1
|
Matsuo T, De Francesco A, Peters J. Molecular Dynamics of Lysozyme Amyloid Polymorphs Studied by Incoherent Neutron Scattering. Front Mol Biosci 2022; 8:812096. [PMID: 35111814 PMCID: PMC8801425 DOI: 10.3389/fmolb.2021.812096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/03/2021] [Indexed: 11/22/2022] Open
Abstract
Lysozyme amyloidosis is a hereditary disease, which is characterized by the deposition of lysozyme amyloid fibrils in various internal organs. It is known that lysozyme fibrils show polymorphism and that polymorphs formed at near-neutral pH have the ability to promote more monomer binding than those formed at acidic pH, indicating that only specific polymorphs become dominant species in a given environment. This is likely due to the polymorph-specific configurational diffusion. Understanding the possible differences in dynamical behavior between the polymorphs is thus crucial to deepen our knowledge of amyloid polymorphism and eventually elucidate the molecular mechanism of lysozyme amyloidosis. In this study, molecular dynamics at sub-nanosecond timescale of two kinds of polymorphic fibrils of hen egg white lysozyme, which has long been used as a model of human lysozyme, formed at pH 2.7 (LP27) and pH 6.0 (LP60) was investigated using elastic incoherent neutron scattering (EINS) and quasi-elastic neutron scattering (QENS). Analysis of the EINS data showed that whereas the mean square displacement of atomic motions is similar for both LP27 and LP60, LP60 contains a larger fraction of atoms moving with larger amplitudes than LP27, indicating that the dynamical difference between the two polymorphs lies not in the averaged amplitude, but in the distribution of the amplitudes. Furthermore, analysis of the QENS data showed that the jump diffusion coefficient of atoms is larger for LP60, suggesting that the atoms of LP60 undergo faster diffusive motions than those of LP27. This study thus characterizes the dynamics of the two lysozyme polymorphs and reveals that the molecular dynamics of LP60 is enhanced compared with that of LP27. The higher molecular flexibility of the polymorph would permit to adjust its conformation more quickly than its counterpart, facilitating monomer binding.
Collapse
Affiliation(s)
- Tatsuhito Matsuo
- Univ. Grenoble Alpes, CNRS, LiPhy, Grenoble, France
- Institut Laue-Langevin, Grenoble, France
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Tokai, Japan
- *Correspondence: Tatsuhito Matsuo, ; Judith Peters,
| | - Alessio De Francesco
- Institut Laue-Langevin, Grenoble, France
- CNR-IOM and INSIDE@ILL C/O Operative Group in Grenoble (OGG), Grenoble, France
| | - Judith Peters
- Univ. Grenoble Alpes, CNRS, LiPhy, Grenoble, France
- Institut Laue-Langevin, Grenoble, France
- Institut Universitaire de France, Paris, France
- *Correspondence: Tatsuhito Matsuo, ; Judith Peters,
| |
Collapse
|
2
|
Ameseder F, Biehl R, Holderer O, Richter D, Stadler AM. Localised contacts lead to nanosecond hinge motions in dimeric bovine serum albumin. Phys Chem Chem Phys 2019; 21:18477-18485. [PMID: 31210243 DOI: 10.1039/c9cp01847f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Domain motions in proteins are crucial for biological function. In the present manuscript, we present a neutron spin-echo spectroscopy (NSE) study of native bovine serum albumin (BSA) in solution. NSE allows to probe both global and internal dynamics of the BSA monomer and dimer equilibrium that is formed in solution. Using a model independent approach, we were able to identify an internal dynamic process in BSA that is visible in addition to global rigid-body diffusion of the BSA monomer and dimer mixture. The observed internal protein motion is characterised by a relaxation time of 43 ns. The overdamped Brownian oscillator was considered as an alternative analytical theory that was able to describe the internal process as first-order approximation. More detailed information on the physical nature of the internal protein motion was extracted from the q-dependent internal diffusion coefficients ΔDeff(q) that were detected by NSE in addition to global rigid-body translational and rotational diffusion. The ΔDeff(q) were interpreted using normal mode analysis based on the available crystal structures of the BSA monomer and dimer as structural test models. Normal mode analysis demonstrates that the observed internal dynamic process can be attributed to bending motion of the BSA dimer. The native BSA monomer does not show any internal dynamics on the time- and length-scales probed by NSE. An intermolecular disulphide bridge or a direct structural contact between the BSA monomers forms a localised link acting as a molecular hinge in the BSA dimer. The effect of that hinge on the observed motion of BSA in the used dimeric structural model is discussed in terms of normal modes in a molecular picture.
Collapse
Affiliation(s)
- Felix Ameseder
- Jülich Centre for Neutron Science (JCNS-1) and Institute for Complex Systems (ICS-1), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| | | | | | | | | |
Collapse
|
3
|
Laulumaa S, Koza MM, Seydel T, Kursula P, Natali F. A Quasielastic Neutron Scattering Investigation on the Molecular Self-Dynamics of Human Myelin Protein P2. J Phys Chem B 2019; 123:8178-8185. [PMID: 31483648 DOI: 10.1021/acs.jpcb.9b05320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The human myelin protein P2 is a membrane binding protein believed to maintain correct lipid composition and organization in peripheral nerve myelin. Its function is related to its ability to stack membranes, and this function can be enhanced by the P38G mutation, whereby the overall protein structure does not change but the molecular dynamics increase. Mutations in P2 are linked to human peripheral neuropathy. Here, the dynamics of wild-type P2 and the P38G variant were studied using quasielastic neutron scattering on time scales from 10 ps to 1 ns at 300 K. The results suggest that the mutant protein dynamics are increased on both the fastest and the slowest measured time scales, by increasing the dynamics amplitude and/or the portion of atoms participating in the movement.
Collapse
Affiliation(s)
- Saara Laulumaa
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu , University of Oulu , Oulu , Finland.,European Spallation Source , Lund , Sweden
| | | | | | - Petri Kursula
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu , University of Oulu , Oulu , Finland.,Department of Biomedicine , University of Bergen , Bergen , Norway
| | - Francesca Natali
- Institut Laue-Langevin , Grenoble , France.,CNR-IOM, OGG , Grenoble , France
| |
Collapse
|
4
|
Mamontov E, Osti NC, Tyagi M. Temperature dependence of nanoscale dynamic processes measured in living millipedes by high resolution inelastic and elastic neutron scattering. Sci Rep 2019; 9:11646. [PMID: 31406234 PMCID: PMC6691110 DOI: 10.1038/s41598-019-48270-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022] Open
Abstract
We have used high energy-resolution neutron scattering to probe nanoscale dynamic processes in living millipedes (Narceus americanus). We have measured the temperature dependence of the intensity of scattered neutrons that do not exchange energy with the living samples on the 1.5 ns time scale, thereby excluding the signal from the highly mobile intra- and extra-cellular bulk-like aqueous constituents in the sample. This measured “elastic” scattering intensity exhibits a non-monotonic temperature dependence, with a noticeable systematic decrease detected between 295 and 303 K on warming up from 283 to 310 K. This decrease demonstrates an excellent inverse correlation with the non-monotonic, as a function of temperature, increase in the slow diffusivity previously observed in planarian flatworms and housefly larvae. This correlation suggests the existence of a biological mechanism, possibly common between different classes (Insects and Myriapods) and even phyla (Arthropods and Platyhelminthes), that dampens the slow nanoscopic dynamics in ectothermic organisms in response to the temperature of the environment exceeding the physiologically optimal range.
Collapse
Affiliation(s)
- Eugene Mamontov
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA.
| | - Naresh C Osti
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Madhusudan Tyagi
- NIST Center for Neutron Research and University of Maryland, Gaithersburg, Maryland, 20899, USA
| |
Collapse
|
5
|
Abstract
AbstractThe dynamics of proteins in solution includes a variety of processes, such as backbone and side-chain fluctuations, interdomain motions, as well as global rotational and translational (i.e. center of mass) diffusion. Since protein dynamics is related to protein function and essential transport processes, a detailed mechanistic understanding and monitoring of protein dynamics in solution is highly desirable. The hierarchical character of protein dynamics requires experimental tools addressing a broad range of time- and length scales. We discuss how different techniques contribute to a comprehensive picture of protein dynamics, and focus in particular on results from neutron spectroscopy. We outline the underlying principles and review available instrumentation as well as related analysis frameworks.
Collapse
|
6
|
Beck C, Grimaldo M, Roosen-Runge F, Braun MK, Zhang F, Schreiber F, Seydel T. Nanosecond Tracer Diffusion as a Probe of the Solution Structure and Molecular Mobility of Protein Assemblies: The Case of Ovalbumin. J Phys Chem B 2018; 122:8343-8350. [PMID: 30106587 DOI: 10.1021/acs.jpcb.8b04349] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protein diffusion is not only an important process ensuring biological function but can also be used as a probe to obtain information on structural properties of protein assemblies in liquid solutions. Here, we explore the oligomerization state of ovalbumin at high protein concentrations by means of its short-time self-diffusion. We employ high-resolution incoherent quasielastic neutron scattering to access the self-diffusion on nanosecond timescales, on which interparticle contacts are not altered. Our results indicate that ovalbumin in aqueous (D2O) solutions occurs in increasingly large assemblies of its monomeric subunits with rising protein concentration. It changes from nearly monomeric toward dimeric and ultimately larger than tetrameric complexes. Simultaneously, we access information on the internal molecular mobility of ovalbumin on the nanometer length scale and compare it with results obtained for bovine serum albumin, immunoglobulin, and β-lactoglobulin.
Collapse
Affiliation(s)
- Christian Beck
- Institut Max von Laue-Paul Langevin (ILL) , B.P.156, F-38042 Grenoble , France.,Institut für Angewandte Physik , Universität Tübingen , Auf der Morgenstelle 10 , 72076 Tübingen , Germany
| | - Marco Grimaldo
- Institut Max von Laue-Paul Langevin (ILL) , B.P.156, F-38042 Grenoble , France
| | - Felix Roosen-Runge
- Division of Physical Chemistry, Department of Chemistry , Lund University , Naturvetarvägen 16 , SE-22100 Lund , Sweden
| | - Michal K Braun
- Institut für Angewandte Physik , Universität Tübingen , Auf der Morgenstelle 10 , 72076 Tübingen , Germany
| | - Fajun Zhang
- Institut für Angewandte Physik , Universität Tübingen , Auf der Morgenstelle 10 , 72076 Tübingen , Germany
| | - Frank Schreiber
- Institut für Angewandte Physik , Universität Tübingen , Auf der Morgenstelle 10 , 72076 Tübingen , Germany
| | - Tilo Seydel
- Institut Max von Laue-Paul Langevin (ILL) , B.P.156, F-38042 Grenoble , France
| |
Collapse
|
7
|
Ameseder F, Radulescu A, Khaneft M, Lohstroh W, Stadler AM. Homogeneous and heterogeneous dynamics in native and denatured bovine serum albumin. Phys Chem Chem Phys 2018; 20:5128-5139. [DOI: 10.1039/c7cp08292d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Quasielastic incoherent neutron spectroscopy experiments reveal that chemical denaturation significantly modifies the internal dynamics of bovine serum albumin.
Collapse
Affiliation(s)
- Felix Ameseder
- Jülich Centre for Neutron Science JCNS and Institute for Complex Systems ICS
- Forschungszentrum Jülich GmbH
- 52425 Jülich
- Germany
| | - Aurel Radulescu
- Jülich Centre for Neutron Science JCNS
- Forschungszentrum Jülich GmbH, Outstation at MLZ
- 85747 Garching
- Germany
| | - Marina Khaneft
- Jülich Centre for Neutron Science JCNS
- Forschungszentrum Jülich GmbH, Outstation at MLZ
- 85747 Garching
- Germany
| | - Wiebke Lohstroh
- Heinz Maier-Leibnitz Zentrum
- Technische Universität München
- 85747 Garching
- Germany
| | - Andreas M. Stadler
- Jülich Centre for Neutron Science JCNS and Institute for Complex Systems ICS
- Forschungszentrum Jülich GmbH
- 52425 Jülich
- Germany
| |
Collapse
|
8
|
Fujiwara S, Chatake T, Matsuo T, Kono F, Tominaga T, Shibata K, Sato-Tomita A, Shibayama N. Ligation-Dependent Picosecond Dynamics in Human Hemoglobin As Revealed by Quasielastic Neutron Scattering. J Phys Chem B 2017; 121:8069-8077. [DOI: 10.1021/acs.jpcb.7b05182] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Satoru Fujiwara
- Quantum
Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Toshiyuki Chatake
- Research
Reactor Institute, Kyoto University, 2 Asashiro-Nishi, Kumatori, Osaka 590-0494, Japan
| | - Tatsuhito Matsuo
- Quantum
Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Fumiaki Kono
- Quantum
Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Taiki Tominaga
- Neutron
Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Kaoru Shibata
- Neutron
Science Section, J-PARC Center, 2-4 Shirakata, Tokai, Ibaraki 319-1195, Japan
| | - Ayana Sato-Tomita
- Division
of Biophysics, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Naoya Shibayama
- Division
of Biophysics, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| |
Collapse
|
9
|
Effect of Phosphorylation on a Human-like Osteopontin Peptide. Biophys J 2017; 112:1586-1596. [PMID: 28445750 PMCID: PMC5406370 DOI: 10.1016/j.bpj.2017.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/25/2017] [Accepted: 03/06/2017] [Indexed: 12/22/2022] Open
Abstract
The last decade established that the dynamic properties of the phosphoproteome are central to function and its modulation. The temporal dimension of phosphorylation effects remains nonetheless poorly understood, particularly for intrinsically disordered proteins. Osteopontin, selected for this study due to its key role in biomineralization, is expressed in many species and tissues to play a range of distinct roles. A notable property of highly phosphorylated isoforms of osteopontin is their ability to sequester nanoclusters of calcium phosphate to form a core-shell structure, in a fluid that is supersaturated but stable. In Biology, this process enables soft and hard tissues to coexist in the same organism with relative ease. Here, we extend our understanding of the effect of phosphorylation on a disordered protein, the recombinant human-like osteopontin rOPN. The solution structures of the phosphorylated and unphosphorylated rOPN were investigated by small-angle x-ray scattering and no significant changes were detected on the radius of gyration or maximum interatomic distance. The picosecond-to-nanosecond dynamics of the hydrated powders of the two rOPN forms were further compared by elastic and quasi-elastic incoherent neutron scattering. Phosphorylation was found to block some nanosecond side-chain motions while increasing the flexibility of other side chains on the faster timescale. Phosphorylation can thus selectively change the dynamic behavior of even a highly disordered protein such as osteopontin. Through such an effect on rOPN, phosphorylation can direct allosteric mechanisms, interactions with substrates, cofactors and, in this case, amorphous or crystalline biominerals.
Collapse
|
10
|
Grimaldo M, Roosen-Runge F, Hennig M, Zanini F, Zhang F, Jalarvo N, Zamponi M, Schreiber F, Seydel T. Hierarchical molecular dynamics of bovine serum albumin in concentrated aqueous solution below and above thermal denaturation. Phys Chem Chem Phys 2016; 17:4645-55. [PMID: 25587698 DOI: 10.1039/c4cp04944f] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dynamics of proteins in solution is a complex and hierarchical process, affected by the aqueous environment as well as temperature. We present a comprehensive study on nanosecond time and nanometer length scales below, at, and above the denaturation temperature Td. Our experimental data evidence dynamical processes in protein solutions on three distinct time scales. We suggest a consistent physical picture of hierarchical protein dynamics: (i) self-diffusion of the entire protein molecule is confirmed to agree with colloid theory for all temperatures where the protein is in its native conformational state. At higher temperatures T > Td, the self-diffusion is strongly obstructed by cross-linking or entanglement. (ii) The amplitude of backbone fluctuations grows with increasing T, and a transition in its dynamics is observed above Td. (iii) The number of mobile side-chains increases sharply at Td while their average dynamics exhibits only little variations. The combination of quasi-elastic neutron scattering and the presented analytical framework provides a detailed microscopic picture of the protein molecular dynamics in solution, thereby reflecting the changes of macroscopic properties such as cluster formation and gelation.
Collapse
Affiliation(s)
- Marco Grimaldo
- Institut Max von Laue - Paul Langevin (ILL), CS 20156, F-38042 Grenoble, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Stadler AM, Demmel F, Ollivier J, Seydel T. Picosecond to nanosecond dynamics provide a source of conformational entropy for protein folding. Phys Chem Chem Phys 2016; 18:21527-38. [DOI: 10.1039/c6cp04146a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Myoglobin can be trapped in fully folded structures, partially folded molten globules, and unfolded states under stable equilibrium conditions.
Collapse
Affiliation(s)
- Andreas M. Stadler
- Jülich Centre for Neutron Science JCNS and Institute for Complex Systems ICS
- Forschungszentrum Jülich GmbH
- 52425 Jülich
- Germany
| | | | | | - Tilo Seydel
- Institut Laue-Langevin
- 38042 Grenoble Cedex 9
- France
| |
Collapse
|
12
|
Monkenbusch M, Stadler A, Biehl R, Ollivier J, Zamponi M, Richter D. Fast internal dynamics in alcohol dehydrogenase. J Chem Phys 2015; 143:075101. [DOI: 10.1063/1.4928512] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Stadler AM, Koza MM, Fitter J. Determination of Conformational Entropy of Fully and Partially Folded Conformations of Holo- and Apomyoglobin. J Phys Chem B 2014; 119:72-82. [DOI: 10.1021/jp509732q] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Andreas M. Stadler
- Jülich
Centre for Neutron Science JCNS and Institute for Complex Systems
ICS, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | | | - Jörg Fitter
- Institute
of Complex Systems (ICS-5): Molecular Biophysics, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- I.
Physikalisches Institut (IA), AG Biophysik, RWTH Aachen, Sommerfeldstrasse
14, 52074 Aachen, Germany
| |
Collapse
|