1
|
Márquez MG, Dotson R, Pias S, Frolova LV, Tartis MS. Phospholipid prodrug conjugates of insoluble chemotherapeutic agents for ultrasound targeted drug delivery. Nanotheranostics 2020; 4:40-56. [PMID: 31911893 PMCID: PMC6940203 DOI: 10.7150/ntno.37738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/01/2019] [Indexed: 12/19/2022] Open
Abstract
The hydrophobicity and high potency of many therapeutic agents makes them difficult to use effectively in clinical practice. This work focuses on conjugating phospholipid tails (2T) onto podophyllotoxin (P) and its analogue (N) using a linker and characterizing the effects of their incorporation into lipid-based drug delivery vehicles for triggered ultrasound delivery. Differential Scanning Calorimetry results show that successfully synthesized lipophilic prodrugs, 2T-P (~28 % yield) and 2T-N(~26 % yield), incorporate within the lipid membranes of liposomes. As a result of this, increased stability and incorporation are observed in 2T-P and 2T-N in comparison to the parent compounds P and N. Molecular dynamic simulation results support that prodrugs remain within the lipid membrane over a relevant range of concentrations. 2T-N's (IC50: 20 nM) biological activity was retained in HeLa cells (cervical cancer), whereas 2T-P's (IC50: ~4 µM) suffered, presumably due to steric hindrance. Proof-of-concept studies using ultrasound in vitro microbubble and nanodroplet delivery vehicles establish that these prodrugs are capable of localized drug delivery. This study provides useful information about the synthesis of double tail analogues of insoluble chemotherapeutic agents to facilitate incorporation into drug delivery vehicles. The phospholipid attachment strategy presented here could be applied to other well suited drugs such as gemcitabine, commonly known for its treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Mendi G Márquez
- Materials Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA.,Chemical Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
| | - Rachel Dotson
- Departments of Chemistry, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
| | - Sally Pias
- Departments of Chemistry, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
| | - Liliya V Frolova
- Departments of Chemistry, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
| | - Michaelann S Tartis
- Materials Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA.,Chemical Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
| |
Collapse
|
2
|
Kiselev MA, Lombardo D. Structural characterization in mixed lipid membrane systems by neutron and X-ray scattering. Biochim Biophys Acta Gen Subj 2016; 1861:3700-3717. [PMID: 27138452 DOI: 10.1016/j.bbagen.2016.04.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 01/13/2023]
Abstract
Lipids membranes, the primary component of the living cell, involve collective behaviour of numerous interacting molecules. The rich morphology and complex phase diagram of the lipid systems require different strategies in describing bio-membranes in order to capture the essential properties of self-assembly processes as well as the underling molecular collective phenomena involved in biological functions. Among the experimental methods used, the scattering techniques such as small angle neutrons and X-rays scattering (SANS and SAXS) are probably the most important experimental approaches for the structural investigation of bio-membranes and mixed lipids complex systems. In this tutorial review we describe the main approaches employed in the investigation of lipid bio-membranes by means of the neutron and x-ray scattering techniques. While introducing the main structural properties of lipid bio-membranes we highlight the important role of lipid components in different biological functions of living organisms. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo.
Collapse
Affiliation(s)
- Mikhail A Kiselev
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Ulica Joliot-Curie 6, Dubna, Moscow 141980, Russia
| | - Domenico Lombardo
- CNR-IPCF, Consiglio Nazionale delle Ricerche. Istituto per i Processi Chimico Fisici, Viale F.S. D'Alcontres, No. 37, 98158 Messina, Italy.
| |
Collapse
|