1
|
Jang YS, Lee YS, Kim DH, Oh GT, Jeon WK, Han JS. Peroxiredoxin 2 deletion impairs hippocampal-dependent memory via exacerbating transient ischemia-induced oxidative damage. Brain Res Bull 2022; 184:99-105. [PMID: 35452748 DOI: 10.1016/j.brainresbull.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 11/15/2022]
Abstract
Peroxiredoxin 2 (Prx2) regulates oxidative stress response in neuronal injury. The present study examined the effects of Prx2 deletion on transient global ischemia-induced hippocampal-dependent memory impairment. First, 20-min bilateral common carotid artery occlusion (BCCAO)-reperfusion and sham-operated control procedures were conducted in 6- or 7-month-old Prx2 knockout and wild-type mice. The cognitive status of these mice was assessed using the Morris water maze task with a hidden platform and a novel object recognition task 7 days after the 20-min BCCAO. Next, to evaluate neuronal degeneration and oxidative stress in the CA1 subregion of the hippocampus critical for learning and memory, we measured immunoreactive Fluro-jade C (FJC)-positive signals and 4-hydroxy-2-trans-nonenal (4-HNE) levels, respectively. The 20-min BCCAO induced cognitive impairments and increased the intensity of FJC-positive signals and 4-HNE levels of CA1 in Prx2 knockout mice but not in wild-type mice. These results suggest that Prx2 deficiency reduces resilience to transient global ischemia.
Collapse
Affiliation(s)
- Yoon-Sun Jang
- Department of Biological Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yo-Seob Lee
- Department of Biological Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Dong-Hee Kim
- Department of Biological Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Goo Taeg Oh
- Division of Molecular Life Sciences, Ewha W. University, Seoul 03760, Republic of Korea
| | - Won Kyung Jeon
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| | - Jung-Soo Han
- Department of Biological Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
2
|
Park JH, Kim DW, Shin MJ, Park J, Han KH, Lee KW, Park JK, Choi YJ, Yeo HJ, Yeo EJ, Sohn EJ, Kim HC, Shin EJ, Cho SW, Kim DS, Cho YJ, Eum WS, Choi SY. Tat-indoleamine 2,3-dioxygenase 1 elicits neuroprotective effects on ischemic injury. BMB Rep 2020. [PMID: 32684242 PMCID: PMC7704220 DOI: 10.5483/bmbrep.2020.53.11.114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
It is well known that oxidative stress participates in neuronal cell death caused production of reactive oxygen species (ROS). The increased ROS is a major contributor to the development of ischemic injury. Indoleamine 2,3-dioxygenase 1 (IDO-1) is involved in the kynurenine pathway in tryptophan metabolism and plays a role as an anti-oxidant. However, whether IDO-1 would inhibit hippocampal cell death is poorly known. Therefore, we explored the effects of cell permeable Tat-IDO-1 protein against oxidative stress-induced HT-22 cells and in a cerebral ischemia/reperfusion injury model. Transduced Tat-IDO-1 reduced cell death, ROS production, and DNA fragmentation and inhibited mitogen-activated protein kinases (MAPKs) activation in H2O2 exposed HT-22 cells. In the cerebral ischemia/reperfusion injury model, Tat-IDO-1 transduced into the brain and passing by means of the blood-brain barrier (BBB) significantly prevented hippocampal neuronal cell death. These results suggest that Tat-IDO-1 may present an alternative strategy to improve from the ischemic injury.
Collapse
Affiliation(s)
- Jung Hwan Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Min Jea Shin
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Kyu Hyung Han
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Keun Wook Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Jong Kook Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Yeon Joo Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Hyeon Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Eun Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Eun Jeong Sohn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon 24341, Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon 24341, Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Duk-Soo Kim
- Department of Anatomy and BK21 Plus Center, College of Medicine, Soonchunhyang University, Cheonan 31538, Korea
| | - Yong-Jun Cho
- Department of Neurosurgery, Hallym University Medical Center, Chuncheon 24253, Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW Erythropoiesis is a complex multistep process going from committed erythroid progenitors to mature red cells. Although recent advances allow the characterization of some components of erythropoiesis, much still remains to be investigated particularly on stress erythropoiesis. This review summarizes recent progresses made to understand the impact of oxidative stress on normal and pathologic erythropoiesis. RECENT FINDINGS During erythroid maturation, reactive oxygen species might function as second messenger through either transient oxidation of cysteine residues on signaling targets or modulation of intracellular signaling pathways. Thus, in erythropoiesis, efficient cytoprotective systems are required to limit possible reactive oxygen species-related toxic effects especially in stress erythropoiesis characterized by severe oxidation such as β-thalassemia. In addition, prolonged or severe oxidative stress impairs autophagy, which might contribute to the block of erythroid maturation in stress erythropoiesis. Understanding the functional role of cytoprotective systems such as peroxiredoxin-2 or classical molecular chaperones such as the heat shock proteins will contribute to develop innovative therapeutic strategies for ineffective erythropoiesis. SUMMARY We provide an update on cytoprotective mechanisms against oxidation in normal and stress erythropoiesis. We discuss the role of oxidative sensors involved in modulation of intracellular signaling during erythroid maturation process in normal and stress erythropoiesis.
Collapse
|
4
|
Cuprizone Affects Hypothermia-Induced Neuroprotection and Enhanced Neuroblast Differentiation in the Gerbil Hippocampus after Ischemia. Cells 2020; 9:cells9061438. [PMID: 32531881 PMCID: PMC7349804 DOI: 10.3390/cells9061438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
In the present study, we investigated the effects of cuprizone on cell death, glial activation, and neuronal plasticity induced by hypothermia after ischemia in gerbils. Food was supplemented with cuprizone at 0.2% ad libitum for eight weeks. At six weeks after diet feeing, gerbils received transient forebrain ischemia with or without hypothermic preconditioning. Cuprizone treatment for 8 weeks increased the number of astrocytes, microglia, and pro-inflammatory cytokine levels in the hippocampus. In addition, cuprizone treatment significantly decreased the number of proliferating cells and neuroblasts in the dentate gyrus. Brain ischemia caused cell death, disruption of myelin basic proteins, and reactive gliosis in CA1. In addition, ischemia significantly increased pro-inflammatory cytokines and the number of proliferating cells and differentiating neuroblasts in the dentate gyrus. In contrast, hypothermic conditioning attenuated these changes in CA1 and the dentate gyrus. However, cuprizone treatment decreased cell survival induced by hypothermic preconditioning after ischemia and increased the number of reactive microglia and astrocytes in CA1 as well as that of macrophages in the subcallosal zone. These changes occurred because the protective effect of hypothermia in ischemic damage was disrupted by cuprizone administration. Furthermore, cuprizone decreased ischemia-induced proliferating cells and neuroblasts in the dentate gyrus.
Collapse
|
5
|
Batandier C, Poyot T, Marissal-Arvy N, Couturier K, Canini F, Roussel AM, Hininger-Favier I. Acute emotional stress and high fat/high fructose diet modulate brain oxidative damage through NrF2 and uric acid in rats. Nutr Res 2020; 79:23-34. [PMID: 32610255 DOI: 10.1016/j.nutres.2020.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/30/2020] [Accepted: 05/15/2020] [Indexed: 01/08/2023]
Abstract
Studies focusing on the interaction of dietary and acute emotional stress on oxidative stress in cortex frontal and in brain mitochondria are scarce. Dietary-induced insulin resistance, as observed in Western diets, has been associated with increased oxidative stress causing mitochondrial dysfunction. We hypothesized that acute emotional stress could be an aggravating factor by impacting redox status in cortex and brain mitochondria. Thus, the aim of the present study was to evaluate the combination of an insulin resistance inducing high-fat/high-fructose (HF/HFr) diet and acute emotional stress on brain oxidative stress in rats. We measured several oxidative stress parameters (carbonyls, FRAP, TBARS assays, GSH, GSSG, oxidized DNA, mRNA expression of redox proteins (Nrf2), and uric acid). The HF/HFr diet resulted in increased oxidative stress both in the brain mitochondria and in the frontal cortex and decreased expression of the Nrf2 gene. The emotional stress induced an oxidative response in plasma and in brain mitochondria of the control group. In the HF/HFr group it triggered an increase expression of the redox transcription factor Nrf2 and its downstream antioxidant genes. This suggests an improvement of the redox stress tolerance in response to an enhanced production of reactive oxygen species. Accordingly, a blunted oxidative effect on several markers was observed in plasma and brain of HF/HFr-stressed group. This was confirmed in a parallel study using lipopolysaccharide as a stress model. Beside the Nrf2 increase, the stress induced a stronger UA release in HF/HFr which could take a part in the redox stress.
Collapse
Affiliation(s)
- C Batandier
- Univ. Grenoble Alpes, Inserm, LBFA, 38000 Grenoble, France
| | - T Poyot
- Institut de Recherche Biomédicale des Armées (IRBA), BP73, 91223 Brétigny-sur-Orge, Cedex, France
| | - N Marissal-Arvy
- Bordeaux University, Laboratory of Nutrition, Memory and glucocorticoid, UMR 1286, 33076 Bordeaux Cedex, France; INRA, Laboratory of Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux Cedex, France
| | - K Couturier
- Univ. Grenoble Alpes, Inserm, LBFA, 38000 Grenoble, France
| | - F Canini
- Institut de Recherche Biomédicale des Armées (IRBA), BP73, 91223 Brétigny-sur-Orge, Cedex, France; Ecole du Val de Grâce, 1 place A. Laveran, 75230 Paris, France
| | - A M Roussel
- Univ. Grenoble Alpes, Inserm, LBFA, 38000 Grenoble, France
| | | |
Collapse
|
6
|
Tat-Biliverdin Reductase A Exerts a Protective Role in Oxidative Stress-Induced Hippocampal Neuronal Cell Damage by Regulating the Apoptosis and MAPK Signaling. Int J Mol Sci 2020; 21:ijms21082672. [PMID: 32290442 PMCID: PMC7215548 DOI: 10.3390/ijms21082672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species (ROS) is major risk factor in neuronal diseases including ischemia. Although biliverdin reductase A (BLVRA) plays a pivotal role in cell survival via its antioxidant function, its role in hippocampal neuronal (HT-22) cells and animal ischemic injury is not clearly understood yet. In this study, the effects of transducible fusion protein Tat-BLVRA on H2O2-induced HT-22 cell death and in an animal ischemia model were investigated. Transduced Tat-BLVRA markedly inhibited cell death, DNA fragmentation, and generation of ROS. Transduced Tat-BLVRA inhibited the apoptosis and mitogen activated protein kinase (MAPK) signaling pathway and it passed through the blood-brain barrier (BBB) and significantly prevented hippocampal cell death in an ischemic model. These results suggest that Tat-BLVRA provides a possibility as a therapeutic molecule for ischemia.
Collapse
|
7
|
Song YJ, Shi Y, Cui MM, Li M, Wen XR, Zhou XY, Lou HQ, Wang YL, Qi DS, Tang M, Zhang XB. H 2S attenuates injury after ischemic stroke by diminishing the assembly of CaMKII with ASK1-MKK3-p38 signaling module. Behav Brain Res 2020; 384:112520. [PMID: 32006563 DOI: 10.1016/j.bbr.2020.112520] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 01/10/2020] [Accepted: 01/29/2020] [Indexed: 10/25/2022]
Abstract
Cerebral ischemia/reperfusion (I/R) injury is a leading cause of learning and memory dysfunction. Hydrogen sulfide (H2S) has been shown to confer neuroprotection in various neurodegenerative diseases, including cerebral I/R-induced hippocampal CA1 injury. However, the underlying mechanisms have not been completely understood. In the present study, rats were pretreated with SAM/NaHS (SAM, an H2S agonist, and NaHS, an H2S donor) only or SAM/NaHS combined with CaM (an activator of CaMKII) prior to cerebral ischemia. The Morris water maze test demonstrated that SAM/NaHS could alleviate learning and memory impairment induced by cerebral I/R injury. Cresyl violet staining was used to show the survival of hippocampal CA1 pyramidal neurons. SAM/NaHS significantly increased the number of surviving cells, whereas CaM weakened the protection induced by SAM/NaHS. The immunohistochemistry results indicated that the number of Iba1-positive microglia significantly increased after cerebral I/R. Compared with the I/R group, the number of Iba1-positive microglia in the SAM/NaHS groups significantly decreased. Co-Immunoprecipitation and immunoblotting were conducted to demonstrate that SAM/NaHS suppressed the assembly of CaMKII with the ASK1-MKK3-p38 signal module after cerebral I/R, which decreased the phosphorylation of p38. In contrast, CaM significantly inhibited the effects of SAM/NaHS. Taken together, the results suggested that SAM/NaHS could suppress cerebral I/R injury by downregulating p38 phosphorylation via decreasing the assembly of CaMKII with the ASK1-MKK3-p38 signal module.
Collapse
Affiliation(s)
- Yuan-Jian Song
- Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China; Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Yue Shi
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China; School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Miao-Miao Cui
- Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China; Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Man Li
- Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China; Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Xiang-Ru Wen
- Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China; Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Xiao-Yan Zhou
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China; Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - He-Qing Lou
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Yu-Lan Wang
- Department of Human Anatomy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Da-Shi Qi
- Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China; Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Man Tang
- School of Nursing, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China.
| | - Xun-Bao Zhang
- Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China; School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China.
| |
Collapse
|
8
|
Liu J, Su G, Gao J, Tian Y, Liu X, Zhang Z. Effects of Peroxiredoxin 2 in Neurological Disorders: A Review of its Molecular Mechanisms. Neurochem Res 2020; 45:720-730. [PMID: 32002772 DOI: 10.1007/s11064-020-02971-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/15/2019] [Accepted: 01/20/2020] [Indexed: 12/25/2022]
Abstract
Oxidative stress and neuroinflammation are closely related to the pathological processes of neurological disorders. Peroxiredoxin 2 (Prdx2) is an abundant antioxidant enzyme in the central nervous system. Prdx2 reduces the production of reactive oxygen species and participates in regulating various signaling pathways in neurons by catalyzing hydrogen peroxide (H2O2), thereby protecting neurons against oxidative stress and an inflammatory injury. However, the spillage of Prdx2, as damage-associated molecular patterns, accelerates brain damage after stroke by activating an inflammatory response. The post-translational modifications of Prdx2 also affect its enzyme activity. This review focuses on the effects of Prdx2 and its molecular mechanisms in various neurological disorders.
Collapse
Affiliation(s)
- Jifei Liu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Gang Su
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Juan Gao
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Ye Tian
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Xiaoyan Liu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Zhenchang Zhang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
9
|
Jung HY, Cho SB, Kim W, Yoo DY, Won MH, Choi GM, Cho TG, Kim DW, Hwang IK, Choi SY, Moon SM. Phosphatidylethanolamine-binding protein 1 protects CA1 neurons against ischemic damage via ERK-CREB signaling in Mongolian gerbils. Neurochem Int 2019; 118:265-274. [PMID: 29753754 DOI: 10.1016/j.neuint.2018.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 12/21/2022]
Abstract
In the present study, we made a PEP-1-phosphatidylethanolamine-binding protein 1 (PEP-1-PEBP1) fusion protein to facilitate the transduction of PEBP1 into cells and observed significant ameliorative effects of PEP-1-PEBP1 against H2O2-induced neuronal damage and the formation of reactive oxygen species in the HT22 hippocampal cells. In addition, administration of PEP-1-PEBP1 fusion protein ameliorated H2O2-induced phosphorylation of extracellular signal-regulated kinases (ERK1/2) and facilitated the phosphorylation of cyclic-AMP response element binding protein (CREB) in HT22 cells after exposure to H2O2. We also investigated the temporal and spatial changes of phosphorylated phosphatidylethanolamine-binding protein 1 (pPEBP1) in the hippocampus, after 5 min of transient forebrain ischemia in gerbils. In the sham-operated animals, pPEBP1 immunoreactivity was not detectable in the hippocampal CA1 region. pPEBP1 immunoreactivity was significantly increased in the hippocampal CA1 region, 1-2 days after ischemia, compared to that in the sham-operated group and pPEBP1 immunoreactivity was returned to levels in sham-operated group at 3-4 days after ischemia. pPEBP1 immunoreactivity significantly increased at day 7 after ischemia and decreased to sham-operated group levels by day 10 after ischemia/reperfusion. In addition, administration of PEP-1-PEBP1 fusion protein significantly reduced the ischemia-induced hyperactivity of locomotion, 1 day after ischemia and PEP-1-PEBP1 reduced neuronal damage and reactive gliosis (astrocytosis and microgliosis) in the gerbil hippocampal CA1 region, 4 days after ischemia. Administration of PEP-1-PEBP1 fusion protein ameliorated the ischemia-induced phosphorylation of ERK at 3 h and 6 h after ischemia/reperfusion and accelerated the phosphorylation of CREB in ischemic hippocampus at 6 h after ischemia. These results suggest that the increase in PEBP1 phosphorylation causes neuronal damage in the hippocampus and treatment with PEP-1-PEBP1 fusion protein provides neuroprotection from increasing phosphorylation of ERK-CREB pathways in the hippocampal CA1 region, during ischemic damage.
Collapse
Affiliation(s)
- Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea
| | - Su Bin Cho
- Department of Biomedical Sciences, and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Woosuk Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea
| | - Dae Young Yoo
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea; Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan, Chungcheongnam 31151, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, South Korea
| | - Goang-Min Choi
- Department of Thoracic and Cardiovascular Surgery, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, Chuncheon 24253, South Korea
| | - Tack-Geun Cho
- Department of Neurosurgery, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07441, South Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea
| | - Soo Young Choi
- Department of Biomedical Sciences, and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea.
| | - Seung Myung Moon
- Department of Neurosurgery, Dongtan Sacred Heart Hospital, College of Medicine, Hallym University, Hwaseong 18450, South Korea; Research Institute for Complementary & Alternative Medicine, Hallym University, Chuncheon 24253, South Korea.
| |
Collapse
|
10
|
Yoo DY, Cho SB, Jung HY, Kim W, Lee KY, Kim JW, Moon SM, Won MH, Choi JH, Yoon YS, Kim DW, Choi SY, Hwang IK. Protein disulfide-isomerase A3 significantly reduces ischemia-induced damage by reducing oxidative and endoplasmic reticulum stress. Neurochem Int 2018; 122:19-30. [PMID: 30399388 DOI: 10.1016/j.neuint.2018.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/02/2018] [Accepted: 11/02/2018] [Indexed: 12/19/2022]
Abstract
Ischemia causes oxidative stress in the endoplasmic reticulum (ER), accelerates the accumulation of unfolded and misfolded proteins, and may ultimately lead to neuronal cell apoptosis. In the present study, we investigated the effects of protein disulfide-isomerase A3 (PDIA3), an ER-resident chaperone that catalyzes disulfide-bond formation in a subset of glycoproteins, against oxidative damage in the hypoxic HT22 cell line and against ischemic damage in the gerbil hippocampus. We also confirmed the neuroprotective effects of PDIA3 by using PDIA3-knockout HAP1 cells. The HT22 and HAP1 cell lines showed effective (dose-dependent and time-dependent) penetration and stable expression of the Tat-PDIA3 fusion protein 24 h after Tat-PDIA3 treatment compared to that in the control-PDIA3-treated group. We observed that the fluorescence for both 2',7'-dichlorofluorescein diacetate (DCF-DA) and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL), which are markers for the formation of hydrogen peroxide (H2O2)-induced reactive oxygen species and apoptosis, respectively, was higher in HAP1 cells than in HT22 cells. The administration of Tat-PDIA3 significantly reduced the (1) DCF-DA and TUNEL fluorescence in HT22 and HAP1 cells, (2) ischemia-induced hyperactivity that was observed 1 day after ischemia/reperfusion, (3) ischemia-induced neuronal damage and glial (astrocytes and microglia) activation that was observed in the hippocampal CA1 region 4 days after ischemia/reperfusion, and (4) lipid peroxidation and nitric oxide generation in the hippocampal homogenates 3-12 h after ischemia/reperfusion. Transient forebrain ischemia significantly elevated the immunoglobulin-binding protein (BiP) and C/EBP-homologous protein (CHOP) mRNA levels in the hippocampus at 12 h and 4 days after ischemia, relative to those in the time-matched sham-operated group. Administration of Tat-PDIA3 ameliorated the ischemia-induced upregulation of BiP mRNA levels versus the Tat peptide- or control-PDIA3-treated groups, and significantly reduced the induction of CHOP mRNA levels, at 12 h or 4 days after ischemia. Collectively, these results suggest that Tat-PDIA3 acts as a neuroprotective agent against ischemia by attenuating oxidative damage and blocking the apoptotic pathway that is related to the unfolded protein response in the ER.
Collapse
Affiliation(s)
- Dae Young Yoo
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea; Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan, Chungcheongnam, 31151, South Korea
| | - Su Bin Cho
- Department of Biomedical Sciences, Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Woosuk Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Kwon Young Lee
- Department of Anatomy, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341, South Korea
| | - Jong Whi Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Seung Myung Moon
- Department of Neurosurgery, Dongtan Sacred Heart Hospital, College of Medicine, Hallym University, Hwaseong, 18450, South Korea; Research Institute for Complementary & Alternative Medicine, Hallym University, Chuncheon, 24253, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 24341, South Korea
| | - Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341, South Korea
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea
| | - Soo Young Choi
- Department of Biomedical Sciences, Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea.
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
11
|
Kadkhodayan S, Jafarzade BS, Sadat SM, Motevalli F, Agi E, Bolhassani A. Combination of cell penetrating peptides and heterologous DNA prime/protein boost strategy enhances immune responses against HIV-1 Nef antigen in BALB/c mouse model. Immunol Lett 2017; 188:38-45. [DOI: 10.1016/j.imlet.2017.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/26/2017] [Accepted: 06/05/2017] [Indexed: 11/30/2022]
|
12
|
Jo HS, Kim DS, Ahn EH, Kim DW, Shin MJ, Cho SB, Park JH, Lee CH, Yeo EJ, Choi YJ, Yeo HJ, Chung CSY, Cho SW, Han KH, Park J, Eum WS, Choi SY. Protective effects of Tat-NQO1 against oxidative stress-induced HT-22 cell damage, and ischemic injury in animals. BMB Rep 2017; 49:617-622. [PMID: 27616357 PMCID: PMC5346322 DOI: 10.5483/bmbrep.2016.49.11.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Indexed: 01/08/2023] Open
Abstract
Oxidative stress is closely associated with various diseases and is considered to be a major factor in ischemia. NAD(P)H:quinone oxidoreductase 1 (NQO1) protein is a known antioxidant protein that plays a protective role in various cells against oxidative stress. We therefore investigated the effects of cell permeable Tat-NQO1 protein on hippocampal HT-22 cells, and in an animal ischemia model. The Tat-NQO1 protein transduced into HT-22 cells, and significantly inhibited against hydrogen peroxide (H2O2)-induced cell death and cellular toxicities. Tat-NQO1 protein inhibited the Akt and mitogen activated protein kinases (MAPK) activation as well as caspase-3 expression levels, in H2O2 exposed HT-22 cells. Moreover, Tat-NQO1 protein transduced into the CA1 region of the hippocampus of the animal brain and drastically protected against ischemic injury. Our results indicate that Tat-NQO1 protein exerts protection against neuronal cell death induced by oxidative stress, suggesting that Tat-NQO1 protein may potentially provide a therapeutic agent for neuronal diseases. [BMB Reports 2016; 49(11): 617-622].
Collapse
Affiliation(s)
- Hyo Sang Jo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Duk-Soo Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 31538, Korea
| | - Eun Hee Ahn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Min Jea Shin
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Su Bin Cho
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Jung Hwan Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Chi Hern Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Eun Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Yeon Joo Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Hyeon Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Christine Seok Young Chung
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Kyu Hyung Han
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
13
|
Sohn EJ, Shin MJ, Kim DW, Son O, Jo HS, Cho SB, Park JH, Lee CH, Yeo EJ, Choi YJ, Yu YH, Kim DS, Cho SW, Kwon OS, Cho YJ, Park J, Eum WS, Choi SY. PEP-1-GSTpi protein enhanced hippocampal neuronal cell survival after oxidative damage. BMB Rep 2017; 49:382-7. [PMID: 27049109 PMCID: PMC5032006 DOI: 10.5483/bmbrep.2016.49.7.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Indexed: 12/02/2022] Open
Abstract
Reactive oxygen species generated under oxidative stress are involved in neuronal diseases, including ischemia. Glutathione S-transferase pi (GSTpi) is a member of the GST family and is known to play important roles in cell survival. We investigated the effect of GSTpi against oxidative stress-induced hippocampal HT-22 cell death, and its effects in an animal model of ischemic injury, using a cell-permeable PEP-1-GSTpi protein. PEP-1-GSTpi was transduced into HT-22 cells and significantly protected against H2O2-treated cell death by reducing the intracellular toxicity and regulating the signal pathways, including MAPK, Akt, Bax, and Bcl-2. PEP-1-GSTpi transduced into the hippocampus in animal brains, and markedly protected against neuronal cell death in an ischemic injury animal model. These results indicate that PEP-1-GSTpi acts as a regulator or an antioxidant to protect against oxidative stress-induced cell death. Our study suggests that PEP-1-GSTpi may have potential as a therapeutic agent for the treatment of ischemia and a variety of oxidative stress-related neuronal diseases. [BMB Reports 2016; 49(7): 382-387]
Collapse
Affiliation(s)
- Eun Jeong Sohn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Min Jea Shin
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangnung-Wonju National University, Gangneung 25457, Korea
| | - Ora Son
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Hyo Sang Jo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Su Bin Cho
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Jung Hwan Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Chi Hern Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Eun Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Yeon Joo Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Yeon Hee Yu
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 31538, 4Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Duk-Soo Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 31538, 4Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Oh Shin Kwon
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Yong-Jun Cho
- Department of Neurosurgery, Hallym University Medical Center, Chuncheon 24253, Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| |
Collapse
|
14
|
Jo HS, Kim DW, Shin MJ, Cho SB, Park JH, Lee CH, Yeo EJ, Choi YJ, Yeo HJ, Sohn EJ, Son O, Cho SW, Kim DS, Yu YH, Lee KW, Park J, Eum WS, Choi SY. Tat-HSP22 inhibits oxidative stress-induced hippocampal neuronal cell death by regulation of the mitochondrial pathway. Mol Brain 2017; 10:1. [PMID: 28052764 PMCID: PMC5210279 DOI: 10.1186/s13041-016-0281-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/12/2016] [Indexed: 11/24/2022] Open
Abstract
Oxidative stress plays an important role in the progression of various neuronal diseases including ischemia. Heat shock protein 22 (HSP22) is known to protect cells against oxidative stress. However, the protective effects and mechanisms of HSP22 in hippocampal neuronal cells under oxidative stress remain unknown. In this study, we determined whether HSP22 protects against hydrogen peroxide (H2O2)-induced oxidative stress in HT-22 using Tat-HSP22 fusion protein. We found that Tat-HSP22 transduced into HT-22 cells and that H2O2-induced cell death, oxidative stress, and DNA damage were significantly reduced by Tat-HSP22. In addition, Tat-HSP22 markedly inhibited H2O2-induced mitochondrial membrane potential, cytochrome c release, cleaved caspase-3, and Bax expression levels, while Bcl-2 expression levels were increased in HT-22 cells. Further, we showed that Tat-HSP22 transduced into animal brain and inhibited cleaved-caspase-3 expression levels as well as significantly inhibited hippocampal neuronal cell death in the CA1 region of animals in the ischemic animal model. In the present study, we demonstrated that transduced Tat-HSP22 attenuates oxidative stress-induced hippocampal neuronal cell death through the mitochondrial signaling pathway and plays a crucial role in inhibiting neuronal cell death, suggesting that Tat-HSP22 protein may be used to prevent oxidative stress-related brain diseases including ischemia.
Collapse
Affiliation(s)
- Hyo Sang Jo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, Korea
| | - Min Jea Shin
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, Korea
| | - Su Bin Cho
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, Korea
| | - Jung Hwan Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, Korea
| | - Chi Hern Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, Korea
| | - Eun Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, Korea
| | - Yeon Joo Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, Korea
| | - Hyeon Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, Korea
| | - Eun Jeong Sohn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, Korea
| | - Ora Son
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Duk-Soo Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-Si, 31538, Korea
| | - Yeon Hee Yu
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-Si, 31538, Korea
| | - Keun Wook Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, Korea.
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, Korea.
| |
Collapse
|
15
|
Shin MJ, Kim DW, Jo HS, Cho SB, Park JH, Lee CH, Yeo EJ, Choi YJ, Kim JA, Hwang JS, Sohn EJ, Jeong JH, Kim DS, Kwon HY, Cho YJ, Lee K, Han KH, Park J, Eum WS, Choi SY. Tat-PRAS40 prevent hippocampal HT-22 cell death and oxidative stress induced animal brain ischemic insults. Free Radic Biol Med 2016; 97:250-262. [PMID: 27317854 DOI: 10.1016/j.freeradbiomed.2016.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/27/2016] [Accepted: 06/14/2016] [Indexed: 12/13/2022]
Abstract
Proline rich Akt substrate (PRAS40) is a component of mammalian target of rapamycin complex 1 (mTORC1) and is known to play an important role against reactive oxygen species-induced cell death. However, the precise function of PRAS40 in ischemia remains unclear. Thus, we investigated whether Tat-PRAS40, a cell-permeable fusion protein, has a protective function against oxidative stress-induced hippocampal neuronal (HT-22) cell death in an animal model of ischemia. We showed that Tat-PRAS40 transduced into HT-22 cells, and significantly protected against cell death by reducing the levels of H2O2 and derived reactive species, and DNA fragmentation as well as via the regulation of Bcl-2, Bax, and caspase 3 expression levels in H2O2 treated cells. Also, we showed that transduced Tat-PARS40 protein markedly increased phosphorylated RRAS40 expression levels and 14-3-3σ complex via the Akt signaling pathway. In an animal ischemia model, Tat-PRAS40 effectively transduced into the hippocampus in animal brain and significantly protected against neuronal cell death in the CA1 region. We showed that Tat-PRAS40 protein effectively transduced into hippocampal neuronal cells and markedly protected against neuronal cell damage. Therefore, we suggest that Tat-PRAS40 protein may be used as a therapeutic protein for ischemia and oxidative stress-induced brain disorders.
Collapse
Affiliation(s)
- Min Jea Shin
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Hyo Sang Jo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Su Bin Cho
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jung Hwan Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Chi Hern Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Eun Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Yeon Joo Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Ji An Kim
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea; Bioceltran Co., Ltd., Chuncheon 24234, Republic of Korea
| | - Jung Soon Hwang
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea; Bioceltran Co., Ltd., Chuncheon 24234, Republic of Korea
| | - Eun Jeong Sohn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Ji-Heon Jeong
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-Si 31538, Republic of Korea
| | - Duk-Soo Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-Si 31538, Republic of Korea
| | - Hyeok Yil Kwon
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Yong-Jun Cho
- Department of Neurosurgery, Hallym University Medical Center, Chuncheon 24253, Republic of Korea
| | - Keunwook Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Kyu Hyung Han
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea.
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea.
| |
Collapse
|
16
|
Sohn EJ, Shin MJ, Eum WS, Kim DW, Yong JI, Ryu EJ, Park JH, Cho SB, Cha HJ, Kim SJ, Yeo HJ, Yeo EJ, Choi YJ, Im SK, Kweon HY, Kim DS, Yu YH, Cho SW, Park M, Park J, Cho YJ, Choi SY. Tat-NOL3 protects against hippocampal neuronal cell death induced by oxidative stress through the regulation of apoptotic pathways. Int J Mol Med 2016; 38:225-35. [PMID: 27221790 DOI: 10.3892/ijmm.2016.2596] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 04/28/2016] [Indexed: 11/05/2022] Open
Abstract
Oxidative stress-induced apoptosis is associated with neuronal cell death and ischemia. The NOL3 [nucleolar protein 3 (apoptosis repressor with CARD domain)] protein protects against oxidative stress-induced cell death. However, the protective mechanism responsible for this effect as well as the effects of NOL3 against oxidative stress in ischemia remain unclear. Thus, we examined the protective effects of NOL3 protein on hydrogen peroxide (H2O2)-induced oxidative stress and the mechanism responsible for these effects in hippocampal neuronal HT22 cells and in an animal model of forebrain ischemia using Tat-fused NOL3 protein (Tat-NOL3). Purified Tat-NOL3 protein transduced into the H2O2-exposed HT22 cells and inhibited the production of reactive oxygen species (ROS), DNA fragmentation and reduced mitochondrial membrane potential (ΔΨm). In addition, Tat-NOL3 prevented neuronal cell death through the regulation of apoptotic signaling pathways including Bax, Bcl-2, caspase-2, -3 and -8, PARP and p53. In addition, Tat-NOL3 protein transduced into the animal brains and significantly protected against neuronal cell death in the CA1 region of the hippocampus by regulating the activation of microglia and astrocytes. Taken together, these findings demonstrate that Tat-NOL3 protein protects against oxidative stress-induced neuronal cell death by regulating oxidative stress and by acting as an anti-apoptotic protein. Thus, we suggest that Tat-NOL3 represents a potential therapeutic agent for protection against ischemic brain injury.
Collapse
Affiliation(s)
- Eun Jeong Sohn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Min Jea Shin
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, Gangwon-do 25457, Republic of Korea
| | - Ji In Yong
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Eun Ji Ryu
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Jung Hwan Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Su Bin Cho
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Hyun Ju Cha
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Sang Jin Kim
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Hyeon Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Eun Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Yeon Joo Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Seung Kwon Im
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Hae Young Kweon
- Department of Agricultural Biology, National Academy of Agricultural Sciences, RDA, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Duk-Soo Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-si, Chungnam 31538, Republic of Korea
| | - Yeon Hee Yu
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-si, Chungnam 31538, Republic of Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Meeyoung Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Yong-Jun Cho
- Department of Neurosurgery, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24253, Republic of Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| |
Collapse
|
17
|
Yamagata K, Sone N, Suguyama S, Nabika T. Different effects of arginine vasopressin on high-mobility group box 1 expression in astrocytes isolated from stroke-prone spontaneously hypertensive rats and congenic SHRpch1_18 rats. Int J Exp Pathol 2016; 97:97-106. [PMID: 27126918 DOI: 10.1111/iep.12172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/08/2016] [Indexed: 01/26/2023] Open
Abstract
Stroke-prone spontaneously hypertensive rats (SHRSP/Izm) develop severe hypertension and astrocytic oedema following ischaemic stimulation. During ischaemic stress high-mobility group box 1 (Hmgb1) expression in astrocytes is induced, and subsequently potentiates deterioration of the brain due to ischaemic injury, which manifests as both cerebral inflammation and astrocytic oedema. Arginine vasopressin (AVP) induces brain injury and increases astrocytic swelling. After stroke, Hmgb1 and peroxiredoxin (Prx) are released at different times and activate macrophages in the brain via Toll-like receptors (Tlr2s). The purpose of this study was to examine whether AVP and/or hypoxia and reoxygenation (H/R) contribute to Hmgb1 regulation following ischaemic stroke. Thus, Hmgb1, Prx2 and Tlr2 expression levels in astrocytes isolated from Wistar Kyoto rats (WKY/Izm), spontaneously hypertensive rats (SHR/Izm), SHRSP/Izm and congenic rat strain SHRpch1_18 treated with AVP and/or H/R were compared. Gene and protein expression levels were determined by reverse transcriptase-polymerase chain reaction (RT-PCR) and real-time quantitative PCR, and Western blot. mRNA expression of Hmgb1, Prx2 and Tlr2 induced by AVP was dose-dependent, and Hmgb1 and Prx2 expression was higher in SHR/Izm, SHRSP/Izm and SHRch1_18 than in WKY/Izm. Tlr2 expression with AVP was reduced in SHR/Izm compared to WKY/Izm. In SHRpch1_18, Hmgb1 expression increased after AVP plus H/R. AVP-modulated expression of Hmgb1 protein was reduced by the addition of the antioxidant N-acetylcysteine (NAC). These results suggest that oxidative stress by AVP enhanced expression of Hmgb1, Prx2 and Tlr2 in astrocytes. We hypothesize that regulation of Hmgb1 by AVP during H/R might be related to induction of inflammation and stroke in SHRSP/Izm and SHRpch1_18 rats.
Collapse
Affiliation(s)
- Kazuo Yamagata
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University (NUBS), Fujisawa, Japan
| | - Natumi Sone
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University (NUBS), Fujisawa, Japan
| | - Sari Suguyama
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University (NUBS), Fujisawa, Japan
| | - Toru Nabika
- Department of Functional Pathology, Shimane University Faculty of Medicine, Shimane, Japan
| |
Collapse
|
18
|
Matte A, De Falco L, Iolascon A, Mohandas N, An X, Siciliano A, Leboeuf C, Janin A, Bruno M, Choi SY, Kim DW, De Franceschi L. The Interplay Between Peroxiredoxin-2 and Nuclear Factor-Erythroid 2 Is Important in Limiting Oxidative Mediated Dysfunction in β-Thalassemic Erythropoiesis. Antioxid Redox Signal 2015; 23:1284-97. [PMID: 26058667 PMCID: PMC4677567 DOI: 10.1089/ars.2014.6237] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIMS β-Thalassemia is a common inherited red cell disorder characterized by ineffective erythropoiesis and severe oxidative stress. Peroxiredoxin-2 (Prx2), a typical 2-cysteine peroxiredoxin, is upregulated during β-thalassemic erythropoiesis, but its contribution to stress erythropoiesis, a common feature of thalassemia, is yet to be fully defined. RESULTS Here, we showed that Prx2(-/-) mice displayed reactive oxygen species related abnormalities in erythropoiesis similar to that of Hbb(th3/+) mice associated with activation of redox response transcriptional factor nuclear factor-erythroid 2 (Nrf2). We generated β-thalassemic mice genetically lacking Prx2 (Prx2(-/-)Hbb(th3/+)) and documented a worsened β-thalassemic hematological phenotype with severe ineffective erythropoiesis. To further validate a key role of Prx2 in stress erythropoiesis, we administrated fused recombinant PEP1Prx2 to Hbb(th3/+) mice and documented a decrease in ineffective erythropoiesis. We further show that Prx2 effects are mediated by activation of Nrf2 and upregulation of genes that protect against oxidative damage such as gluthatione S-transferase, heme-oxygenase-1, and NADPH dehydrogenase quinone-1. INNOVATION We propose Prx2 as a key antioxidant system and Nrf2 activation is a cellular adaptive process in response to oxidative stress, resulting in upregulation of antioxidant (antioxidant responsive element) genes required to ensure cell survival. CONCLUSION Our data shed new light on adaptive mechanisms against oxidative damage through the interplay of Prx2 and Nrf2 during stress erythropoiesis and suggest new therapeutic options to decrease ineffective erythropoiesis by modulation of endogenous antioxidant systems.
Collapse
Affiliation(s)
- Alessandro Matte
- 1 Department of Medicine, University of Verona-AOUI Verona , Verona, Italy
| | - Luigia De Falco
- 2 CEINGE and Department of Biochemistry, University of Naples , Naples, Italy
| | - Achille Iolascon
- 2 CEINGE and Department of Biochemistry, University of Naples , Naples, Italy
| | | | - Xiuli An
- 3 New York Blood Center , New York, New York
| | - Angela Siciliano
- 1 Department of Medicine, University of Verona-AOUI Verona , Verona, Italy
| | | | - Anne Janin
- 4 Inserm , U1165, Paris, France .,5 Université Paris 7 , Denis Diderot, Paris, France .,6 AP-HP, Hôpital Saint-Louis , Paris, France
| | - Mariasole Bruno
- 1 Department of Medicine, University of Verona-AOUI Verona , Verona, Italy .,2 CEINGE and Department of Biochemistry, University of Naples , Naples, Italy
| | - Soo Young Choi
- 7 Institute of Bioscience and Biotechnology, Hallym University , Chuncheon, Korea
| | - Dae Won Kim
- 7 Institute of Bioscience and Biotechnology, Hallym University , Chuncheon, Korea
| | | |
Collapse
|
19
|
Wu Y, Xie G, Xu Y, Ma L, Tong C, Fan D, Du F, Yu H. PEP-1-MsrA ameliorates inflammation and reduces atherosclerosis in apolipoprotein E deficient mice. J Transl Med 2015; 13:316. [PMID: 26410585 PMCID: PMC4584131 DOI: 10.1186/s12967-015-0677-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/18/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Methionine sulfoxide reductase A (MsrA) is a potent intracellular oxidoreductase and serves as an essential factor that protects cells against oxidative damage. However, therapeutic use of exogenous MsrA in oxidative stress-induced diseases is limited, because it cannot enter the cells. The aim of this study is to investigate whether MsrA with PEP-1, a cell penetrating peptide, fused to its N-terminus can protect against oxidative stress in macrophages and can attenuate atherosclerosis in apolipoprotein E deficient (apoE(-/-)) mice. METHODS MsrA and the fusion protein PEP-1-MsrA were expressed and purified using a pET28a expression system. Transduction of the fusion protein into macrophages was confirmed by Western blot and immunofluorescence staining. Intracellular reactive oxygen species (ROS) and apoptosis levels were measured by flow cytometry. In in vivo study, MsrA or PEP-1-MsrA proteins were intraperitoneally injected into apoE(-/-) mice fed a Western diet for 12 weeks. Plasma lipids levels, inflammatory gene expression, and paraoxonase-1 (PON1) and superoxide dismutase (SOD) activities were assessed. Atherosclerotic lesions were analyzed by Oil Red O staining and immunohistochemistry. RESULTS PEP-1-MsrA could penetrate the cells and significantly reduced intracellular ROS levels and apoptosis in H2O2-treated macrophages. It also decreased TNFα and IL-1β mRNA levels and increased the IL-10 mRNA level in lipopolysaccharide-treated macrophages. In in vivo study, PEP-1-MsrA injection significantly increased plasma PON1 and SOD activities and decreased plasma monocyte chemoattractant protein 1 (MCP-1) level compared to the injection of vehicle control or MsrA. In PEP-1-MsrA injected mice, hepatic PON1 levels were increased, while the expression of TNFα and IL-6 mRNA in the liver was suppressed. Although plasma total cholesterol and triglyceride levels did not change, the aortic atherosclerosis in PEP-1-MsrA treated mice was significantly reduced. This was accompanied by a reduction of total and apoptotic macrophages in the lesions. CONCLUSION Our study provides evidence that PEP-1-MsrA may be a potential therapeutic agent for atherosclerosis-related cardiovascular diseases.
Collapse
Affiliation(s)
- Yao Wu
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Bldg. 2, 2-209, Wuhan, 430071, Hubei, China.
| | - Guanghui Xie
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Bldg. 2, 2-209, Wuhan, 430071, Hubei, China.
| | - Yanyong Xu
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Bldg. 2, 2-209, Wuhan, 430071, Hubei, China.
| | - Li Ma
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Bldg. 2, 2-209, Wuhan, 430071, Hubei, China.
| | - Chuanfeng Tong
- Cardiology Division of Wuhan University Zhongnan Hospital, Wuhan, China.
| | - Daping Fan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, USA.
| | - Fen Du
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Bldg. 2, 2-209, Wuhan, 430071, Hubei, China.
| | - Hong Yu
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Bldg. 2, 2-209, Wuhan, 430071, Hubei, China.
| |
Collapse
|
20
|
The efficacy of chimeric vaccines constructed with PEP-1 and Ii-Key linking to a hybrid epitope from heterologous viruses. Biologicals 2015; 43:377-82. [PMID: 26153399 DOI: 10.1016/j.biologicals.2015.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 01/17/2023] Open
Abstract
The heterologous epitope-peptide from different viruses may represent an attractive candidate vaccine. In order to evaluate the role of cell-permeable peptide (PEP-1) and Ii-Key moiety from the invariant chain (Ii) of MHC on the heterologous peptide chimeras, we linked the two vehicles to hybrid epitopes on the VP2 protein (aa197-209) of the infectious bursal disease virus and HN protein (aa345-353) of the Newcastle disease virus. The chimeric vaccines were prepared and injected into mice. The immune effects were measured by indirect ELISA. The results showed that the vehicle(s) could significantly boost immune effects against the heterologous epitope peptide. The Ii-Key-only carrier induced more effective immunological responses, compared with the PEP-1 and Ii-Key hybrid vehicle. The carrier-peptide hybrids all showed strong colocalization with major histocompatibility complex (MHC) class II molecules compared with the epitope-peptide (weakly-binding) after co-transfection into 293T cells. Together, our results lay the groundwork for designing new hybrid vaccines based on Ii-Key and/or PEP-1 peptides.
Collapse
|
21
|
Choi JH, Kim DW, Yoo DY, Jeong HJ, Kim W, Jung HY, Nam SM, Kim JH, Yoon YS, Choi SY, Hwang IK. Repeated administration of PEP-1-Cu,Zn-superoxide dismutase and PEP-1-peroxiredoxin-2 to senescent mice induced by D-galactose improves the hippocampal functions. Neurochem Res 2013; 38:2046-55. [PMID: 23892988 DOI: 10.1007/s11064-013-1112-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/02/2013] [Accepted: 07/10/2013] [Indexed: 12/30/2022]
Abstract
Oxidative stress initiates age-related reduction in hippocampal neurogenesis and the use of antioxidants has been proposed as an effective strategy to prevent or attenuate the reduction of neurogenesis in the hippocampus. In the present study, we investigated the effects of Cu,Zn-superoxide dismutase (SOD1) and/or peroxiredoxin-2 (PRX2) on cell proliferation and neuroblast differentiation in the dentate gyrus in a model of D-galactose-induced aging model. For this study, we constructed an expression vector, PEP-1, fused PEP-1 with SOD1 or PRX2, and generated PEP-1-SOD1 and PEP-1-PRX2 fusion protein. The aging model was induced by subcutaneous injection of D-galactose (100 mg/kg) to 6-week-old male mice for 10 weeks. PEP-1, PEP-1-SOD1 and/or PEP-1-PRX2 fusion protein was intraperitoneally administered to these mice at 13-week-old once a day for 3 weeks and sacrificed at 30 min after the last administrations. The administration of PEP-1-SOD1 and/or PEP-1-PRX2 significantly improved D-galactose-induced deficits on the escape latency, swimming speeds, platform crossings, spatial preference for the target quadrant in Morris water maze test. In addition, the administration of PEP-1-SOD1 and/or PEP-1-PRX2 ameliorated D-galactose-induced reductions of cell proliferation and neuroblast differentiation in the dentate gyrus and significantly reduced D-galactose-induced lipid peroxidation in the hippocampus. These effects were more prominent in the PEP-1-SOD1-treated group with PEP-1-PRX2. These results suggest that a SOD1 and/or PRX2 supplement to aged mice could improve the memory deficits, cell proliferation and neuroblast differentiation in the dentate gyrus of D-galactose induced aged mice by reducing lipid peroxidation.
Collapse
Affiliation(s)
- Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine, Kangwon National University, Chuncheon, 200-701, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|