1
|
Bunel L, Adrien V, Coleman J, Heo P, Pincet F. Lithium fine tunes lipid membranes through phospholipid binding. Sci Rep 2025; 15:13366. [PMID: 40246965 PMCID: PMC12006515 DOI: 10.1038/s41598-025-97828-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025] Open
Abstract
Lithium is commonly prescribed for bipolar disorder due to its proven efficacy on patients. Despite this effectiveness, the molecular mechanisms underlying its action remain poorly understood, as it appears to influence numerous unrelated pathways. We propose that these diverse effects may stem from a specific physicochemical event: the binding of lithium cations to phospholipid headgroups. In model membrane systems enabling direct observation of the lithium effects on lipid bilayers, we reveal that lithium binding stiffens the membrane, subsequently altering membrane protein activities. This mechanical impact of lithium links existing rationales, drawing a way to decipher the complex lithium effect in bipolar disorder (BD). To illustrate this global effect of lithium, we use the example of intracellular trafficking, a ubiquitous mechanism involving membrane reorganization in all organelles.
Collapse
Affiliation(s)
- Louis Bunel
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 75005, Paris, France
| | - Vladimir Adrien
- AP-HP, Department of Psychiatry, Avicenne Hospital, Paris Nord Sorbonne Université, Bobigny, France
- INSERM, UMR-S 1266, Institut de Psychiatrie et Neurosciences de Paris, Université Paris Cité, Paris, France
| | - Jeff Coleman
- Nanobiology Institute, Yale University, West Haven, CT, 06516, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Paul Heo
- INSERM, UMR-S 1266, Institut de Psychiatrie et Neurosciences de Paris, Université Paris Cité, Paris, France
| | - Frédéric Pincet
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 75005, Paris, France.
| |
Collapse
|
2
|
Wang S, Chen S, Sun J, Han P, Xu B, Li X, Zhong Y, Xu Z, Zhang P, Mi P, Zhang C, Li L, Zhang H, Xia Y, Li S, Heikenwalder M, Yuan D. m 6A modification-tuned sphingolipid metabolism regulates postnatal liver development in male mice. Nat Metab 2023; 5:842-860. [PMID: 37188818 DOI: 10.1038/s42255-023-00808-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/14/2023] [Indexed: 05/17/2023]
Abstract
Different organs undergo distinct transcriptional, epigenetic and physiological alterations that guarantee their functional maturation after birth. However, the roles of epitranscriptomic machineries in these processes have remained elusive. Here we demonstrate that expression of RNA methyltransferase enzymes Mettl3 and Mettl14 gradually declines during postnatal liver development in male mice. Liver-specific Mettl3 deficiency causes hepatocyte hypertrophy, liver injury and growth retardation. Transcriptomic and N6-methyl-adenosine (m6A) profiling identify the neutral sphingomyelinase, Smpd3, as a target of Mettl3. Decreased decay of Smpd3 transcripts due to Mettl3 deficiency results in sphingolipid metabolism rewiring, characterized by toxic ceramide accumulation and leading to mitochondrial damage and elevated endoplasmic reticulum stress. Pharmacological Smpd3 inhibition, Smpd3 knockdown or Sgms1 overexpression that counteracts Smpd3 can ameliorate the abnormality of Mettl3-deficent liver. Our findings demonstrate that Mettl3-N6-methyl-adenosine fine-tunes sphingolipid metabolism, highlighting the pivotal role of an epitranscriptomic machinery in coordination of organ growth and the timing of functional maturation during postnatal liver development.
Collapse
Affiliation(s)
- Shiguan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shanze Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Jianfeng Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Pan Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bowen Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinying Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Youquan Zhong
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Hubei Jiangxia Laboratory, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Zaichao Xu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Hubei Jiangxia Laboratory, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Peng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ping Mi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Cuijuan Zhang
- Institute of Pathology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, China
| | - Haiyan Zhang
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University, Jinan, China
| | - Yuchen Xia
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Hubei Jiangxia Laboratory, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China.
| | - Shiyang Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China.
- Advanced Medical Research Institute, Shandong University, Jinan, China.
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany.
- The M3 Research Institute, Eberhard Karls University Tübingen, Tübingen, Germany.
| | - Detian Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, China.
| |
Collapse
|
3
|
Vošahlíková M, Roubalová L, Brejchová J, Alda M, Svoboda P. Therapeutic lithium alters polar head-group region of lipid bilayer and prevents lipid peroxidation in forebrain cortex of sleep-deprived rats. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158962. [PMID: 33991653 DOI: 10.1016/j.bbalip.2021.158962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023]
Abstract
Lithium is regarded as a unique therapeutic agent for the management of bipolar disorder (BD). In efforts to explain the favourable effects of lithium in BD, a wide range of mechanisms was suggested. Among those, the effect of clinically relevant concentrations of lithium on the plasma membrane was extensively studied. However, the biophysical properties of brain membranes isolated from experimental animals exposed to acute, short-term and chronic lithium have not been performed to-date. In this study, we compared the biophysical parameters and level of lipid peroxidation in membranes isolated from forebrain cortex (FBC) of therapeutic lithium-treated and/or sleep-deprived rats. Lithium interaction with FBC membranes was characterized by appropriate fluorescent probes. DPH (1,6-diphenyl-1,3,5-hexatriene) and TMA-DPH (1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene p-toluenesulphonate) were used for characterization of the hydrophobic lipid core and Laurdan (6-dodecanoyl-2-dimethylaminonaphthalene) for the membrane-water interface. Lipid peroxidation was determined by immunoblot analysis of 4-HNE-(4-hydroxynonenal)-protein adducts. The organization of polar head-group region of FBC membranes, measured by Laurdan generalized polarization, was substantially altered by sleep deprivation and augmented by lithium treatment. Hydrophobic membrane interior characterized by steady-state anisotropy of DPH and TMA-DPH fluorescence was unchanged. Chronic lithium had a protective effect against peroxidative damage of membrane lipids in FBC. In summary, lithium administration at a therapeutic level and/or sleep deprivation as an animal model of mania resulted in changes in rat FBC membrane properties.
Collapse
Affiliation(s)
- Miroslava Vošahlíková
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Lenka Roubalová
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Brejchová
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada; National Institute of Mental Health, Klecany, Czech Republic
| | - Petr Svoboda
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
4
|
Roubalová L, Vošahlíková M, Slaninová J, Kaufman J, Alda M, Svoboda P. Tissue-specific protective properties of lithium: comparison of rat kidney, erythrocytes and brain. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:955-965. [DOI: 10.1007/s00210-020-02036-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 11/30/2020] [Indexed: 01/02/2023]
|
5
|
Vosahlikova M, Roubalova L, Cechova K, Kaufman J, Musil S, Miksik I, Alda M, Svoboda P. Na +/K +-ATPase and lipid peroxidation in forebrain cortex and hippocampus of sleep-deprived rats treated with therapeutic lithium concentration for different periods of time. Prog Neuropsychopharmacol Biol Psychiatry 2020; 102:109953. [PMID: 32360816 DOI: 10.1016/j.pnpbp.2020.109953] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022]
Abstract
Lithium (Li) is a typical mood stabilizer and the first choice for treatment of bipolar disorder (BD). Despite an extensive clinical use of Li, its mechanisms of action remain widely different and debated. In this work, we studied the time-course of the therapeutic Li effects on ouabain-sensitive Na+/K+-ATPase in forebrain cortex and hippocampus of rats exposed to 3-day sleep deprivation (SD). We also monitored lipid peroxidation as malondialdehyde (MDA) production. In samples of plasma collected from all experimental groups of animals, Li concentrations were followed by ICP-MS. The acute (1 day), short-term (7 days) and chronic (28 days) treatment of rats with Li resulted in large decrease of Na+/K+-ATPase activity in both brain parts. At the same time, SD of control, Li-untreated rats increased Na+/K+-ATPase along with increased production of MDA. The SD-induced increase of Na+/K+-ATPase and MDA was attenuated in Li-treated rats. While SD results in a positive change of Na+/K+-ATPase, the inhibitory effect of Li treatment may be interpreted as a pharmacological mechanism causing a normalization of the stress-induced shift and return the Na+/K+-ATPase back to control level. We conclude that SD alone up-regulates Na+/K+-ATPase together with increased peroxidative damage of lipids. Chronic treatment of rats with Li before SD, protects the brain tissue against this type of damage and decreases Na+/K+-ATPase level back to control level.
Collapse
Affiliation(s)
- Miroslava Vosahlikova
- Laboratory of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lenka Roubalova
- Laboratory of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Kristina Cechova
- Laboratory of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jonas Kaufman
- Laboratory of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Stanislav Musil
- Department of Trace Element Analysis, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Ivan Miksik
- Laboratory of Translation Metabolism, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada; National Institute of Mental Health, Klecany, Czech Republic
| | - Petr Svoboda
- Laboratory of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
6
|
Melcrová A, Pokorna S, Vošahlíková M, Sýkora J, Svoboda P, Hof M, Cwiklik L, Jurkiewicz P. Concurrent Compression of Phospholipid Membranes by Calcium and Cholesterol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11358-11368. [PMID: 31393734 DOI: 10.1021/acs.langmuir.9b00477] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Regulation of cell metabolism, membrane fusion, association of proteins with cellular membranes, and cellular signaling altogether would not be possible without Ca2+ ions. The distribution of calcium within the cell is uneven with the negatively charged inner leaflet of the plasma membrane being one of the primary targets of its accumulation. Therefore, we decided to map the influence of Ca2+ on the properties of lipid bilayers closely resembling natural lipid membranes. We combined fluorescence spectroscopy (analysis of time-resolved emission spectra of Laurdan probe and derived parameters: integrated relaxation time related to local lipid mobility, and total emission shift reflecting membrane polarity and hydration) with molecular dynamics simulations to determine the effect of the increasing CaCl2 concentration on model lipid membranes containing POPC, POPS, and cholesterol. On top of that, the impact of calcium on the plasma membranes isolated from HEK293 cells was investigated using the steady-state fluorescence of Laurdan. We found that calcium increases rigidity of all the model lipid membranes used, elevates their thickness, increases lipid packing and ordering, and impedes the local lipid mobility. All these effects were to a great extent similar to those elicited by cholesterol. However, the changes of the membrane properties induced by calcium and cholesterol seem largely independent from each other. At sufficiently high concentrations of calcium or cholesterol, the steric effects hindered a further alteration of membrane organization, i.e., the compressibility limit of membrane structures was reached. We found no indication for mutual interaction between Ca2+ and cholesterol, nor competition of Ca2+ ions and hydroxyl groups of cholesterol for binding to phospholipids. Fluorescence measurements indicated that Ca2+ adsorption decreases mobility within the carbonyl region of model bilayers more efficiently than monovalent ions do (Ca2+ ≫ Li+ > Na+ > K+ > Cs+). The effects of calcium ions were to a great extent mitigated in the plasma membranes isolated from HEK293 cells when compared to the model lipid membranes. Noticeably, the plasma membranes showed remarkably higher resistance toward rigidification induced by calcium ions even when compared with the model membranes containing cholesterol.
Collapse
Affiliation(s)
- Adéla Melcrová
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , 182 23 Prague 8 , Czech Republic
| | - Sarka Pokorna
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , 182 23 Prague 8 , Czech Republic
| | - Miroslava Vošahlíková
- Institute of Physiology of the Czech Academy of Sciences , Vídeňská 1083 , 14220 Prague 4 , Czech Republic
| | - Jan Sýkora
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , 182 23 Prague 8 , Czech Republic
| | - Petr Svoboda
- Institute of Physiology of the Czech Academy of Sciences , Vídeňská 1083 , 14220 Prague 4 , Czech Republic
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , 182 23 Prague 8 , Czech Republic
| | - Lukasz Cwiklik
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , 182 23 Prague 8 , Czech Republic
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , 166 10 Prague 6 , Czech Republic
| | - Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , 182 23 Prague 8 , Czech Republic
| |
Collapse
|
7
|
Vosahlikova M, Roubalova L, Ujcikova H, Hlouskova M, Musil S, Alda M, Svoboda P. Na+/K+-ATPase level and products of lipid peroxidation in live cells treated with therapeutic lithium for different periods in time (1, 7, and 28 days); studies of Jurkat and HEK293 cells. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:785-799. [DOI: 10.1007/s00210-019-01631-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/08/2019] [Indexed: 12/20/2022]
|
8
|
Xu YY, Xia QH, Liang J, Cao Y, Shan F, Liu Y, Yan CY, Xia QR. Factors related to lithium blood concentrations in Chinese Han patients with bipolar disorder. Neuropsychiatr Dis Treat 2019; 15:1929-1937. [PMID: 31371966 PMCID: PMC6628605 DOI: 10.2147/ndt.s205780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 06/17/2019] [Indexed: 11/23/2022] Open
Abstract
Background: The goal of this study was to identify the physiological factors related to the blood concentration of lithium in Chinese Han patients with bipolar disorder (BD). Materials and methods: A total of 186 Chinese Han patients with BD were assessed. Patients were recruited from the Anhui Mental Health Center. The concentrations of serum lithium were measured by a Dimension RxL Max biochemistry analyzer. Physiological factors, including body weight, body mass index (BMI), and routine laboratory parameters, were collected. Relationships between the serum lithium concentration and relevant clinical data were analyzed by Pearson correlation tests, and the independent relationships were determined by multivariate linear regression analysis. Results: Pearson correlation analysis showed that serum lithium concentrations were positively correlated with creatinine concentrations (r=0.147, P=0.046), Mg2+ concentrations (r=0.151, P=0.04), and the percentage of neutrophils (r=0.178, P=0.015) and negatively correlated with high-density lipoprotein (HDL) concentrations (r=-0.142, P=0.05), apolipoprotein A1 concentrations (r=-0.169, P=0.02), and Na+ concentrations (r=-0.148, P=0.046) in 186 patients with BD. Furthermore, multivariate linear regression analysis showed that serum lithium concentrations were negatively associated with Na+ concentrations and positively associated with the percentage of neutrophils. Conclusion: These results suggest that physiological factors, including creatinine, HDL, apolipoprotein A1, Na+, and Mg2+ concentrations and percentage of neutrophils, might be related to serum lithium concentrations and provide a basis for parameter selection of lithium population pharmacokinetics in Chinese Han patients with BD.
Collapse
Affiliation(s)
- Ya-Yun Xu
- Department of Pharmacy, Hefei Fourth People's Hospital, Hefei 230000, People's Republic of China.,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei 230000, People's Republic of China
| | - Qian-Hui Xia
- School of Pharmacy, Wannan Medical College, Wuhu 241002, People's Republic of China
| | - Jun Liang
- Department of Pharmacy, Hefei Fourth People's Hospital, Hefei 230000, People's Republic of China.,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei 230000, People's Republic of China
| | - Yin Cao
- Department of Pharmacy, Hefei Fourth People's Hospital, Hefei 230000, People's Republic of China.,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei 230000, People's Republic of China
| | - Feng Shan
- Department of Pharmacy, Hefei Fourth People's Hospital, Hefei 230000, People's Republic of China.,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei 230000, People's Republic of China
| | - Yang Liu
- Department of Pharmacy, Hefei Fourth People's Hospital, Hefei 230000, People's Republic of China.,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei 230000, People's Republic of China
| | - Chun-Yu Yan
- Department of Pharmacy, Hefei Fourth People's Hospital, Hefei 230000, People's Republic of China.,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei 230000, People's Republic of China
| | - Qing-Rong Xia
- Department of Pharmacy, Hefei Fourth People's Hospital, Hefei 230000, People's Republic of China.,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei 230000, People's Republic of China
| |
Collapse
|
9
|
Vosahlikova M, Ujcikova H, Hlouskova M, Musil S, Roubalova L, Alda M, Svoboda P. Induction of oxidative stress by long-term treatment of live HEK293 cells with therapeutic concentration of lithium is associated with down-regulation of δ-opioid receptor amount and function. Biochem Pharmacol 2018; 154:452-463. [DOI: 10.1016/j.bcp.2018.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/04/2018] [Indexed: 12/27/2022]
|