1
|
Ahmad R, Siddiqui S, Khan H, Mustafa M, Ashraf H, Moinuddin, Habib S. Preventive effects of thymoquinone on glyco-nitro-oxidized human fibrinogen: A comprehensive biophysical study projecting possible therapeutic role in diabetes and associated complications. Int J Biol Macromol 2025; 300:140212. [PMID: 39848355 DOI: 10.1016/j.ijbiomac.2025.140212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/24/2024] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
Persistence of long-term hyperglycemia results in the glyco-oxidation of plasma proteins, which is considered to be a significant factor in metabolic dysfunction, linking hyperglycemia to the emergence of vascular complications. Methylglyoxal (MGO), a dicarbonyl species formed excessively under diabetes, elevates the oxidative stress, enhancing the generation of superoxide anion, which ultimately reacts with nitric oxide (NO•) to form peroxynitrite (PON). PON, being a powerful nitro-oxidizing agent distorts protein structure, hampering its function. This article describes the binding mechanism of thymoquinone (TQ) to fibrinogen (Fg) and its protective effects under simultaneous glyco-nitro-oxidation. Thermodynamic investigations revealed hydrogen bonding and Vander Waal interactions stabilise the complex, confirming its spontaneity and exothermic nature. TQ-induced micro-environmental and structural alterations in fibrinogen were observed by synchronous, 3-D fluorescence maps, and red edge excitation shift (REES). Molecular docking confirmed the wet lab experiments. Previous studies have shown that glycation, as well as nitro-oxidation, modifies the key residues of fibrinogen, leading to its aggregation. Our findings showed that TQ prevented MGO + PON-induced damage to fibrinogen. The current study analyzed the protective effects of TQ on glyco-nitro-oxidized fibrinogen using various biochemical, spectroscopic, and computational methods. NBT assay and carbonyl content revealed glyco-nitro-oxidation-mediated oxidative stress, which was effectively mitigated by TQ in a concentration-dependent manner. The secondary structural alterations in fibrinogen were prevented by TQ as observed by circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR). Moreover, multiple assays and electron microscopy confirmed structural perturbations leading to the development of fibrillar aggregates that were reduced in TQ treated samples. Our findings project TQ as a potent protective agent against hyperglycemia and related human complications.
Collapse
Affiliation(s)
- Rizwan Ahmad
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Sana Siddiqui
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Hamda Khan
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohd Mustafa
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Hamid Ashraf
- Department of Endocrinology, Rajiv Gandhi Centre for Diabetes and Endocrinology, AMU, Aligarh, Uttar Pradesh, India
| | - Moinuddin
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.
| | - Safia Habib
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.
| |
Collapse
|
2
|
Cao J, Yan H, Shen Y, Zhao Y, Bai B, Liu L. Maillard reaction products inhibit lipid oxidation by regulating myoglobin stability in washed muscle model. J Food Sci 2024; 89:7203-7216. [PMID: 39349979 DOI: 10.1111/1750-3841.17378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 11/13/2024]
Abstract
Lipid oxidation significantly contributes to muscle deterioration, with heme protein oxidation playing a crucial role in this process. This study investigated the inhibition of heme protein oxidation by Maillard reaction products (MRPs) using a washed muscle model combining washed carp with myoglobin (Mb). Protein oxidation products, protein texture, and lipid oxidation levels were assessed. Results showed that metmyoglobin (MetMb) is a primary driver of lipid oxidation in meat, likely due to Mb oxidation, exposing hydrophobic groups that bind to lipids. MRPs at concentrations of 0.5% and 1% effectively inhibited Mb oxidation. Specifically, treatment with 1% MRPs reduced MetMb formation by 15.38%, protein carbonyl content by 6.53%, hydroxyl radical content by 20.37%, protein aggregation by 40.81%, and particle size by 36.95% during later storage stages, thereby preserving Mb stability. In the Mb-mediated oxidation model, 1% MRPs inhibited the formation of primary and secondary oxidative metabolites by 59.47% and 68.19%, respectively, while maintaining muscle tissue texture integrity. PRACTICAL APPLICATION: The antioxidation of Maillard reaction products (MRPs) improves the stability of common carp. By inhibiting the autoxidation of myoglobin and lipid, MRPs help preserve the texture and color of fish muscle while extending its shelf life. This study provides a valuable reference for effectively controlling lipid oxidation in refrigerated fish products and enhancing their overall quality.
Collapse
Affiliation(s)
- Jiarong Cao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Haixia Yan
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yixiao Shen
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yingbo Zhao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Bing Bai
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Ling Liu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Zhang M, Li X, Lin L, Shi J, Luan H, Li B. Cell-free hemoglobin and hemin catalyzing triclosan oxidative coupling in plasma: A novel exogenous phenolic pollutants coupling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116708. [PMID: 39018736 DOI: 10.1016/j.ecoenv.2024.116708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/19/2024]
Abstract
Previous studies reported that hemoprotein CYP450 catalyzed triclosan coupling is an "uncommon" metabolic pathway that may enhance toxicity, raising concerns about its environmental and health impacts. Hemoglobin, a notable hemoprotein, can catalyze endogenous phenolic amino acid tyrosine coupling reactions. Our study explored the feasibility of these coupling reactions for exogenous phenolic pollutants in plasma. Both hemoglobin and hemin were found to catalyze triclosan coupling in the presence of H₂O₂. This resulted in the formation of five diTCS-2 H, two diTCS-Cl-3 H, and twelve triTCS-4 H in phosphate buffer, with a total of nineteen triclosan coupling products monitored using LC-QTOF. In plasma, five diTCS-2 H, two diTCS-Cl-3 H, and two triTCS-4 H were detected in hemoglobin-catalyzed reactions. Hemin showed a weaker catalytic effect on triclosan transformation compared to hemoglobin, likely due to hemin dimerization and oxidative degradation by H₂O₂, which limits its catalytic efficiency. Triclosan transformation in the human plasma-like medium still occurs with high H₂O₂, despite the presence of antioxidant proteins that typically inhibit such transformations. In plasma, free H₂O₂ was depleted within 40 minutes when 800 µM H₂O₂ was added, suggesting a rapid consumption of H₂O₂ in these reactions. Antioxidative species, or hemoglobin/hemin scavengers such as bovine serum albumin, may inhibit but not completely terminate the triclosan coupling reactions. Previous studies reported that diTCS-2 H showed higher hydrophobicity and greater endocrine-disrupting effects compared to triclosan, which further underscores the potential health risks. This study indicates that hemoglobin and heme in human plasma might significantly contribute to phenolic coupling reactions, potentially increasing health risks.
Collapse
Affiliation(s)
- Mengtao Zhang
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiaoyan Li
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Lin Lin
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jianghong Shi
- State Environmental Protection Key Lahoratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hemi Luan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Bing Li
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
4
|
Feng X, Cen K, Yu X, Huang C, Yang W, Yang Y, Tang X. Quinoa protein Pickering emulsion improves the freeze-thaw stability of myofibrillar protein gel: Maintaining protein composition, structure, conformation and digestibility and slowing down protein oxidation. Int J Biol Macromol 2023; 253:126682. [PMID: 37666398 DOI: 10.1016/j.ijbiomac.2023.126682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
In this work, the effects of quinoa protein Pickering emulsion (QPPE) on protein oxidation, structure and gastrointestinal digestion property of myofibrillar protein gels (MPGs) after freeze-thaw (F-T) cycles are revealed. SDS-PAGE results indicated that 5.0 %-10.0 % QPPE addition slowed down the protein degradation. Meanwhile, 5.0 %-7.5 % QPPE maintained the stability of the protein secondary and tertiary structure of MPGs after F-T cycles. The sulfhydryl group, disulfide bond and dityrosine content increased with QPPE supplementation. The conformations of disulfide bond changed from g-g-t and t-g-t to g-g-g after F-T cycles, and 5.0 %-7.5 % QPPE stabilized the changes of t-g-t conformation. Furthermore, the increase of dityrosine content after F-T cycles was significantly reduced with 7.5 % QPPE addition, indicating its effect to slow down protein oxidation of MPGs. In addition, MPGs with 5.0 % and 7.5 % QPPE showed noticeably higher zeta potential values than other groups, indicating the enhanced electrostatic repulsion and weakened aggregation caused by F-T damage. This work showed that 7.5 % QPPE improved the F-T stability of MPGs and reduced the protein denaturation and oxidation caused by F-T treatments, exerting no side effect on the digestion property of MPGs. QPPE can be used as a green and effective antifreeze in meat industry.
Collapse
Affiliation(s)
- Xiao Feng
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Kaiyue Cen
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macau 999078, China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Yang
- Quality and Technology Center, Hainan Xiangtai Fishery Co., Ltd., Chengmai 571924, China
| | - Yuling Yang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xiaozhi Tang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
5
|
Yang YF, Zhao XH. Structure and property changes of whey protein isolate in response to the chemical modification mediated by horseradish peroxidase, glucose oxidase and d-glucose. Food Chem 2022; 373:131328. [PMID: 34700037 DOI: 10.1016/j.foodchem.2021.131328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/25/2021] [Accepted: 10/02/2021] [Indexed: 11/19/2022]
Abstract
Whey protein isolate (WPI) was modified by a ternary system containing horseradish peroxidase, glucose oxidase and d-glucose through the one- and two-step protocols, yielding two respective crosslinked products MWPI-1 and MWPI-2 with the enhanced relative dityrosine contents (127.4 and 101.0). Compared with WPI, both MWPI-1 and MWPI-2 had much ordered secondary structure, increased disulfide-bond contents, average particle sizes, surface hydrophobicity, oil-binding capacity, emulsification and thermal stability, but reduced free sulfhydryl groups contents and in vitro digestibility. Moreover, both MWPI-1 and MWPI-2 in dispersions showed higher apparent viscosity, larger viscoelastic moduli than WPI, together with the lower gelling temperatures (67.1 °C and 70.1 °C versus 73.6 °C). Overall, MWPI-1 with a higher crosslinking extent consistently exhibited more remarkable property alteration. It is concluded that the ternary system is an effective approach when aiming to modify secondary structure especially these properties of WPI, such as aggregation, emulsification, gelation, rheology and thermal stability.
Collapse
Affiliation(s)
- Yu-Fei Yang
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, 525000 Maoming, Guangdong, PR China; State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, PR China
| | - Xin-Huai Zhao
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, 525000 Maoming, Guangdong, PR China; Research Centre of Food Nutrition and Human Healthcare, Guangdong University of Petrochemical Technology, 525000 Maoming, Guangdong, PR China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong University of Petrochemical Technology, 525000 Maoming, Guangdong, PR China.
| |
Collapse
|
6
|
Hipper E, Blech M, Hinderberger D, Garidel P, Kaiser W. Photo-Oxidation of Therapeutic Protein Formulations: From Radical Formation to Analytical Techniques. Pharmaceutics 2021; 14:72. [PMID: 35056968 PMCID: PMC8779573 DOI: 10.3390/pharmaceutics14010072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 12/25/2022] Open
Abstract
UV and ambient light-induced modifications and related degradation of therapeutic proteins are observed during manufacturing and storage. Therefore, to ensure product quality, protein formulations need to be analyzed with respect to photo-degradation processes and eventually protected from light exposure. This task usually demands the application and combination of various analytical methods. This review addresses analytical aspects of investigating photo-oxidation products and related mediators such as reactive oxygen species generated via UV and ambient light with well-established and novel techniques.
Collapse
Affiliation(s)
- Elena Hipper
- Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany; (E.H.); (D.H.)
| | - Michaela Blech
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany;
| | - Dariush Hinderberger
- Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany; (E.H.); (D.H.)
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany;
| | - Wolfgang Kaiser
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany;
| |
Collapse
|
7
|
Oligomerization and Nitration of the Grass Pollen Allergen Phl p 5 by Ozone, Nitrogen Dioxide, and Peroxynitrite: Reaction Products, Kinetics, and Health Effects. Int J Mol Sci 2021; 22:ijms22147616. [PMID: 34299235 PMCID: PMC8303544 DOI: 10.3390/ijms22147616] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 12/16/2022] Open
Abstract
The allergenic and inflammatory potential of proteins can be enhanced by chemical modification upon exposure to atmospheric or physiological oxidants. The molecular mechanisms and kinetics of such modifications, however, have not yet been fully resolved. We investigated the oligomerization and nitration of the grass pollen allergen Phl p 5 by ozone (O3), nitrogen dioxide (NO2), and peroxynitrite (ONOO-). Within several hours of exposure to atmospherically relevant concentration levels of O3 and NO2, up to 50% of Phl p 5 were converted into protein oligomers, likely by formation of dityrosine cross-links. Assuming that tyrosine residues are the preferential site of nitration, up to 10% of the 12 tyrosine residues per protein monomer were nitrated. For the reaction with peroxynitrite, the largest oligomer mass fractions (up to 50%) were found for equimolar concentrations of peroxynitrite over tyrosine residues. With excess peroxynitrite, the nitration degrees increased up to 40% whereas the oligomer mass fractions decreased to 20%. Our results suggest that protein oligomerization and nitration are competing processes, which is consistent with a two-step mechanism involving a reactive oxygen intermediate (ROI), as observed for other proteins. The modified proteins can promote pro-inflammatory cellular signaling that may contribute to chronic inflammation and allergies in response to air pollution.
Collapse
|
8
|
Köhler T, Patsis PA, Hahn D, Ruland A, Naas C, Müller M, Thiele J. DNAzymes as Catalysts for l-Tyrosine and Amyloid β Oxidation. ACS OMEGA 2020; 5:7059-7064. [PMID: 32280846 PMCID: PMC7143405 DOI: 10.1021/acsomega.9b02645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 03/05/2020] [Indexed: 05/03/2023]
Abstract
Single-stranded deoxyribonucleic acids have an enormous potential for catalysis by applying tailored sequences of nucleotides for individual reaction conditions and substrates. If such a sequence is guanine-rich, it may arrange into a three-dimensional structure called G-quadruplex and give rise to a catalytically active DNA molecule, a DNAzyme, upon addition of hemin. Here, we present a DNAzyme-mediated reaction, which is the oxidation of l-tyrosine toward dityrosine by hydrogen peroxide. With an optimal stoichiometry between DNA and hemin of 1:10, we report an activity of 101.2 ± 3.5 μUnits (μU) of the artificial DNAzyme Dz-00 compared to 33.0 ± 1.8 μU of free hemin. Exemplarily, DNAzymes may take part in neurodegeneration caused by amyloid beta (Aβ) aggregation due to l-tyrosine oxidation. We show that the natural, human genome-derived DNAzyme In1-sp is able to oxidize Aβ peptides with a 4.6% higher yield and a 33.3% higher velocity of the reaction compared to free hemin. As the artificial DNAzyme Dz-00 is even able to catalyze Aβ peptide oxidation with a 64.2% higher yield and 337.1% higher velocity, an in-depth screening of human genome-derived DNAzymes may identify further candidates with similarly high catalytic activity in Aβ peptide oxidation.
Collapse
Affiliation(s)
- Tony Köhler
- Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Panagiotis A. Patsis
- Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- European
Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Dominik Hahn
- Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- Center
for Regenerative Therapies Dresden (CRTD), Fetscherstraße 105, 01307 Dresden, Germany
| | - André Ruland
- Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Carolin Naas
- Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Martin Müller
- Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Julian Thiele
- Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- E-mail:
| |
Collapse
|
9
|
Richter JF, Hildner M, Schmauder R, Turner JR, Schumann M, Reiche J. Occludin knockdown is not sufficient to induce transepithelial macromolecule passage. Tissue Barriers 2019; 7:1612661. [PMID: 31161924 DOI: 10.1080/21688370.2019.1608759] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Occludin, a tight junction protein, has been reported to regulate barrier function - particularly the leak pathway for larger solutes - in epithelia. Therefore, we aimed to precisely define its role in macromolecule passage at single cell-cell junctions. A combination of varying occludin expression by transient and stable knockdown including systematic seeding strategies was employed to achieve a broad and defined pattern of variance in occludin expression over epithelia. This variance model enabled us to examine occludin function in the leak pathway using global and local analysis, i.e. to analyze macromolecule flux across epithelia and macromolecule passage at single-cell level. Macromolecular flux was found not to correlate with occludin expression in intestinal epithelial cells. In fact, by spatially resolving macromolecular permeation sites using a recently developed method we uncovered leaky cell junctions at the edge of Transwells resulting in increased passage. This demonstrates that rare leaks can determine net flux of macromolecules across epithelia while the vast majority of cellular junctions do not contribute significantly. Hence, concomitant local analysis of macromolecule passage across epithelial barriers is indispensable for interpretation of global flux data. By combining this new approach with cell culture models of the leak pathway, we can present evidence that lack of occludin is not sufficient to stimulate the epithelial leak pathway.
Collapse
Affiliation(s)
- Jan F Richter
- a Institute of Anatomy II , Jena University Hospital , Jena , Germany
| | - Markus Hildner
- a Institute of Anatomy II , Jena University Hospital , Jena , Germany
| | - Ralf Schmauder
- b Institute of Physiology II , Jena University Hospital , Jena , Germany
| | - Jerrold R Turner
- c Department of Pathology , Brigham and Women's Hospital and Harvard Medical School , Boston , MA , USA
| | - Michael Schumann
- d Dept. of Gastroenterology, Infectious Diseases and Rheumatology , Campus Benjamin Franklin, Charité - University medicine Berlin , Berlin , Germany
| | - Juliane Reiche
- e Institute of Biochemistry II , Jena University Hospital , Jena , Germany
| |
Collapse
|