1
|
Kaminker JD, Timoshenko AV. Expression, Regulation, and Functions of the Galectin-16 Gene in Human Cells and Tissues. Biomolecules 2021; 11:1909. [PMID: 34944551 PMCID: PMC8699332 DOI: 10.3390/biom11121909] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022] Open
Abstract
Galectins comprise a family of soluble β-galactoside-binding proteins, which regulate a variety of key biological processes including cell growth, differentiation, survival, and death. This paper aims to address the current knowledge on the unique properties, regulation, and expression of the galectin-16 gene (LGALS16) in human cells and tissues. To date, there are limited studies on this galectin, with most focusing on its tissue specificity to the placenta. Here, we report the expression and 8-Br-cAMP-induced upregulation of LGALS16 in two placental cell lines (BeWo and JEG-3) in the context of trophoblastic differentiation. In addition, we provide the results of a bioinformatics search for LGALS16 using datasets available at GEO, Human Protein Atlas, and prediction tools for relevant transcription factors and miRNAs. Our findings indicate that LGALS16 is detected by microarrays in diverse human cells/tissues and alters expression in association with cancer, diabetes, and brain diseases. Molecular mechanisms of the transcriptional and post-transcriptional regulation of LGALS16 are also discussed based on the available bioinformatics resources.
Collapse
|
2
|
Honma K, Machida C, Mochizuki K, Goda T. Glucose and TNF enhance expression of TNF and IL1B, and histone H3 acetylation and K4/K36 methylation, in juvenile macrophage cells. Gene 2020; 763S:100034. [PMID: 32550560 PMCID: PMC7285958 DOI: 10.1016/j.gene.2020.100034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022]
Abstract
Hyperglycemia activates innate leukocytes such as monocytes and induces pro-inflammatory cytokine expression, resulting in increased monocyte adhesion to aortic endothelial cells. In this study, we investigated whether high glucose and/or tumor necrosis factor (TNF) would enhance pro-inflammatory cytokine expression of tumor necrosis factor (TNF) and interleukin (IL)-1β (IL1B) by altering histone modifications in U937, a juvenile macrophage cell line. The mRNA levels of TNF and IL1B in U937 cells were significantly affected by glucose concentration and TNF treatment. Mono-methylated histone H3K4 signals around TNF and IL1B were lower in cells treated with high glucose compared with low glucose. Conversely, tri-methylated histone H3K4 and H3K36 signals were higher in cells treated with high glucose compared with low glucose. TNF treatment of U937 cells cultured in high glucose enhanced histone H3K36 tri-methylation, particularly around the gene regions of TNF and IL1B. Histone acetylation was induced by treatment with TNF in high-glucose medium. The induction of acetylation and tri-methylation of K4 and K36 of histone H3 around TNF and IL1B by treatment with high glucose and/or TNF was positively associated with the induction of these genes in juvenile macrophage U937 cells. Culture with high glucose induced TNF and IL1B expression in U937 cells. TNF treatment enhanced high glucose inducible TNF expression in U937 cells. H3K4me3 around TNF and IL1B was induced by high glucose treatment. TNF treatment enhanced H3Ac in the gene body region of TNF and IL1B.
Collapse
Affiliation(s)
- Kazue Honma
- Laboratory of Nutritional Physiology, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Chie Machida
- Laboratory of Nutritional Physiology, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kazuki Mochizuki
- Laboratory of Food and Nutritional Sciences, Department of Local Produce and Food Sciences, Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan
| | - Toshinao Goda
- Laboratory of Nutritional Physiology, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
3
|
Robinson JM, Turkington S, Abey SA, Kenea N, Henderson WA. Differential gene expression and gene-set enrichment analysis in Caco-2 monolayers during a 30-day timeline with Dexamethasone exposure. Tissue Barriers 2019; 7:e1651597. [PMID: 31438773 PMCID: PMC6748367 DOI: 10.1080/21688370.2019.1651597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Glucocorticoid hormones affect gene expression via activation of glucocorticoid receptor NR3C1, causing modulation of inflammation and autoimmune activation. The glucocorticoid Dexamethasone is an important pharmaceutical for the treatment of colitis and other inflammatory bowel diseases. While suppressive effects of glucocorticoids on activated immune cells is significant, their effects upon epithelial cells are less well studied. Previous research shows that the effects of Dexamethasone treatment on polarized Caco-2 cell layer permeability is delayed for >10 treatment days (as measured by transepithelial electrical resistance). In vivo intestinal epithelial cells turn over every 3–5 days; we therefore hypothesized that culture age may produce marked effects on gene expression, potentially acting as a confounding variable. To investigate this issue, we cultured polarized Caco-2 monolayers during a 30-day timecourse with ~15 days of continuous Dexamethasone exposure. We collected samples during the timecourse and tested differential expression using a 250-plex gene expression panel and Nanostring nCounter® system. Our custom panel was selectively enriched for KEGG annotations for tight-junction, actin cytoskeleton regulation, and colorectal cancer-associated genes, allowing for focused gene ontology-based pathway enrichment analyses. To test for confounding effects of time and Dexamethasone variables, we used the Nanostring nSolver differential expression data model which includes a mixturenegative binomial modelwith optimization. We identified a time-associated “EMT-like” signature with differential expression seen in important actomyosin cytoskeleton, tight junction, integrin, and cell cycle pathway genes. Dexamethasone treatment resulted in a subtle yet significant counter-signal showing suppression of actomyosin genes and differential expression of various growth factor receptors.
Collapse
Affiliation(s)
- J M Robinson
- Digestive Disorder Unit, Biobehavioral Branch, Division of Intramural Research, National Institute of Nursing Research (NINR), NIH, DHHS , Bethesda , MD , USA
| | - S Turkington
- Digestive Disorder Unit, Biobehavioral Branch, Division of Intramural Research, National Institute of Nursing Research (NINR), NIH, DHHS , Bethesda , MD , USA
| | - S A Abey
- Digestive Disorder Unit, Biobehavioral Branch, Division of Intramural Research, National Institute of Nursing Research (NINR), NIH, DHHS , Bethesda , MD , USA
| | - N Kenea
- Digestive Disorder Unit, Biobehavioral Branch, Division of Intramural Research, National Institute of Nursing Research (NINR), NIH, DHHS , Bethesda , MD , USA
| | - W A Henderson
- Digestive Disorder Unit, Biobehavioral Branch, Division of Intramural Research, National Institute of Nursing Research (NINR), NIH, DHHS , Bethesda , MD , USA
| |
Collapse
|
4
|
Hariya N, Miyake K, Kubota T, Goda T, Mochizuki K. Putative PPAR target genes express highly in skeletal muscle of insulin-resistant MetS model SHR/NDmc-cp rats. J Nutr Sci Vitaminol (Tokyo) 2016; 61:28-36. [PMID: 25994137 DOI: 10.3177/jnsv.61.28] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
It is known that insulin resistance in skeletal muscle induces subsequent metabolic diseases such as metabolic syndrome (MetS). However, which genes are altered in the skeletal muscle by development of insulin resistance in animal models has not been examined. In this study, we performed microarray and subsequent real-time RT-PCR analyses using total RNA extracted from the gastrocnemius muscle of the MetS model, spontaneously hypertensive corpulent congenic (SHR/NDmc-cp) rats, and control Wistar Kyoto (WKY) rats. SHR/NDmc-cp rats displayed overt insulin resistance relative to WKY rats. The expression of many genes related to fatty acid oxidation was higher in SHR/NDmc-cp rats than in WKY rats. Among 18 upregulated genes, putative peroxisome proliferator responsive elements were found in the upstream region of 15 genes. The protein expression of ACOX2, an upregulated gene, and peroxisome proliferator-activated receptor (PPAR) G1, but not of PPARG2, PPARA or PPARD, was higher in the gastrocnemius muscle of SHR/NDmc-cp rats than that in WKY rats. These results suggest that insulin resistance in the MetS model, SHR/NDmc-cp rats, is positively associated with the expression of fatty acid oxidation-related genes, which are presumably PPARs’ targets, in skeletal muscle.
Collapse
Affiliation(s)
- Natsuyo Hariya
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi 2) Department of Epigenetic Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | | | | | | | | |
Collapse
|
5
|
Abstract
Scientists have long considered genetics to be the key mechanism that alters gene expression because of exposure to the environment and toxic substances (toxicants). Recently, epigenetic mechanisms have emerged as an alternative explanation for alterations in gene expression resulting from such exposure. The fact that certain toxic substances that contribute to tumor development do not induce mutations probably results from underlying epigenetic mechanisms. The field of toxicoepigenomics emerged from the combination of epigenetics and classical toxicology. High-throughput technologies now enable evaluation of altered epigenomic profiling in response to toxins and environmental pollutants. Furthermore, differences in the epigenomic backgrounds of individuals may explain why, although whole populations are exposed to toxicants, only a few people in a population develop cancer. Metals in the environment and toxic substances not only alter DNA methylation patterns and histone modifications but also affect enzymes involved in posttranslational modifications of proteins and epigenetic regulation, and thereby contribute to carcinogenesis. This article describes different toxic substances and environmental pollutants that alter epigenetic profiling and discusses how this information can be used in screening populations at high risk of developing cancer. Research opportunities and challengers in the field also are discussed.
Collapse
Affiliation(s)
- Mukesh Verma
- Methods and Technologies Branch, Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health (NIH), 9609 Medical Center Drive, Room 4E102, Rockville, MD, 20850, USA,
| |
Collapse
|
6
|
Suzuki T, Mochizuki K, Goda T. Thyroid and glucocorticoid hormones induce expression of lactase-phlorizin hydrolase gene in CDX-2/HNF-1α co-transfected IEC-6 cells. J Nutr Sci Vitaminol (Tokyo) 2014; 60:321-7. [PMID: 25744420 DOI: 10.3177/jnsv.60.321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Thyroid and glucocorticoid hormones and several transcriptional factors such as caudal type homeobox (CDX)-2 and hepatocyte nuclear factor (HNF)-1α are important for the differentiation of small intestinal absorptive cells and the consequent expression of genes related to the digestion/absorption of carbohydrates. In this study, we investigated whether thyroid and glucocorticoid hormones enhanced the expression of lactase-phlorizin hydrolase (LPH) gene, an intestine-specific gene that encodes an enzyme for lactose digestion, in small intestinal stem-like IEC-6 cells co-transfected with CDX-2 and HNF-1α using a retrovirus system. Changes in expression of intestine-specific genes caused by treatment with thyroid and/or glucocorticoid hormones were monitored in empty vector-transfected cells and in CDX-2/HNF-1α co-transfected cells by qRT-PCR. Stable co-transfection with CDX-2 and HNF-1α evoked the expression of the LPH gene in IEC-6 cells. Furthermore, treatment with a thyroid hormone, triiodothyronine, and a glucocorticoid receptor agonist, dexamethasone, significantly enhanced expression of the LPH, CDX-2 and HNF-1α genes in CDX-2/HNF-1α co-transfected IEC-6 cells. These results suggest that thyroid and glucocorticoid hormones synergistically enhance expression of the LPH gene in CDX-2/HNF-1α co-transfected IEC-6 cells.
Collapse
Affiliation(s)
- Takuji Suzuki
- Laboratory of Nutritional Physiology, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka 422-8526; Faculty of Education, Art and Science, Food Environment Design Course, Yamagata University, Japan
| | | | | |
Collapse
|