity poses an issue in using PS for PDT. Nanocarrier systems are needed to deliver R6G to cancer targets since PDT requires a higher accumulation of PS. It was found that R6G-conjugated gold nanoparticles (AuNP) have a higher ROS quantum yield of 0.92 compared to 0.3 in an aqueous R6G solution, increasing their potency as PS. Cytotoxicity assessment on A549 cells and antibacterial assay on MDR Pseudomonas aeruginosa collected from a sewage treatment plant are the evidence to support efficient PDT. In addition to their enhanced quantum yields, the decorated particles are effective in generating fluorescent signals that can be used for cellular imaging and real-time optical imaging, and the presence of AuNP is a valuable addition to CT imaging. Furthermore, the fabricated particle exhibits anti-Stokes properties, which makes it suitable for use as a background-free biological imaging agent. As a result, R6G-conjugated AuNP is an effective theranostic agent that prevents the progression of cancer and MDR bacteria, along with contrasting abilities in medical imaging with minimal toxicity observed in in vitro and in vivo assays using zebrafish embryos.
Collapse
Affiliation(s)
- Pragya Pallavi
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, 603 103, India
| | - Karthick Harini
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, 603 103, India
| | - Symone Crowder
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, GA, 30460, USA
| | - Debanjana Ghosh
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, GA, 30460, USA
- Department of Chemistry, Southern Illinois University Edwardsville, Science Building West, Edwardsville, IL, 62026-1652, USA
| | - Pemula Gowtham
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, 603 103, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, 603 103, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, 603 103, India.
| |
Collapse
|
7
|
Sericin/Human Placenta-Derived Extracellular Matrix Scaffolds for Cutaneous Wound Treatment-Preparation, Characterization, In Vitro and In Vivo Analyses. Pharmaceutics 2023; 15:pharmaceutics15020362. [PMID: 36839684 PMCID: PMC9962400 DOI: 10.3390/pharmaceutics15020362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Human placenta is loaded with an enormous amount of endogenous growth factors, thereby making it a superior biomaterial for tissue regeneration. Sericin is a naturally occurring silk protein that is extensively used for biomedical applications. In the present work, sericin and human placenta-derived extracellular matrix were blended and fabricated in the form of scaffolds using the freeze-drying method for cutaneous wound treatment. The prepared sericin/placenta-derived extracellular matrix (SPEM) scaffolds were characterized to determine their morphology, functional groups, mechanical strength, and antibacterial activity. Scanning electron microscopic analysis of the scaffolds showed smooth surfaces with interconnected pores. In vitro MTT and scratch wound assays performed using HaCaT cells proved the non-toxic and wound-healing efficacy of SPEM scaffolds. In vivo CAM assay using fertilized chick embryos proved the angiogenic potency of the scaffolds. Animal experiments using Wistar albino rats proved that the open excision wounds treated with SPEM scaffolds significantly reduced wound size with collagen deposition. These results confirm that SPEM scaffolds can serve as a promising biomaterial for tissue regeneration.
Collapse
|
8
|
Pallavi P, Harini K, Anand Arumugam V, Gowtham P, Girigoswami K, Muthukrishnan S, Girigoswami A. Nanoformulation of Tetrapyrroles Derivatives in Photodynamic Therapy: A Focus on Bacteriochlorin. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:3011918. [PMID: 36212948 PMCID: PMC9546677 DOI: 10.1155/2022/3011918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 11/07/2022]
Abstract
Photodynamic therapy (PDT) is a well-known remedial treatment for cancer, infections, and various other diseases. PDT uses nontoxic dyes called photosensitizers (PS) that are activated in visible light at the proper wavelength to generate ROS (reactive oxygen species) that aid in killing tumor cells and destroying pathogenic microbes. Deciding a suitable photosensitizer is essential for enhancing the effectiveness of photodynamic therapy. It is challenging to choose the photosensitizer that is appropriate for specific pathological circumstances, such as different cancer species. Porphyrin, chlorin, and bacteriochlorin are tetrapyrroles used with proper functionalization in PDT, among which some compound has been clinically approved. Most photosensitizers are hydrophobic, have minimum solubility, and exhibit cytotoxicity due to the dispersion in biological fluid. This paper reviewed some nanotechnology-based strategies to overcome these drawbacks. In PDT, metal nanoparticles are widely used due to their enhanced surface plasmon resonance. The self-assembled nano-drug carriers like polymeric micelles, liposomes, and metal-based nanoparticles play a significant role in solubilizing the photosensitizer to make them biocompatible.
Collapse
Affiliation(s)
- Pragya Pallavi
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, TN 603103, India
| | - Karthick Harini
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, TN 603103, India
| | - Vijaya Anand Arumugam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, TN 641046, India
| | - Pemula Gowtham
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, TN 603103, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, TN 603103, India
| | | | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, TN 603103, India
| |
Collapse
|
9
|
Arooj A, Tahir K, Ullah Khan A, Khan A, Jevtovic V, El-Zahhar AA, Alghamdi MM, Al-Shehri HS, Abdu Musad Saleh E, Asghar BH. One-step fabrication of surfactant mediated Pd/SiO2, A prospect toward therapeutic and photocatalytic applications. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Advances in Fibrin-Based Materials in Wound Repair: A Review. Molecules 2022; 27:molecules27144504. [PMID: 35889381 PMCID: PMC9322155 DOI: 10.3390/molecules27144504] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022] Open
Abstract
The first bioprocess that occurs in response to wounding is the deterrence of local hemorrhage. This is accomplished by platelet aggregation and initiation of the hemostasis cascade. The resulting blood clot immediately enables the cessation of bleeding and then functions as a provisional matrix for wound healing, which begins a few days after injury. Here, fibrinogen and fibrin fibers are the key players, because they literally serve as scaffolds for tissue regeneration and promote the migration of cells, as well as the ingrowth of tissues. Fibrin is also an important modulator of healing and a host defense system against microbes that effectively maintains incoming leukocytes and acts as reservoir for growth factors. This review presents recent advances in the understanding and applications of fibrin and fibrin-fiber-incorporated biomedical materials applied to wound healing and subsequent tissue repair. It also discusses how fibrin-based materials function through several wound healing stages including physical barrier formation, the entrapment of bacteria, drug and cell delivery, and eventual degradation. Pure fibrin is not mechanically strong and stable enough to act as a singular wound repair material. To alleviate this problem, this paper will demonstrate recent advances in the modification of fibrin with next-generation materials exhibiting enhanced stability and medical efficacy, along with a detailed look at the mechanical properties of fibrin and fibrin-laden materials. Specifically, fibrin-based nanocomposites and their role in wound repair, sustained drug release, cell delivery to wound sites, skin reconstruction, and biomedical applications of drug-loaded fibrin-based materials will be demonstrated and discussed.
Collapse
|
11
|
Ullah I, Tahir K, Khan AU, Albalawi K, Li B, El-Zahhar AA, Jevtovic V, Al-Shehri HS, Asghar BH, Alghamdi MM. Facile fabrication of Ag nanoparticles: An advanced material for antioxidant, infectious therapy and photocatalytic applications. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Vedakumari SW, Veda Jancy SJ, Pravin YR, Bhoopathy J, Iyswariya K, Thomas S, Rubiya R, Prabakaran L, Kumar C, Prabu P, Murugesan R. Facile synthesis of sericin modified graphene oxide nanocomposites for treating ischemic diseases. ENVIRONMENTAL RESEARCH 2022; 209:112925. [PMID: 35149110 DOI: 10.1016/j.envres.2022.112925] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Ischemic heart disease (IHD) is the major reason for death worldwide. Therapeutic angiogenesis serves as an effective approach to treat IHD. Sericin (S), a natural silk protein is widely used in regenerative medicine due to its excellent bioactive properties. Graphene oxide (GO) is extensively used in the field of biomedicine due to its amazing capacity to interact with biomolecules. The main objectives of the present study are to synthesize sericin functionalized graphene oxide (SGO) nanocomposites to treat diseases associated with deficient angiogenesis. Carbodiimide induced cross-linking strategy was employed to functionalize graphene oxide using sericin. The SGO nanocomposites had wrinkled flake like structure with good blood biocompatibility. In vivo chick embryo angiogenesis (CEA) assay was performed to prove the angiogenic potency of SGO nanocomposites. CEA assay results clearly indicated the development of new blood vessels in SGO treated chick embryos when compared with the control.
Collapse
Affiliation(s)
- Sathyaraj Weslen Vedakumari
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education, Kelambakkam, Chennai, 603 103, India.
| | - S Jacqulin Veda Jancy
- Electronics and Communication Engineering, SRM Institute of Science and Technology, Ramapuram Campus, Chennai, 600 089, India
| | - Yovan Raja Pravin
- Department of Physics (Science and Humanities), Agni College of Technology, OMR, Navallur, Thalambur, Chennai, 600 130, Tamil Nadu, India
| | - Jayavardhini Bhoopathy
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education, Kelambakkam, Chennai, 603 103, India
| | - Keerthivasan Iyswariya
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education, Kelambakkam, Chennai, 603 103, India
| | - Shalini Thomas
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education, Kelambakkam, Chennai, 603 103, India
| | - Raveendran Rubiya
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education, Kelambakkam, Chennai, 603 103, India
| | - Lokesh Prabakaran
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education, Kelambakkam, Chennai, 603 103, India
| | - Chandrasekaran Kumar
- Centre for Ocean Research (DST - FIST Sponsored Centre), MoES - Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai, 600 119, Tamil Nadu, India
| | - Periyathambi Prabu
- Centre of Excellence for Advanced Materials Application, Slovak Academy of Sciences, Dúbravská Cesta 9, Bratislava, SK, 84511, SK, Slovakia
| | - Ramachandran Murugesan
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education, Kelambakkam, Chennai, 603 103, India
| |
Collapse
|
13
|
Vedakumari SW, Prabu P, Jancy SJV, Pravin YR, Manickavasagam K, Sastry TP. Radiopaque fibrin nanocomplex as a promising tool for X-ray imaging applications. Int J Biol Macromol 2022; 200:285-292. [PMID: 34995664 DOI: 10.1016/j.ijbiomac.2021.12.164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/17/2021] [Accepted: 12/25/2021] [Indexed: 11/19/2022]
Abstract
The raising burden of cancer can be controlled by fabricating smart nanomaterials that can detect tumours easily. In this study, we report about the preparation of radiopaque fibrin nanocomplex (RFN) for imaging solid tumours. The nanocomplex exhibits high X-ray absorption and therefore utilizes X-ray radiography and computed tomography (CT) for imaging tumours. The CT images taken after intratumoral administration of RFN in tumor bearing mice displayed excellent visibility of tumour. Moreover, increased amount of RFN was seen at the site of tumour after 45 min of post-injection. These research findings prove the promising use of RFN as a valuable tool for imaging solid tumours.
Collapse
Affiliation(s)
- Sathyaraj Weslen Vedakumari
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chennai- 603 103, Tamil Nadu, India; Bio-products Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600 020, Tamil Nadu, India.
| | - Periyathambi Prabu
- Centre of Excellence for Advanced Materials Application, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 84511, Slovakia
| | - S Jacqulin Veda Jancy
- Electronics and Communication Engineering, SRM Institute of Science and Technology, Ramapuram Campus, Chennai 600 089, India
| | - Yovan Raja Pravin
- Department of Physics (Science and Humanities), Agni College of Technology, OMR, Navallur, Thalambur, Chennai - 600 130, Tamil Nadu, India
| | - Kanagavel Manickavasagam
- Department of General, Gastrointestinal and Minimal Access Surgery, St. Isabel's Hospital, Chennai 600004, Tamil Nadu, India
| | | |
Collapse
|
14
|
Wadan I, Khan H, Tahir K, Khan MK, Khan BA. Green synthesis of silver nanoparticles of olea ferruginea root extract: Characterizations, biological assays and their catalytic application in dye degradation. MAIN GROUP CHEMISTRY 2021. [DOI: 10.3233/mgc-210047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In current work, silver nanoparticles (AgNPs) were prepared by a rapid biogenic technique “Green method” utilizing root extract of Olea ferruginea. The synthesized nanoparticles were characterized for UV visible spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Scanning electron microscopy (SEM), High Resolution Transmission Electron Microscopy Studies (HRTEM) and biological assays. UV visible absorption spectroscopy confirms the formation of AgNPs by giving Surface Plasmon Resonance (SPR) peak at 430 nm. FTIR study showed occurrence of various functional groups present in root extract of Olea ferruginea. X-ray diffraction analysis determined the crystalline nature of bio-fabricated silver nanoparticles. The elemental composition of green made silver nanoparticles was studied through Energy Dispersive Spectroscopy (EDS) analysis. SEM & HRTEM study revealed the size, shape, surface morphology & dispersion level of molecules. The biologically synthesized AgNPs showed high antimicrobial, antifungal and antioxidant activity. The AgNPs are observed to be an excellent catalyst on reduction of hazardous dyes, which is confirmed by a decrease in absorbance of maximum values.
Collapse
Affiliation(s)
- Iqbal Wadan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gomal University, D.I. Khan, Pakistan
| | - Haroon Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gomal University, D.I. Khan, Pakistan
| | - Kamran Tahir
- Institute of Chemical Sciences, Gomal University, D.I. Khan, Pakistan
| | - Muhammad Khalid Khan
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, D.I. Khan, Pakistan
| | - Barkat Ali Khan
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, D.I. Khan, Pakistan
| |
Collapse
|
15
|
Phytoassisted synthesis and characterization of palladium nanoparticles (PdNPs); with enhanced antibacterial, antioxidant and hemolytic activities. Photodiagnosis Photodyn Ther 2021; 36:102542. [PMID: 34547470 DOI: 10.1016/j.pdpdt.2021.102542] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022]
Abstract
With increasing demand for the treatment of microbial resistance around the globe, it is necessary to develop metallic nanoparticles , ideally by the use of nontoxic medium i.e. plant constituents, that could arrest the microbial growth. For this reason, small and highly crystalline PdNPs were effectively synthesized by using Eryngium caeruleum leaf extract as both the reducing and capping agent. During the synthesis of PdNPs, the size and shape were made controlled by using different solvents i.e., ethanol, methanol and aqueous extract of Eryngium caeruleum. A series of physicochemical characterizations were applied to inquire the synthesis, crystal structure, particles size, and surface morphology of PdNPs. Furthermore, the PdNPs demonstrated excellent potential for the inactivation of gram-positive and gram-negative bacteria, where the methanol-PdNPs exhibited maximum growth inhibition zones against tested bacteria as compared to ethanol-PdNPs and aqueous-PdNPs. Besides, PdNPs showed better antioxidant activity to effectively scavenge 2, 2 diphenyl-1-picrylhydrazyl (DPPH). More importantly, the synthesized PdNPs are not only active for ROS generation but also show no hemolytic activity. We believe that this greener approach uncovered the useful and efficient applications of highly active PdNPs and their biocompatibility.
Collapse
|
16
|
Roosa CA, Muhamed I, Young AT, Nellenbach K, Daniele MA, Ligler FS, Brown AC. Synthesis of sonicated fibrin nanoparticles that modulate fibrin clot polymerization and enhance angiogenic responses. Colloids Surf B Biointerfaces 2021; 204:111805. [PMID: 33964527 PMCID: PMC8217261 DOI: 10.1016/j.colsurfb.2021.111805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/09/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Chronic wounds can occur when the healing process is disrupted and the wound remains in a prolonged inflammatory stage that leads to severe tissue damage and poor healing outcomes. Clinically used treatments, such as high density, FDA-approved fibrin sealants, do not provide an optimal environment for native cell proliferation and subsequent tissue regeneration. Therefore, new treatments outside the confines of these conventional fibrin bulk gel therapies are required. We have previously developed flowable, low-density fibrin nanoparticles that, when coupled to keratinocyte growth factor, promote cell migration and epithelial wound closure in vivo. Here, we report a new high throughput method for generating the fibrin nanoparticles using probe sonication, which is less time intensive than the previously reported microfluidic method, and investigate the ability of the sonicated fibrin nanoparticles (SFBN) to promote clot formation and cell migration in vitro. The SFBNs can form a fibrin gel when combined with fibrinogen in the absence of exogenous thrombin, and the polymerization rate and fiber density in these fibrin clots is tunable based on SFBN concentration. Furthermore, fibrin gels made with SFBNs support cell migration in an in vitro angiogenic sprouting assay, which is relevant for wound healing. In this report, we show that SFBNs may be a promising wound healing therapy that can be easily produced and delivered in a flowable formulation.
Collapse
Affiliation(s)
- Colleen A Roosa
- Joint Department of Biomedical Engineering, NC State University and UNC Chapel-Hill, Raleigh, NC, United States; Comparative Medicine Institute, NC State University, Raleigh, NC, United States
| | - Ismaeel Muhamed
- Joint Department of Biomedical Engineering, NC State University and UNC Chapel-Hill, Raleigh, NC, United States; Comparative Medicine Institute, NC State University, Raleigh, NC, United States
| | - Ashlyn T Young
- Joint Department of Biomedical Engineering, NC State University and UNC Chapel-Hill, Raleigh, NC, United States; Comparative Medicine Institute, NC State University, Raleigh, NC, United States
| | - Kimberly Nellenbach
- Joint Department of Biomedical Engineering, NC State University and UNC Chapel-Hill, Raleigh, NC, United States; Comparative Medicine Institute, NC State University, Raleigh, NC, United States
| | - Michael A Daniele
- Joint Department of Biomedical Engineering, NC State University and UNC Chapel-Hill, Raleigh, NC, United States; Comparative Medicine Institute, NC State University, Raleigh, NC, United States; Department of Electrical and Computer Engineering, NC State University, Raleigh, NC, United States
| | - Frances S Ligler
- Joint Department of Biomedical Engineering, NC State University and UNC Chapel-Hill, Raleigh, NC, United States; Comparative Medicine Institute, NC State University, Raleigh, NC, United States
| | - Ashley C Brown
- Joint Department of Biomedical Engineering, NC State University and UNC Chapel-Hill, Raleigh, NC, United States; Comparative Medicine Institute, NC State University, Raleigh, NC, United States.
| |
Collapse
|
17
|
Ur Rehman K, Tahir K, Al-Abdulkarim HA, Saleh EAM, Alosaimi AM, Hussein MA, Khan AU, Khan ZUH, Nazir S, Zaman U. Photoinhibition and photocatalytic response of surfactant mediated Pt/ZnO nanocomposite. Photodiagnosis Photodyn Ther 2021; 35:102458. [PMID: 34325079 DOI: 10.1016/j.pdpdt.2021.102458] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/18/2021] [Accepted: 07/22/2021] [Indexed: 11/20/2022]
Abstract
Water pollution and bacterial resistance are universal problems. Drugs and protocols have been employed to deal with involved microbes and pollutants but these customary chemicals have many limitations. It is essential to produce new methods and materials to deal with these deleterious microbes. In the present contribution, highly efficient and stable nanocomposite of platinum activated zinc oxide was synthesized by a new plant extract and surfactant assisted protocol. The cetylpyridinium chloride was applied as surfactant to obtain high dispersion of spherical ZnO. The platinum ions were reduced on the ZnO surface by the use of Rhazya stricta plant extract. The prepared nanomaterial was used for photoinactivation of multidrug resistant bacterium Escherichia coli (E. coli). The synthesized nanomaterial showed strong E. coli inhibition efficiency in the presence of light and the observed diameter of zone of inhibition was 21 ±0.4. The effect of light on the inhibition of E.coli was studied by measuring the activated oxygen radicals inside the bacterium cell. The surface morphology of E.coli before and after treatment with Pt/ZnO was studied by SEM. Such effect was not observed in dark. The toxicity of the synthesized nanomaterials was also studied through haemolytic activity and the result shows that the nanomaterial prepared by the said method has very low toxicity. The photocatalytic degradation of methylene blue (MB) was also investigated in the presence of the synthesized nanomaterials. Effect of different parameters such as concentration of Pt/ZnO, Irradiation time and dye concentrations were also studied. An incredible photocatalytic deprivation of MB (98 %) was observed for Pt/ZnO nanocomposite as compared to individual Pt (48%) and ZnO (71%) nanoparticles after 5 minutes of irradiations. Further research is required to investigate the applications of Pt/ZnO nanocomposite.
Collapse
Affiliation(s)
- Khalil Ur Rehman
- Institute of Chemical Sciences, Gomal University, D. I. Khan, KP, Pakistan
| | - Kamran Tahir
- Institute of Chemical Sciences, Gomal University, D. I. Khan, KP, Pakistan.
| | - Hessah A Al-Abdulkarim
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, College of Arts and Sciences, Prince Sattam Bin Abdulaziz University, Wadi Al-Dawasir 11991, Saudi Arabia
| | - Abeer M Alosaimi
- Department of Chemistry, Faculty of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mahmoud A Hussein
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia,; Chemistry Department, Faculty of Science, Assiut University, Assiut, 71516 Egypt
| | - Afaq Ullah Khan
- State Key Laboratory of Chemical Resource Engineering, School of Science, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zia Ul Haq Khan
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus 61100, Pakistan
| | - Sadia Nazir
- Institute of Chemical Sciences, Gomal University, D. I. Khan, KP, Pakistan
| | - Umber Zaman
- Institute of Chemical Sciences, Gomal University, D. I. Khan, KP, Pakistan
| |
Collapse
|
18
|
Khan AU, Khan QU, Tahir K, Ullah S, Arooj A, Li B, Rehman KU, Nazir S, Khan MU, Ullah I. A Tagetes minuta based eco-benign synthesis of multifunctional Au/MgO nanocomposite with enhanced photocatalytic, antibacterial and DPPH scavenging activities. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112146. [PMID: 34082957 DOI: 10.1016/j.msec.2021.112146] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022]
Abstract
In this research work, facile, economical and eco-benign experimental procedure were adopted to synthesize Au/MgO nanocomposite with the help of Tagetes minuta leaves extract. Phytochemicals present in the leaves of Tagetes minuta were acting as reducing and stabilizing agents to avoid aggregation of nanomaterials during the preparation of Au/MgO nanocomposite. The biologically synthesized nanocomposite were systematically characterized by UV-vis spectroscopy, Scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared microscopy (FTIR), High resolution transmission electron microscopy (HRTEM), Thermogravimetric analysis (TGA), dynamic light scattering (DLS) and elemental mapping. UV-visible spectrum confirmed the presence of MgO and Au due to the presence of two SPR peaks at 315 nm and 528 nm, respectively. Moreover, the Au/MgO nanocomposite exhibited superior photocatalytic, antibacterial, hemolytic, and antioxidant activities. Photocatalytic performance tests of Au/MgO nanocomposite were- appraised by the rapid degradation of the methylene blue (MB) under UV light illumination. More importantly, after four successive cycles of MB degradation, the photocatalytic efficacy remained unchanged, which ensures the stability of the Au/MgO nanocomposite. Furthermore, the antibacterial tests showed that the advanced nanocomposite inhibited the growth of Escherichia coli, Bacillus subtilis, and Staphylococcus aureus with zones of inhibition 18 (±0.3), 21 (±0.5), and 19 (±0.4) mm, respectively. The cytotoxicity study revealed that Au/MgO nanocomposite is nontoxic to ordinary healthy RBCs. Interestingly, the Au/MgO nanocomposite also possesses an excellent antioxidant activity, whereby effectively scavenging 82% stable and harmful DPPH. Overall, the present study concludes that eco-benign Au/MgO nanocomposite has excellent potential for the remediation of bacterial pathogens and degradation of MB.
Collapse
Affiliation(s)
- Afaq Ullah Khan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qudrat Ullah Khan
- Key Laboratory of Optoelectronic Devices and Systems, Ministry of Education and Guangdong Province, Collage of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen 518060, China
| | - Kamran Tahir
- Institute of Chemical Sciences, Gomal University, D.I. Khan, KP, Pakistan
| | - Sami Ullah
- Department of Chemistry, COMSATS University Islamabad (CUI), Abbottabad campus, 22060, Pakistan
| | - Aaranda Arooj
- Department of Chemistry, COMSATS University Islamabad (CUI), Abbottabad campus, 22060, Pakistan
| | - Baoshan Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Khalil Ur Rehman
- Institute of Chemical Sciences, Gomal University, D.I. Khan, KP, Pakistan
| | - Sadia Nazir
- Institute of Chemical Sciences, Gomal University, D.I. Khan, KP, Pakistan
| | - Mati Ullah Khan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Irfan Ullah
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
19
|
Iqbal H, Yang T, Li T, Zhang M, Ke H, Ding D, Deng Y, Chen H. Serum protein-based nanoparticles for cancer diagnosis and treatment. J Control Release 2020; 329:997-1022. [PMID: 33091526 DOI: 10.1016/j.jconrel.2020.10.030] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/15/2022]
Abstract
Serum protein as naturally essential biomacromolecules has recently emerged as a versatile carrier for diagnostic and therapeutic drug delivery for cancer nanomedicine with superior biocompatibility, improved pharmacokinetics and enhanced targeting capacity. A variety of serum proteins have been utilized for drug delivery, mainly including albumin, ferritin/apoferritin, transferrin, low-density lipoprotein, high-density lipoprotein and hemoglobin. As evidenced by the success of paclitaxel-bound albumin nanoparticles (AbraxaneTM), serum protein-based nanoparticles have gained attractive attentions for precise biological design and potential clinical application. In this review, we summarize the general design strategies, targeting mechanisms and recent development of serum protein-based nanoparticles in the field of cancer nanomedicine. Moreover, we also concisely specify the current challenges to be addressed for a bright future of serum protein-based nanomedicines.
Collapse
Affiliation(s)
- Haroon Iqbal
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Tao Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Ting Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Miya Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Hengte Ke
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Dawei Ding
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yibin Deng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| | - Huabing Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| |
Collapse
|
20
|
Valorization of Pichia spent medium via one-pot synthesis of biocompatible silver nanoparticles with potent antioxidant, antimicrobial, tyrosinase inhibitory and reusable catalytic activities. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111104. [DOI: 10.1016/j.msec.2020.111104] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/11/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023]
|
21
|
Sellappan LK, Anandhavelu S, Doble M, Perumal G, Jeon JH, Vikraman D, Kim HS. Biopolymer film fabrication for skin mimetic tissue regenerative wound dressing applications. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1817019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Logesh Kumar Sellappan
- Department of Biomedical Engineering, Dr. N. G. P. Institute of Technology, Coimbatore, Tamil Nadu, India
| | - Sanmugam Anandhavelu
- Department of Chemistry, Vel Tech Multi Tech Engineering College, Chennai, Tamil Nadu, India
| | - Mukesh Doble
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Govindaraj Perumal
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Ji-Hoon Jeon
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, Republic of Korea
| | - Dhanasekaran Vikraman
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, Republic of Korea
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, Republic of Korea
| |
Collapse
|
22
|
Gorji M, Ghasemi N, Setayeshmehr M, Zargar A, Kazemi M, Soleimani M, Hashemibeni B. The Effects of Fibrin-icariin Nanoparticle Loaded in Poly (lactic-co-glycolic) Acid Scaffold as a Localized Delivery System on Chondrogenesis of Human Adipose-derived Stem Cells. Adv Biomed Res 2020; 9:6. [PMID: 32181230 PMCID: PMC7059457 DOI: 10.4103/abr.abr_143_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/03/2019] [Accepted: 08/05/2019] [Indexed: 12/29/2022] Open
Abstract
Background: Nowadays, cartilage tissue engineering is the best candidate for regeneration of cartilage defects. This study evaluates the effect of fibrin/icariin (ICA) nanoparticles (F/I NPs) on chondrogenesis of stem cells. Materials and Methods: F/I NPs were characterized by Dynamic Light Scattering DLS. Poly (lactic-co-glycolic) acid (PLGA)-F/I NP scaffold was fabricated and assessed by scanning electron microscope. Human adipose-derived stem cells (hADSCs) were seeded on scaffold and induced for chondrogenesis. After 14 days, cell viability and gene expression were analyzed by the 3-(4, 5- dimethylthiazol-2yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. MTT assay and real-time polymerase chain reaction (RT-PCR). Results: The size and surface charge of F/I NP were about 28–30 nm and − 17, respectively. The average of pore size of PLGA and PLGA–fibrin/ICA was 230 and 340 μm, respectively. Cell viability of differentiated cells in P/F group was higher than others significantly (P ≤ 0.05). Furthermore, quantitative RT-PCR analysis demonstrated that ICA upregulated cartilaginous-specific gene expression. Furthermore, the results of the expression of type I collagen revealed that ICA downregulated this gene significantly (P < 0.01). Conclusions: The results indicated that F/I NP could be a potential factor for chondrogenesis of stem cells and downregulation of fibrocartilage marker.
Collapse
Affiliation(s)
- Mona Gorji
- Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nazem Ghasemi
- Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Setayeshmehr
- Department of Advanced Medical Technology, Biomaterials Nanaotechnology and Tissue Engineering Group, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Anooshe Zargar
- Department of Advanced Medical Technology, Biomaterials Nanaotechnology and Tissue Engineering Group, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Kazemi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mitra Soleimani
- Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Batool Hashemibeni
- Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
23
|
Ramadurai M, Rajendran G, Bama TS, Prabhu P, Kathiravan K. Biocompatible thiolate protected copper nanoclusters for an efficient imaging of lung cancer cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 205:111845. [PMID: 32172137 DOI: 10.1016/j.jphotobiol.2020.111845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 02/14/2020] [Accepted: 03/02/2020] [Indexed: 12/18/2022]
Abstract
We report, the one-pot synthesis of water-soluble and biocompatible 3-mercaptopropylsulfonate (MPS) protected novel copper nanoclusters (CuNCs). Interestingly, the TEM image of MPS protected CuNCs exhibits an ultrasmall nanoclusters of particle size <2-nm, similar to its Au and Ag analogue. The hydrophilic and biocompability property of thiolate protected CuNCs. i.e., MPS stabilized CuNCs and its luminescent nature gave rise to maximum quantum yield of 1.5%. Further, as achieved CuNCs was investigated for haemocompatibility, cell viability and fluorescent microscopic analysis with A549 lung cancer cell line. Haemolytic study was examined using human RBCs in the concentration range of 4 to 22 μg/mL for which 7.5% of haemolysis was obtained for an optimum concentration of 22 μg/mL of CuNCs. The cell viability analysis was carried out by MTT assay using A549 lung cancer cells for the minimum (10 μg/mL) and maximum (45 μg/mL) concentration of CuNCs which reports 93.1% and 38.2% cell viability respectively. The inverted light microscopic images from the control and CuNCs treated (20 μg/mL) cells exhibited an excellent biocompatibility with a normal morphology. Upon increasing the concentration of CuNCs upto 45 μg/mL, the cell viability trends to decrease and the cell morphology also denature gradually. Further, the bio-imaging application of CuNCs was analyzed with A549 lung cancer cells. The efficient imaging with CuNCs treated (20 μg/mL) A549 cells resulted in a green colour emission using FITC filter (460- 490 nm). Thereby the obtained results confirm the applicability of CuNCs for the biomedical and cancer diagnosis applications.
Collapse
Affiliation(s)
- Murugan Ramadurai
- Department of Physical Chemistry, School of Chemical Sciences, University of Madras, Guindy Campus, Chennai, Tamilnadu 600 025, India
| | - Ganapathy Rajendran
- Department of Biotechnology, School of Life Sciences, University of Madras, Guindy Campus, Chennai, Tamilnadu 600 025, India
| | - Thangapandian Sathya Bama
- Department of Physical Chemistry, School of Chemical Sciences, University of Madras, Guindy Campus, Chennai, Tamilnadu 600 025, India
| | - Pandurangan Prabhu
- Department of Physical Chemistry, School of Chemical Sciences, University of Madras, Guindy Campus, Chennai, Tamilnadu 600 025, India.
| | - Krishnan Kathiravan
- Department of Biotechnology, School of Life Sciences, University of Madras, Guindy Campus, Chennai, Tamilnadu 600 025, India.
| |
Collapse
|
24
|
Rajendran K, Rajendran G, Kasthuri J, Kathiravan K, Rajendiran N. Sweet Corn
(Zea mays L. var. rugosa)
Derived Fluorescent Carbon Quantum Dots for Selective Detection of Hydrogen Sulfide and Bioimaging Applications. ChemistrySelect 2019. [DOI: 10.1002/slct.201903385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kalimuthu Rajendran
- Department of Polymer ScienceUniversity of MadrasGuindy Campus, Chennai-25, Tamil Nadu India
| | - Ganapathy Rajendran
- Department of BiotechnologyUniversity of MadrasGuindy Campus, Chennai-25, Tamil Nadu India
| | - Jayapalan Kasthuri
- Department of ChemistryQuaid-E- Millath Govt. College for Women, Chennai-2 Tamil Nadu
| | - Krishnan Kathiravan
- Department of BiotechnologyUniversity of MadrasGuindy Campus, Chennai-25, Tamil Nadu India
| | - Nagappan Rajendiran
- Department of Polymer ScienceUniversity of MadrasGuindy Campus, Chennai-25, Tamil Nadu India
| |
Collapse
|
25
|
Blum NT, Gyorkos CM, Narowetz SJ, Mueller EN, Goodwin AP. Phospholipid-Coated Hydrophobic Mesoporous Silica Nanoparticles Enhance Thrombectomy by High-Intensity Focused Ultrasound with Low Production of Embolism-Inducing Clot Debris. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36324-36332. [PMID: 31556582 PMCID: PMC8051144 DOI: 10.1021/acsami.9b11095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Here we report the efficacy of a nanoparticle-assisted high-intensity focused ultrasound (HIFU) treatment that selectively destroys blood clots while minimizing generation of microparticles, or microemboli, that can cause further complications postsurgery. Treatment of malignant blood clots (thrombi) and the resulting emboli are critical problems for numerous patients, and treatments addressing these conditions would benefit from advancements in noninvasive procedures such as HIFU. While recanalization of occlusive blood clots is currently addressed with surgical intervention that seeks to minimize formation of large emboli, there is a danger of microemboli (micrometer-size particles) that have been theorized to be responsible for the poor correlation between apparent surgical success and patient outcome. Here, the addition of phospholipid-coated hydrophobically modified silica nanoparticles (P@hMSNs) improved the efficacy of HIFU treatment by serving as cavitation nuclei for mechanical disruption of thrombi. This treatment was evaluated for the ability to clear the HIFU focal area of a thick and dense thrombus within 10 min. Moreover, it was found that the use of P@hMSN+HIFU treatment generated a significantly smaller microembolic load as compared to comparison techniques, including a HIFU + microbubble contrast agent, HIFU alone, and direct mechanical disruption. This reduction in the microembolic load can occur either with primary removal of the clot by P@hMSN+HIFU or by insonation of the clot fragments after mechanical thrombectomy. Lastly, this method was evaluated in a flow model, where nonocclusive model thrombi and model emboli were mechanically ablated within the focal area within 15 s. Together, these results represent a combination therapy capable of resolving thrombi and microembolisms resulting from thrombectomy through localized destruction of clotted material.
Collapse
|
26
|
Sathiyavimal S, Vasantharaj S, LewisOscar F, Pugazhendhi A, Subashkumar R. Biosynthesis and characterization of hydroxyapatite and its composite (hydroxyapatite-gelatin-chitosan-fibrin-bone ash) for bone tissue engineering applications. Int J Biol Macromol 2019; 129:844-852. [PMID: 30769044 DOI: 10.1016/j.ijbiomac.2019.02.058] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/31/2019] [Accepted: 02/11/2019] [Indexed: 10/27/2022]
Abstract
Hydroxyapatite (HAp) is a bioactive and biocompatible material possessing osteoconductive properties used widely in the biomedical sector. In the present study, synthesis of hydroxyapatite (HAp) using a Klebsiella pneumoniae SM24 (phosphate solubilizing bacteria) isolated from the slaughterhouse. HAp synthesized using biological source showed efficient and positive enzymatic activity in the National Botanical Research Institute Phosphate Medium (NBRIP). Characterization of HAp using FTIR revealed the presence of phosphate group hydroxyapatite and XRD spectra showed polycrystalline nature. The morphological characterization of HAp using FESEM revealed the mesoporous structure and EDX spectrum indicated presence of Ca and P as the major components. In addition, a new bone composite was prepared using the synthesized HAp, Gelatine (G), Chitosan (C), Fibrin (F) and Bone ash (HApGCF) using Simulated Body Fluid (SBF) solution. The confirmation of chemical and structural characteristics of HApGCF bone composite was achieved using FTIR, XRD and SEM analyses. The HApGCF bone composite was tested over osteoblast MG-63 cells showing effective biocompatibility and osteoblast attachment on the composite surface. Therefore, the present report proposes the in vitro application of HApGCF bone composite as a replacement for major bone damage and injury in a biocompatible and non-toxic way.
Collapse
Affiliation(s)
- Selvam Sathiyavimal
- Department of Biotechnology, Kongunadu Arts and Science College, Coimbatore 641 029, Tamil Nadu, India
| | - Seerangaraj Vasantharaj
- Department of Biotechnology, Hindusthan College of Arts and Science, Coimbatore 641 028, Tamil Nadu, India
| | | | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - Rathinasamy Subashkumar
- Department of Biotechnology, Kongunadu Arts and Science College, Coimbatore 641 029, Tamil Nadu, India; Department of Biotechnology, Sri Ramakrishna College of Arts and Science, Coimbatore 641 006, Tamil Nadu, India.
| |
Collapse
|
27
|
Vedakumari SW, Senthil R, Sekar S, Babu CS, Sastry TP. Enhancing anti-cancer activity of erlotinib by antibody conjugated nanofibrin - In vitro studies on lung adenocarcinoma cell lines. MATERIALS CHEMISTRY AND PHYSICS 2019; 224:328-333. [DOI: 10.1016/j.matchemphys.2018.11.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
28
|
Douglas SA, Lamothe SE, Singleton TS, Averett RD, Platt MO. Human cathepsins K, L, and S: Related proteases, but unique fibrinolytic activity. Biochim Biophys Acta Gen Subj 2018; 1862:1925-1932. [PMID: 29944896 DOI: 10.1016/j.bbagen.2018.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/06/2018] [Accepted: 06/19/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND Fibrin formation and dissolution are attributed to cascades of protease activation concluding with thrombin activation, and plasmin proteolysis for fibrin breakdown. Cysteine cathepsins are powerful proteases secreted by endothelial cells and others during cardiovascular disease and diabetes. Their fibrinolytic activity and putative role in hemostasis has not been well described. METHODS Fibrin gels were polymerized and incubated with recombinant human cathepsins (cat) K, L, or S, or plasmin, for dose-dependent and time-dependent studies. Dissolution of fibrin gels was imaged. SDS-PAGE was used to resolve cleaved fragments released from fibrin gels and remnant insoluble fibrin gel that was solubilized prior to electrophoresis to assess fibrin α, β, and γ polypeptide hydrolysis by cathepsins. Multiplex cathepsin zymography determined active amounts of cathepsins remaining. RESULTS There was significant loss of α and β fibrin polypeptides after incubation with cathepsins, with catS completely dissolving fibrin gel by 24 h. Binding to fibrin stabilized catL active time; it associated with cleaved fibrin fragments of multiple sizes. This was not observed for catK or S. CatS also remained active for longer times during fibrin incubation, but its association/binding did not withstand SDS-PAGE preparation. CONCLUSIONS Human cathepsins K, L, and S are fibrinolytic, and specifically can degrade the α and β fibrin polypeptide chains, generating fragments unique from plasmin. GENERAL SIGNIFICANCE Demonstration of cathepsins K, L, and S fibrinolytic activity leads to further investigation of contributory roles in disrupting vascular hemostasis, or breakdown of fibrin-based engineered vascular constructs where non-plasmin mediated fibrinolysis must be considered.
Collapse
Affiliation(s)
- Simone A Douglas
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology & Emory University, USA.
| | - Sarah E Lamothe
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology & Emory University, USA.
| | - Tatiyanna S Singleton
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology & Emory University, USA.
| | - Rodney D Averett
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, USA.
| | - Manu O Platt
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology & Emory University, USA.
| |
Collapse
|
29
|
Noori A, Ashrafi SJ, Vaez-Ghaemi R, Hatamian-Zaremi A, Webster TJ. A review of fibrin and fibrin composites for bone tissue engineering. Int J Nanomedicine 2017; 12:4937-4961. [PMID: 28761338 PMCID: PMC5516781 DOI: 10.2147/ijn.s124671] [Citation(s) in RCA: 289] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Tissue engineering has emerged as a new treatment approach for bone repair and regeneration seeking to address limitations associated with current therapies, such as autologous bone grafting. While many bone tissue engineering approaches have traditionally focused on synthetic materials (such as polymers or hydrogels), there has been a lot of excitement surrounding the use of natural materials due to their biologically inspired properties. Fibrin is a natural scaffold formed following tissue injury that initiates hemostasis and provides the initial matrix useful for cell adhesion, migration, proliferation, and differentiation. Fibrin has captured the interest of bone tissue engineers due to its excellent biocompatibility, controllable biodegradability, and ability to deliver cells and biomolecules. Fibrin is particularly appealing because its precursors, fibrinogen, and thrombin, which can be derived from the patient's own blood, enable the fabrication of completely autologous scaffolds. In this article, we highlight the unique properties of fibrin as a scaffolding material to treat bone defects. Moreover, we emphasize its role in bone tissue engineering nanocomposites where approaches further emulate the natural nanostructured features of bone when using fibrin and other nanomaterials. We also review the preparation methods of fibrin glue and then discuss a wide range of fibrin applications in bone tissue engineering. These include the delivery of cells and/or biomolecules to a defect site, distributing cells, and/or growth factors throughout other pre-formed scaffolds and enhancing the physical as well as biological properties of other biomaterials. Thoughts on the future direction of fibrin research for bone tissue engineering are also presented. In the future, the development of fibrin precursors as recombinant proteins will solve problems associated with using multiple or single-donor fibrin glue, and the combination of nanomaterials that allow for the incorporation of biomolecules with fibrin will significantly improve the efficacy of fibrin for numerous bone tissue engineering applications.
Collapse
Affiliation(s)
- Alireza Noori
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran
| | | | - Roza Vaez-Ghaemi
- Department of Chemical and Biological Engineering, Faculty of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | | | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
30
|
Khan FU, Chen Y, Khan NU, Ahmad A, Tahir K, Khan ZU, Khan AU, Khan SU, Raza M, Wan P. Visible light inactivation of E. coli , Cytotoxicity and ROS determination of biochemically capped gold nanoparticles. Microb Pathog 2017; 107:419-424. [DOI: 10.1016/j.micpath.2017.04.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/14/2017] [Accepted: 04/19/2017] [Indexed: 12/23/2022]
|
31
|
Antibacterial activity of biochemically capped iron oxide nanoparticles: A view towards green chemistry. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 170:241-246. [DOI: 10.1016/j.jphotobiol.2017.04.020] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 04/12/2017] [Accepted: 04/17/2017] [Indexed: 11/24/2022]
|
32
|
Vedakumari WS, Ayaz N, Karthick AS, Senthil R, Sastry TP. Quercetin impregnated chitosan–fibrin composite scaffolds as potential wound dressing materials — Fabrication, characterization and in vivo analysis. Eur J Pharm Sci 2017; 97:106-112. [DOI: 10.1016/j.ejps.2016.11.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 12/14/2022]
|
33
|
Tahir K, Nazir S, Li B, Ahmad A, Nasir T, Khan AU, Shah SAA, Khan ZUH, Yasin G, Hameed MU. Sapium sebiferum leaf extract mediated synthesis of palladium nanoparticles and in vitro investigation of their bacterial and photocatalytic activities. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 164:164-173. [PMID: 27689741 DOI: 10.1016/j.jphotobiol.2016.09.030] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/22/2016] [Indexed: 11/30/2022]
Abstract
There is a growing need to introduce eco-friendly and sustainable procedures for the synthesis of metal nanoparticles that include a mild reaction conditions, simple reaction setup, use of nontoxic medium such as water and plant extract, cost effectiveness as well as greater efficiency for biomedical and catalytic applications. For this purpose, small and highly dispersed palladium nanoparticles (PdNPs) were prepared by eco-friendly and cost effective green method using water soluble leaf extract of Sapium sebiferum as a reducing and capping agent. The formation of PdNPs was optimized at various temperatures i.e. (30°C, 60°C and 90°C) and different leaves extract (5mL and 10mL) in order to control their size and shape. The results indicated that PdNPs synthesized at 10mL leaf extract concentration and 60°C temperature have small sized (5nm) and spherical shape. The nanoparticles formation, their dispersion, size and shape were confirmed by various characterization techniques i.e. UV-Vis spectroscopy, Fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), thermo gravimetric analysis (TGA) and Dynamic light scattering technique (DLS) analysis. The biologically synthesized PdNPs were tested for size dependent photo degradation of methylene blue and inactivation of bacteria. The PdNPs synthesized at optimized condition (10mL extract concentration and 60°C) have strong photo catalytic activity and reduced 90% methylene blue in 70min. The optimized PdNPs also showed strong bacterial inhibition against Staphylococcus aureus 29(±0.8mm), Bacillus subtilis 19(±0.6mm) and pseudomonas aeruginosa 11(±0.6mm). The results of this examination demonstrate effective applications of extremely active PdNPs.
Collapse
Affiliation(s)
- Kamran Tahir
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China; Institute of Chemical Sciences, Gomal University, D. I. Khan, KP, Pakistan
| | - Sadia Nazir
- Institute of Chemical Sciences, Gomal University, D. I. Khan, KP, Pakistan
| | - Baoshan Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Aftab Ahmad
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Tabassum Nasir
- Department of Physics, Gomal University, D. I. Khan, KP, Pakistan
| | - Arif Ullah Khan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Sayyed Asim Ali Shah
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zia Ul Haq Khan
- Department of Chemistry, University of Science and Technology, Bannu 28100, KP, Pakistan
| | - Ghulam Yasin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Muhammad Usman Hameed
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
34
|
Surendra T, Roopan SM, Arasu MV, Al-Dhabi NA, Sridharan M. Phenolic compounds in drumstick peel for the evaluation of antibacterial, hemolytic and photocatalytic activities. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 161:463-71. [DOI: 10.1016/j.jphotobiol.2016.06.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 01/08/2023]
|
35
|
Ultra-efficient photocatalytic deprivation of methylene blue and biological activities of biogenic silver nanoparticles. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 159:49-58. [DOI: 10.1016/j.jphotobiol.2016.03.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 02/03/2016] [Accepted: 03/14/2016] [Indexed: 11/19/2022]
|
36
|
Khan AU, Yuan Q, Wei Y, Khan SU, Tahir K, Khan ZUH, Ahmad A, Ali F, Ali S, Nazir S. Longan fruit juice mediated synthesis of uniformly dispersed spherical AuNPs: cytotoxicity against human breast cancer cell line MCF-7, antioxidant and fluorescent properties. RSC Adv 2016. [DOI: 10.1039/c5ra27100b] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the present work AuNPs were synthesized by an eco-friendly, fast, one-pot and green synthetic route using Longan fruit juice as a reducing, capping and stabilizing agent.
Collapse
Affiliation(s)
- Arif Ullah Khan
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- PR China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- PR China
| | - Yun Wei
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- PR China
| | | | - Kamran Tahir
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- PR China
| | - Zia Ul Haq Khan
- Department of Chemistry
- University of Science and Technology Bannu
- Pakistan
| | - Aftab Ahmad
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- PR China
| | - Farman Ali
- Department of Chemistry
- Shaheed Benazir Bhutto University
- Dir 18000
- Pakistan
| | - Shafqat Ali
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- PR China
| | - Sadia Nazir
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- PR China
| |
Collapse
|
37
|
Tahir K, Nazir S, Ahmad A, Li B, Ali Shah SA, Khan AU, Khan GM, Khan QU, Haq Khan ZU, Khan FU. Biodirected synthesis of palladium nanoparticles using Phoenix dactylifera leaves extract and their size dependent biomedical and catalytic applications. RSC Adv 2016. [DOI: 10.1039/c6ra11409a] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Graphical representation of green synthesis of PdNPs and their biological and catalytic applications.
Collapse
|
38
|
Abstract
Polymeric nanomaterials have extensively been applied for the preparation of targeted and controlled release drug/gene delivery systems. However, problems involved in the formulation of synthetic polymers such as using of the toxic solvents and surfactants have limited their desirable applications. In this regard, natural biomolecules including proteins and polysaccharide are suitable alternatives due to their safety. According to literature, protein-based nanoparticles possess many advantages for drug and gene delivery such as biocompatibility, biodegradability and ability to functionalize with targeting ligands. This review provides a general sight on the application of biodegradable protein-based nanoparticles in drug/gene delivery based on their origins. Their unique physicochemical properties that help them to be formulated as pharmaceutical carriers are also discussed.
Collapse
|
39
|
Ahmad E, Fatima MT, Hoque M, Owais M, Saleemuddin M. Fibrin matrices: The versatile therapeutic delivery systems. Int J Biol Macromol 2015; 81:121-36. [PMID: 26231328 DOI: 10.1016/j.ijbiomac.2015.07.054] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 07/24/2015] [Accepted: 07/26/2015] [Indexed: 12/12/2022]
Abstract
Fibrin sealants, that have been employed for over a century by surgeons to stop post surgery bleeding, are finding novel applications in the controlled delivery of antibiotics and several other therapeutics. Fibrinogen can be easily purified from blood plasma and converted by thrombolysis to fibrin that undergoes spontaneous aggregation to form insoluble clot. During the gelling, fibrin can be formulated into films, clots, threads, microbeads, nanoconstructs and nanoparticles. Whole plasma clots in the form of beads and microparticles can also be prepared by activating endogenous thrombin, for possible drug delivery. Fibrin formulations offer remarkable scope for controlling the porosity as well as in vivo degradability and hence the release of the associated therapeutics. Binding/covalent-linking of therapeutics to the fibrin matrix, crosslinking of the matrix with bifunctional reagents and coentrapment of protease inhibitors have been successful in regulating both in vitro and in vivo release of the therapeutics. The release rates can also be remarkably lowered by preentrapment of therapeutics in insoluble particles like liposomes or by anchoring them to the matrix via molecules that bind them as well as fibrin.
Collapse
Affiliation(s)
- Ejaj Ahmad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | | | - Mehboob Hoque
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Owais
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammed Saleemuddin
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
40
|
Prabu P, Vedakumari WS, Sastry TP. Time-dependent biodistribution, clearance and biocompatibility of magnetic fibrin nanoparticles: an in vivo study. NANOSCALE 2015; 7:9676-9685. [PMID: 25959634 DOI: 10.1039/c5nr00113g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Recently, bioretention and toxicity of injected nanoparticles in the body has drawn much attention in biomedical research. In the present study, 5 mg Fe per kg body weight of magnetic fibrin nanoparticles (MFNPs) were injected into mice intravenously and investigated for their blood clearance profile, biodistribution, haematology and pathology studies for a time period of 28 days. Moderately long circulation of MFNPs in blood was observed with probable degradation and excretion into the bloodstream via monoatomic iron forms. Inductively coupled plasma optical emission spectrometry (ICP-OES) and Prussian blue staining results showed increased accumulation of MFNPs in the liver, followed by spleen and other organs. Body weight, spleen/thymus indexes, haematology, serum biochemistry and histopathology studies demonstrated that MFNPs were biocompatible. These results suggest the feasibility of using MFNPs for drug delivery and imaging applications.
Collapse
Affiliation(s)
- Periyathambi Prabu
- Bio-Products Laboratory, Central Leather Research Institute (CLRI), Adyar, Chennai 600 020, India.
| | | | | |
Collapse
|
41
|
Li Y, Meng H, Liu Y, Lee BP. Fibrin gel as an injectable biodegradable scaffold and cell carrier for tissue engineering. ScientificWorldJournal 2015; 2015:685690. [PMID: 25853146 PMCID: PMC4380102 DOI: 10.1155/2015/685690] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 02/27/2015] [Indexed: 12/28/2022] Open
Abstract
Due to the increasing needs for organ transplantation and a universal shortage of donated tissues, tissue engineering emerges as a useful approach to engineer functional tissues. Although different synthetic materials have been used to fabricate tissue engineering scaffolds, they have many limitations such as the biocompatibility concerns, the inability to support cell attachment, and undesirable degradation rate. Fibrin gel, a biopolymeric material, provides numerous advantages over synthetic materials in functioning as a tissue engineering scaffold and a cell carrier. Fibrin gel exhibits excellent biocompatibility, promotes cell attachment, and can degrade in a controllable manner. Additionally, fibrin gel mimics the natural blood-clotting process and self-assembles into a polymer network. The ability for fibrin to cure in situ has been exploited to develop injectable scaffolds for the repair of damaged cardiac and cartilage tissues. Additionally, fibrin gel has been utilized as a cell carrier to protect cells from the forces during the application and cell delivery processes while enhancing the cell viability and tissue regeneration. Here, we review the recent advancement in developing fibrin-based biomaterials for the development of injectable tissue engineering scaffold and cell carriers.
Collapse
Affiliation(s)
- Yuting Li
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Hao Meng
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Yuan Liu
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Bruce P. Lee
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
42
|
Venkatesan B, Subramanian V, Tumala A, Vellaichamy E. Rapid synthesis of biocompatible silver nanoparticles using aqueous extract of Rosa damascena petals and evaluation of their anticancer activity. ASIAN PAC J TROP MED 2014; 7S1:S294-300. [PMID: 25312140 DOI: 10.1016/s1995-7645(14)60249-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 05/27/2014] [Accepted: 06/13/2014] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE To optimize the process parameters involved in the green synthesis of silver nanoparticles (G-SNPs) by aqueous extract of Rosa damascena petals and to evaluate the biocompatibility and anti cancer activity of the synthesized silver nanoparticles against human lung adenocarcinoma (A549). METHODS The process variables that include concentration of extract, mixing ratio of reactants, silver salt concentration and interaction time were analyzed. The compatibility of the G-SNPs was verified by incubating with erythrocytes and the anticancer property of the G-SNPs against A549 cells was performed by MTT assay. RESULTS Formation of G-SNPs was confirmed by the visual change in the colour of the reaction mixture from pale yellow to brown yellow. Surface plasmon resonance of synthesized G-SNPs was observed at 420 nm; the size of G-SNPs were analyzed by DLS and found to be in the range of (84.00±10.08) nm. Field emission scanning electron microscope and high resolution transmission electron microscopy analysis confirmed that the G-SNPs were fairly spherical. Fourier transform infrared spectroscopy spectroscopy and X-ray diffraction revealed the characteristic peaks of G-SNPs. Energy dispersive X-ray analysis showed a signal of silver around 3 keV. The synthesized G-SNPs exhibited anticancer activity as evidenced by the MTT assay. IC50 value of G-SNPs was found to be 80 μg/mL. CONCLUSION The results of the present study suggest that G-SNPs can be synthesized rapidly within first minute of the reaction; they are biocompatible and possess anticancer activity against human lung adenocarcinoma.
Collapse
Affiliation(s)
- Balaji Venkatesan
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai-600 025, India
| | - Vimala Subramanian
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai-600 025, India
| | - Anusha Tumala
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai-600 025, India
| | - Elangovan Vellaichamy
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai-600 025, India.
| |
Collapse
|
43
|
Vedakumari WS, Sastry TP. Physiologically clotted fibrin – Preparation and characterization for tissue engineering and drug delivery applications. Biologicals 2014; 42:277-84. [DOI: 10.1016/j.biologicals.2014.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 06/11/2014] [Accepted: 06/24/2014] [Indexed: 10/25/2022] Open
|
44
|
Vedakumari WS, Priya VM, Sastry TP. Deposition of superparamagnetic nanohydroxyapatite on iron–fibrin substrates: Preparation, characterization, cytocompatibility and bioactivity studies. Colloids Surf B Biointerfaces 2014; 120:208-14. [DOI: 10.1016/j.colsurfb.2014.04.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 04/02/2014] [Accepted: 04/23/2014] [Indexed: 01/21/2023]
|