1
|
Jastrząb P, Car H, Wielgat P. Cell membrane sialome machinery and regulation of receptor tyrosine kinases in gliomas: The functional relevance and therapeutic perspectives. Biomed Pharmacother 2025; 184:117921. [PMID: 39986236 DOI: 10.1016/j.biopha.2025.117921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/24/2025] Open
Abstract
Gliomas are the most common primary brain tumors characterized by high aggressive potential, poor therapeutic response, and significantly reduced overall patient survival. Despite significant progress in the diagnosis and therapy of cancer, gliomas remain a clinical challenge due to the high molecular and cellular heterogeneity, which provides for multiple mechanisms of chemoresistance and adaptive plasticity. A better understanding of cellular regulatory mechanisms of intracellular signal transduction enables the development of targeted drug therapies and clinical application. The increasing evidence confirms the role of sialoglycans in the processing of cell membrane receptors via altered dimerization, activation, and autophosphorylation, which results in changes in cellular signaling and promotes cancer progression. Hence, the modified sialylation patterns, as a hallmark of cancer, have been described as modulators of chemotherapy effectiveness and drug resistance. The receptor tyrosine kinases (RTKs)-mediated signaling in glial tumors control cell growth, survival, migration, and angiogenesis. Here, we focus on the engagement of the sialome machinery in RTKs processing in gliomas and its importance as a suitable therapeutic target. The analysis of the sialylation pattern and its impact on the activity of growth factor receptors provides valuable insights into our understanding of the molecular and cellular complexity of glial tumors. This highlights the novel treatment approaches that could improve prognosis and patients' overall survival.
Collapse
Affiliation(s)
- Patrycja Jastrząb
- Department of Clinical Pharmacology, Medical University of Bialystok, ul. Waszyngtona 15A, Bialystok 15-274, Poland
| | - Halina Car
- Department of Clinical Pharmacology, Medical University of Bialystok, ul. Waszyngtona 15A, Bialystok 15-274, Poland; Department of Experimental Pharmacology, Medical University of Bialystok, ul. Szpitalna 37, Bialystok 15-295, Poland
| | - Przemyslaw Wielgat
- Department of Clinical Pharmacology, Medical University of Bialystok, ul. Waszyngtona 15A, Bialystok 15-274, Poland.
| |
Collapse
|
2
|
Filipsky F, Läubli H. Regulation of sialic acid metabolism in cancer. Carbohydr Res 2024; 539:109123. [PMID: 38669826 DOI: 10.1016/j.carres.2024.109123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Sialic acid, the terminal structure of cell surface glycans, has essential functions in regulating immune response, cell-to-cell communication, and cell adhesion. More importantly, an increased level of sialic acid, termed hypersialylation, has emerged as a commonly observed phenotype in cancer. Therefore, targeting sialic acid ligands (sialoglycans) and their receptors (Siglecs) may provide a new therapeutic approach for cancer immunotherapy. We highlight the complexity of the sialic acid metabolism and its involvement in malignant transformation within individual cancer subtypes. In this review, we focus on the dysregulation of sialylation, the intricate nature of sialic acid synthesis, and clinical perspective. We aim to provide a brief insight into the mechanism of hypersialylation and how our understanding of these processes can be leveraged for the development of novel therapeutics.
Collapse
Affiliation(s)
- Filip Filipsky
- Department of Biomedicine, University Hospital and University of Basel, Switzerland
| | - Heinz Läubli
- Department of Biomedicine, University Hospital and University of Basel, Switzerland; Division of Oncology, University Hospital Basel, Switzerland.
| |
Collapse
|
3
|
Schengrund CL. The Ying and Yang of Ganglioside Function in Cancer. Cancers (Basel) 2023; 15:5362. [PMID: 38001622 PMCID: PMC10670608 DOI: 10.3390/cancers15225362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
The plethora of information about the expression of cancer cell-associated gangliosides, their role(s) in signal transduction, and their potential usefulness in the development of cancer treatments makes this an appropriate time to review these enigmatic glycosphingolipids. Evidence, reflecting the work of many, indicates that (1) expression of specific gangliosides, not generally found in high concentrations in most normal human cells, can be linked to certain types of cancer. (2) Gangliosides can affect the ability of cells to interact either directly or indirectly with growth factor receptors, thereby changing such things as a cell's mobility, rate of proliferation, and metastatic ability. (3) Anti-ganglioside antibodies have been tested, with some success, as potential treatments for certain cancers. (4) Cancer-associated gangliosides shed into the circulation can (a) affect immune cell responsiveness either positively or negatively, (b) be considered as diagnostic markers, and (c) be used to look for recurrence. (5) Cancer registries enable investigators to evaluate data from sufficient numbers of patients to obtain information about potential therapies. Despite advances that have been made, a discussion of possible approaches to identifying additional treatment strategies to inhibit metastasis, responsible for the majority of deaths of cancer patients, as well as for treating therapy-resistant tumors, is included.
Collapse
Affiliation(s)
- Cara-Lynne Schengrund
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
4
|
Kuliesiute U, Joseph K, Straehle J, Madapusi Ravi V, Kueckelhaus J, Kada Benotmane J, Zhang J, Vlachos A, Beck J, Schnell O, Neniskyte U, Heiland DH. Sialic acid metabolism orchestrates transcellular connectivity and signaling in glioblastoma. Neuro Oncol 2023; 25:1963-1975. [PMID: 37288604 PMCID: PMC10628944 DOI: 10.1093/neuonc/noad101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND In glioblastoma (GBM), the effects of altered glycocalyx are largely unexplored. The terminal moiety of cell coating glycans, sialic acid, is of paramount importance for cell-cell contacts. However, sialic acid turnover in gliomas and its impact on tumor networks remain unknown. METHODS We streamlined an experimental setup using organotypic human brain slice cultures as a framework for exploring brain glycobiology, including metabolic labeling of sialic acid moieties and quantification of glycocalyx changes. By live, 2-photon and high-resolution microscopy we have examined morphological and functional effects of altered sialic acid metabolism in GBM. By calcium imaging we investigated the effects of the altered glycocalyx on a functional level of GBM networks. RESULTS The visualization and quantitative analysis of newly synthesized sialic acids revealed a high rate of de novo sialylation in GBM cells. Sialyltrasferases and sialidases were highly expressed in GBM, indicating that significant turnover of sialic acids is involved in GBM pathology. Inhibition of either sialic acid biosynthesis or desialylation affected the pattern of tumor growth and lead to the alterations in the connectivity of glioblastoma cells network. CONCLUSIONS Our results indicate that sialic acid is essential for the establishment of GBM tumor and its cellular network. They highlight the importance of sialic acid for glioblastoma pathology and suggest that dynamics of sialylation have the potential to be targeted therapeutically.
Collapse
Affiliation(s)
- Ugne Kuliesiute
- Microenvironment and Immunology Research Laboratory, Medical Center, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Freiburg University, Freiburg, Germany
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- VU LSC-EMBL Partnership for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Kevin Joseph
- Microenvironment and Immunology Research Laboratory, Medical Center, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Freiburg University, Freiburg, Germany
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center Brain Links Brain Tools, University of Freiburg, Freiburg, Germany
| | - Jakob Straehle
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Freiburg University, Freiburg, Germany
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Vidhya Madapusi Ravi
- Microenvironment and Immunology Research Laboratory, Medical Center, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Freiburg University, Freiburg, Germany
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center Brain Links Brain Tools, University of Freiburg, Freiburg, Germany
| | - Jan Kueckelhaus
- Microenvironment and Immunology Research Laboratory, Medical Center, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Freiburg University, Freiburg, Germany
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center Brain Links Brain Tools, University of Freiburg, Freiburg, Germany
| | - Jasim Kada Benotmane
- Microenvironment and Immunology Research Laboratory, Medical Center, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Freiburg University, Freiburg, Germany
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center Brain Links Brain Tools, University of Freiburg, Freiburg, Germany
| | - Junyi Zhang
- Microenvironment and Immunology Research Laboratory, Medical Center, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Freiburg University, Freiburg, Germany
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center Brain Links Brain Tools, University of Freiburg, Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center Brain Links Brain Tools, University of Freiburg, Freiburg, Germany
- Center for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Juergen Beck
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Freiburg University, Freiburg, Germany
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Oliver Schnell
- Microenvironment and Immunology Research Laboratory, Medical Center, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Freiburg University, Freiburg, Germany
| | - Urte Neniskyte
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- VU LSC-EMBL Partnership for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Dieter Henrik Heiland
- Microenvironment and Immunology Research Laboratory, Medical Center, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Freiburg University, Freiburg, Germany
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Comprehensive Cancer Center Freiburg (CCCF), Faculty of Medicine and Medical Center—University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), partner siteFreiburg
| |
Collapse
|
5
|
Quirino MWL, Albuquerque APB, De Souza MFD, Da Silva Filho AF, Martins MR, Da Rocha Pitta MG, Pereira MC, De Melo Rêgo MJB. alpha2,3 sialic acid processing enzymes expression in gastric cancer tissues reveals that ST3Gal3 but not Neu3 are associated with Lauren's classification, angiolymphatic invasion and histological grade. Eur J Histochem 2022; 66. [PMID: 36172711 PMCID: PMC9577379 DOI: 10.4081/ejh.2022.3330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 08/27/2022] [Indexed: 11/22/2022] Open
Abstract
Gastric cancer (GC) is one of the leading causes of cancer-related deaths worldwide. Despite progress in the last decades, there are still no reliable biomarkers for the diagnosis of and prognosis for GC. Aberrant sialylation is a widespread critical event in the development of GC. Neuraminidases (Neu) and sialyltransferases (STs) regulate the ablation and addition of sialic acid during glycoconjugates biosynthesis, and they are a considerable source of biomarkers in various cancers. This study retrospectively characterized Neu3 and ST3Gal3 expression by immunohistochemistry in 71 paraffin-embedded GC tissue specimens and analyzed the relationship between their expression and the clinicopathological parameters. Neu3 expression was markedly increased in GC tissues compared with non-tumoral tissues (p<0.0001). Intratumoral ST3Gal3 staining was significantly associated with intestinal subtype (p=0.0042) and was negatively associated with angiolymphatic invasion (p=0.0002) and higher histological grade G3 (p=0.0066). Multivariate analysis revealed that ST3Gal3 positivity is able to predict Lauren's classification. No associations were found between Neu3 staining and clinical parameters. The in silico analysis of mRNA expression in GC validation cohorts corroborates the significant ST3Gal3 association with higher histological grade observed in our study. These findings suggest that ST3Gal3 expression may be an indicator for aggressiveness of primary GC.
Collapse
Affiliation(s)
- Michael W L Quirino
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for -Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE.
| | - Amanda P B Albuquerque
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for -Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE.
| | - Maria F D De Souza
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for -Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE.
| | - Antônio F Da Silva Filho
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for -Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE.
| | | | - Maira G Da Rocha Pitta
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for -Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE.
| | - Michelly C Pereira
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for -Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE.
| | - Moacyr J B De Melo Rêgo
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for -Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE.
| |
Collapse
|
6
|
Wang C, Chen J, Kuang Y, Cheng X, Deng M, Jiang Z, Hu X. A novel methylated cation channel TRPM4 inhibited colorectal cancer metastasis through Ca 2+/Calpain-mediated proteolysis of FAK and suppression of PI3K/Akt/mTOR signaling pathway. Int J Biol Sci 2022; 18:5575-5590. [PMID: 36147460 PMCID: PMC9461655 DOI: 10.7150/ijbs.70504] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 08/23/2022] [Indexed: 12/02/2022] Open
Abstract
Colorectal cancer (CRC) is an aggressive malignancy with poor prognosis. It is imperative to elucidate the potential molecular mechanisms that regulate CRC cell aggressiveness. In present study, the transient receptor potential melastatin 4 (TRPM4), a calcium-activated nonselective cation channel, is downregulated in CRC as a novel methylated tumor suppressor gene (TSG). The reduced mRNA level of TRPM4 is due to the epigenetic methylation of its promoter CpG island (CGI). Moreover, ectopic expression of TRPM4 inhibited tumor growth and metastasis both in vitro and in vivo. Our experiments also demonstrate that TRPM4 restructures the CRC cytoskeleton and activates the Ca2+-mediated calpain pathway through enhancing calcium influx. The western blot analysis shows that the expression of focal adhesion kinase (FAK), a calpain-mediated proteolytic substrate, is markedly suppressed after ectopic overexpression of TRPM4, besides, Akt (also known as protein kinase B, PKB), phosphatidylinositol 3-kinase (PI3K) as well as its central target mTOR have significantly decreased expression accompanied by elevated E-cadherin and restrained matrix metalloproteinases (MMP2/MMP9) expression. The inhibition of protease calpain effectively relieves the retard of FAK/Akt signals and reverses the migration suppression of TRPM4. Taken together, TRPM4, identified as a novel methylated TSG, employs intracellular Ca2+ signals to activate calpain-mediated cleavage of FAK and impede CRC migration and invasion through modulating the PI3K/Akt/mTOR signaling cascade, providing the first evidence that TRPM4 is likely to be a significant biomarker and potential target for CRC therapy.
Collapse
Affiliation(s)
- Chan Wang
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, China.,Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Jiaxin Chen
- Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Yeye Kuang
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, China.,Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Xiaoqing Cheng
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Min Deng
- Department of Pathology, The First People's Hospital of Fuyang, Hangzhou 311400, China
| | - Zhinong Jiang
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Xiaotong Hu
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, China.,Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
7
|
Heimerl M, Gausepohl T, Mueller JH, Ricke-Hoch M. Neuraminidases-Key Players in the Inflammatory Response after Pathophysiological Cardiac Stress and Potential New Therapeutic Targets in Cardiac Disease. BIOLOGY 2022; 11:biology11081229. [PMID: 36009856 PMCID: PMC9405403 DOI: 10.3390/biology11081229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 05/24/2023]
Abstract
Glycoproteins and glycolipids on the cell surfaces of vertebrates and higher invertebrates contain α-keto acid sugars called sialic acids, terminally attached to their glycan structures. The actual level of sialylation, regulated through enzymatic removal of the latter ones by NEU enzymes, highly affects protein-protein, cell-matrix and cell-cell interactions. Thus, their regulatory features affect a large number of different cell types, including those of the immune system. Research regarding NEUs within heart and vessels provides new insights of their involvement in the development of cardiovascular pathologies and identifies mechanisms on how inhibiting NEU enzymes can have a beneficial effect on cardiac remodelling and on a number of different cardiac diseases including CMs and atherosclerosis. In this regard, a multitude of clinical studies demonstrated the potential of N-acetylneuraminic acid (Neu5Ac) to serve as a biomarker following cardiac diseases. Anti-influenza drugs i.e., zanamivir and oseltamivir are viral NEU inhibitors, thus, they block the enzymatic activity of NEUs. When considering the improvement in cardiac function in several different cardiac disease animal models, which results from NEU reduction, the inhibition of NEU enzymes provides a new potential therapeutic treatment strategy to treat cardiac inflammatory pathologies, and thus, administrate cardioprotection.
Collapse
|
8
|
Miyagi T, Yamamoto K. Review sialidase NEU3 and its pathological significance. Glycoconj J 2022; 39:677-683. [PMID: 35675020 DOI: 10.1007/s10719-022-10067-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/07/2022] [Accepted: 05/25/2022] [Indexed: 11/25/2022]
Abstract
Sialidases (EC 3.2.1.18, also called neuraminidases) catalyze the removal of α-glycosidically linked sialic acid residues from glycoproteins and glycolipids; this is the initial step in the degradation of these glycoconjugates. Sialidases of mammalian origin have been implicated in not only lysosomal catabolism but also the modulation of functional molecules involved in many biological processes. To date, four types of mammalian sialidases have been cloned and designated as Neu1, Neu2, Neu3 and Neu4. These sialidases differ in their subcellular localization and enzymatic properties, as well as their chromosomal localization, and they are expressed in a tissue-specific manner. Among the sialidases, the plasma membrane-associated sialidase Neu3 appears to play particular roles in controlling transmembrane signaling through the modulation of gangliosides, and its aberrant expression is closely related to various pathogeneses, including that of cancer. Interestingly, the human orthologue NEU3 acts in two ways, catalytic hydrolysis of gangliosides and protein interactions with other signaling molecules. Aberrant NEU3 expression can induce various pathological conditions. This review briefly summarizes recent studies, focusing on the involvement of NEU3 in various pathological phenomena.
Collapse
Affiliation(s)
- Taeko Miyagi
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan.
| | - Koji Yamamoto
- Faculty of Health and Medical Care, Saitama Medical University, Moroyama, Saitama, Japan
| |
Collapse
|
9
|
Piccoli M, Coviello S, Canali ME, Rota P, La Rocca P, Cirillo F, Lavota I, Tarantino A, Ciconte G, Pappone C, Ghiroldi A, Anastasia L. Neu3 Sialidase Activates the RISK Cardioprotective Signaling Pathway during Ischemia and Reperfusion Injury (IRI). Int J Mol Sci 2022; 23:ijms23116090. [PMID: 35682772 PMCID: PMC9181429 DOI: 10.3390/ijms23116090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 11/29/2022] Open
Abstract
Coronary reperfusion strategies are life-saving approaches to restore blood flow to cardiac tissue after acute myocardial infarction (AMI). However, the sudden restoration of normal blood flow leads to ischemia and reperfusion injury (IRI), which results in cardiomyoblast death, irreversible tissue degeneration, and heart failure. The molecular mechanism of IRI is not fully understood, and there are no effective cardioprotective strategies to prevent it. In this study, we show that activation of sialidase-3, a glycohydrolytic enzyme that cleaves sialic acid residues from glycoconjugates, is cardioprotective by triggering RISK pro-survival signaling pathways. We found that overexpression of Neu3 significantly increased cardiomyoblast resistance to IRI through activation of HIF-1α and Akt/Erk signaling pathways. This raises the possibility of using Sialidase-3 activation as a cardioprotective reperfusion strategy after myocardial infarction.
Collapse
Affiliation(s)
- Marco Piccoli
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy; (M.P.); (S.C.); (M.E.C.); (F.C.); (I.L.); (A.T.)
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy; (P.R.); (P.L.R.); (G.C.); (C.P.)
| | - Simona Coviello
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy; (M.P.); (S.C.); (M.E.C.); (F.C.); (I.L.); (A.T.)
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy; (P.R.); (P.L.R.); (G.C.); (C.P.)
| | - Maria Elena Canali
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy; (M.P.); (S.C.); (M.E.C.); (F.C.); (I.L.); (A.T.)
| | - Paola Rota
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy; (P.R.); (P.L.R.); (G.C.); (C.P.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Mangiagalli 31, 20097 Milan, Italy
| | - Paolo La Rocca
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy; (P.R.); (P.L.R.); (G.C.); (C.P.)
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20097 Milan, Italy
| | - Federica Cirillo
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy; (M.P.); (S.C.); (M.E.C.); (F.C.); (I.L.); (A.T.)
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy; (P.R.); (P.L.R.); (G.C.); (C.P.)
| | - Ivana Lavota
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy; (M.P.); (S.C.); (M.E.C.); (F.C.); (I.L.); (A.T.)
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy; (P.R.); (P.L.R.); (G.C.); (C.P.)
| | - Adriana Tarantino
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy; (M.P.); (S.C.); (M.E.C.); (F.C.); (I.L.); (A.T.)
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy; (P.R.); (P.L.R.); (G.C.); (C.P.)
- Faculty of Medicine and Surgery, University Vita-Salute San Raffaele, Via Olgettina 58, 20097 Milan, Italy
| | - Giuseppe Ciconte
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy; (P.R.); (P.L.R.); (G.C.); (C.P.)
- Arrhythmology Department, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy
| | - Carlo Pappone
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy; (P.R.); (P.L.R.); (G.C.); (C.P.)
- Faculty of Medicine and Surgery, University Vita-Salute San Raffaele, Via Olgettina 58, 20097 Milan, Italy
- Arrhythmology Department, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy
| | - Andrea Ghiroldi
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy; (M.P.); (S.C.); (M.E.C.); (F.C.); (I.L.); (A.T.)
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy; (P.R.); (P.L.R.); (G.C.); (C.P.)
- Correspondence: (A.G.); (L.A.); Tel.: +39-02-2643-7746 (A.G.); +39-02-2643-7756 (L.A.)
| | - Luigi Anastasia
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy; (M.P.); (S.C.); (M.E.C.); (F.C.); (I.L.); (A.T.)
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy; (P.R.); (P.L.R.); (G.C.); (C.P.)
- Faculty of Medicine and Surgery, University Vita-Salute San Raffaele, Via Olgettina 58, 20097 Milan, Italy
- Correspondence: (A.G.); (L.A.); Tel.: +39-02-2643-7746 (A.G.); +39-02-2643-7756 (L.A.)
| |
Collapse
|
10
|
Howlader MA, Guo T, Chakraberty R, Cairo CW. Isoenzyme-Selective Inhibitors of Human Neuraminidases Reveal Distinct Effects on Cell Migration. ACS Chem Biol 2020; 15:1328-1339. [PMID: 32310634 DOI: 10.1021/acschembio.9b00975] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The human neuraminidase enzymes (NEU1, NEU2, NEU3, and NEU4) are a class of enzymes implicated in pathologies including cancer and diabetes. Several reports have linked neuraminidase activity to the regulation of cell migration in cancer cells. Using an in vitro cell migration assay on fibronectin (FN) coated surfaces, we have investigated the role of these enzymes in integrin-mediated cell migration. We observed that neuraminidase inhibition caused significant retardation of cell migration in breast cancer (MDA-MB-231) and prostate cancer (PC-3) cell lines when using inhibitors of NEU3 and NEU4. In contrast, inhibition of NEU1 caused a significant increase in cell migration for the same cell lines. We concluded that the blockade of human neuraminidase enzymes with isoenzyme-selective inhibitors can lead to disparate results and has significant potential in the development of anticancer or wound healing therapeutics.
Collapse
Affiliation(s)
- Md. Amran Howlader
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Tianlin Guo
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Radhika Chakraberty
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Christopher W. Cairo
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
11
|
Minami A, Fujita Y, Shimba S, Shiratori M, Kaneko YK, Sawatani T, Otsubo T, Ikeda K, Kanazawa H, Mikami Y, Sekita R, Kurebayashi Y, Takahashi T, Miyagi T, Ishikawa T, Suzuki T. The sialidase inhibitor 2,3-dehydro-2-deoxy-N-acetylneuraminic acid is a glucose-dependent potentiator of insulin secretion. Sci Rep 2020; 10:5198. [PMID: 32251344 PMCID: PMC7089948 DOI: 10.1038/s41598-020-62203-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/06/2020] [Indexed: 12/12/2022] Open
Abstract
Sialidase cleaves sialic acid residues from a sialoglycoconjugate: oligosaccharides, glycolipids and glycoproteins that contain sialic acid. Histochemical imaging of the mouse pancreas using a benzothiazolylphenol-based sialic acid derivative (BTP3-Neu5Ac), a highly sensitive histochemical imaging probe used to assess sialidase activity, showed that pancreatic islets have intense sialidase activity. The sialidase inhibitor 2,3-dehydro-2-deoxy-N-acetylneuraminic acid (DANA) remarkably enhances glutamate release from hippocampal neurons. Since there are many similar processes between synaptic vesicle exocytosis and secretory granule exocytosis, we investigated the effect of DANA on insulin release from β-cells. Insulin release was induced in INS-1D cells by treatment with 8.3 mM glucose, and the release was enhanced by treatment with DANA. In a mouse intraperitoneal glucose tolerance test, the increase in serum insulin levels was enhanced by intravenous injection with DANA. However, under fasting conditions, insulin release was not enhanced by treatment with DANA. Calcium oscillations induced by 8.3 mM glucose treatment of INS-1D cells were not affected by DANA. Blood insulin levels in sialidase isozyme Neu3-deficient mice were significantly higher than those in WT mice under ad libitum feeding conditions, but the levels were not different under fasting conditions. These results indicate that DANA is a glucose-dependent potentiator of insulin secretion. The sialidase inhibitor may be useful for anti-diabetic treatment with a low risk of hypoglycemia.
Collapse
Affiliation(s)
- Akira Minami
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan.
| | - Yuka Fujita
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Sumika Shimba
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Mako Shiratori
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Yukiko K Kaneko
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Toshiaki Sawatani
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Tadamune Otsubo
- Department of Organic Chemistry, School of Pharmaceutical Sciences, Hiroshima International University, Hiroshima, 737-0112, Japan
| | - Kiyoshi Ikeda
- Department of Organic Chemistry, School of Pharmaceutical Sciences, Hiroshima International University, Hiroshima, 737-0112, Japan
| | - Hiroaki Kanazawa
- Department of Functional Anatomy, School of Nursing, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Yasuyo Mikami
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Risa Sekita
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Yuuki Kurebayashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Tadanobu Takahashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Taeko Miyagi
- Miyagi Cancer Center Research Institute, Natori, 981-1293, Japan
| | - Tomohisa Ishikawa
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Takashi Suzuki
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan.
| |
Collapse
|
12
|
Li Z, Li F, Ma C, Xu C, Pan Z. Advancement of clinical therapeutic research on glioma: A narrative review. GLIOMA 2020. [DOI: 10.4103/glioma.glioma_18_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Shieh P, Jan CR, Liang WZ. The protective effects of the antioxidant N-acetylcysteine (NAC) against oxidative stress-associated apoptosis evoked by the organophosphorus insecticide malathion in normal human astrocytes. Toxicology 2019; 417:1-14. [PMID: 30769050 DOI: 10.1016/j.tox.2019.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/23/2019] [Accepted: 02/09/2019] [Indexed: 12/21/2022]
Abstract
Malathion is one of the most widely used organophosphorus insecticides in agriculture. However, malathion may be involved in the etiology of human brain dysfunction. Induction of ROS has been proposed as a mechanism of malathion-induced poisoning cases, but there are few data regarding the effects of malathion on oxidative stress-associated neurotoxicity in human glial cells. The aim was to explore the mechanism underlying effects of malathion on neurotoxicity in Gibco® Human Astrocytes (GHA cells) and evaluate the protective effects of the antioxidant (N-acetylcysteine, NAC). Cell viability was measured by the cell proliferation reagent (WST-1). Antioxidant enzymes (glutathione peroxidase and catalase) were measured by an ELISA reader. Cell cycle distribution and ROS productions were detected by flow cytometry. Cell cycle-related protein levels (cyclin E1, CDK2, cyclin A2, CDK1/CDC2, or cyclin B1) and apoptotic protein levels (Bcl-2, Bax, and cleaved caspase-9/caspase-3) were analyzed by Western blotting. In GHA cells, treatment with malathion (10-25 μM) for 24 h concentration-dependently induced cytotoxicity and cell cycle arrest. In terms of oxidative stresses, malathion elevated intracellular ROS levels, but reduced glutathion and antioxidant enzyme levels. Treatment with NAC (5 μM) reversed malathion-induced oxidative stress responses, and prevented malathion-evoked apoptosis by regulating apoptotic protein expressions. Together, in GHA cells, NAC mediated inhibition of malathion-activated mitochondrial apoptotic pathways that involved cell cycle arrest and ROS responses. These data provide further insights into the molecular mechanisms behind malathion poisoning, and might suggest that NAC with its protective effects may be a potential compound for prevention of malathion-induced brain injury.
Collapse
Affiliation(s)
- Pochuen Shieh
- Department of Pharmacy, Tajen University, Pingtung, 90741, Taiwan, ROC
| | - Chung-Ren Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan, ROC
| | - Wei-Zhe Liang
- Department of Pharmacy, Tajen University, Pingtung, 90741, Taiwan, ROC.
| |
Collapse
|
14
|
Overexpression of sialidase NEU3 increases the cellular radioresistance potential of U87MG glioblastoma cells. Biochem Biophys Res Commun 2019; 508:31-36. [DOI: 10.1016/j.bbrc.2018.11.086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/13/2018] [Indexed: 11/19/2022]
|
15
|
Hsu SS, Jan CR, Liang WZ. The investigation of the pyrethroid insecticide lambda-cyhalothrin (LCT)-affected Ca 2+ homeostasis and -activated Ca 2+-associated mitochondrial apoptotic pathway in normal human astrocytes: The evaluation of protective effects of BAPTA-AM (a selective Ca 2+ chelator). Neurotoxicology 2018; 69:97-107. [PMID: 30292652 DOI: 10.1016/j.neuro.2018.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 12/22/2022]
Abstract
Exposure to insecticides has been found to have deleterious effects on human health. Lambda-cyhalothrin (LCT), a mixture of isomers of cyhalothrin, is a pyrethroid insecticide routinely used in pest control programs. LCT was reported to cause neurotoxic effects in various models. However, the mechanism of underlying effect of LCT on cytotoxicity in normal human brain cells is still elusive. This study examined whether LCT affected Ca2+ homeostasis and Ca2+-related physiology in Gibco® Human Astrocytes (GHA cells), and explored whether BAPTA-AM (1,2-bis(2-aminophenoxy)ethane-N,N,N'N'-tetraacetic acid), a selective Ca2+ chelator, has protective effects on LCT-treated GHA cells. The data show that LCT (10-15 μM) concentration-dependently induced cytotoxicity in both GHA cells and DI TNC1 normal rat astrocytes but only induced intracellular Ca2+ concentration ([Ca2+]i) rises in GHA cells. In terms of Ca2+ signaling in GHA cells, LCT-induced [Ca2+]i rises were reduced by removing extracellular Ca2+ and were inhibited by store-operated Ca2+ channel modulators (2-APB, econazole or SKF96365). In Ca2+-free medium, pretreatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin abolished LCT-induced [Ca2+]i rises. Conversely, incubation with LCT abolished thapsigargin-induced [Ca2+]i rises. Regarding cytotoxicity, LCT evoked apoptosis by regulating apoptotic protein expressions (Bax, BCl-2, cleaved caspase-9/-3). This apoptotic response was significantly inhibited by prechelating cytosolic Ca2+ with BAPTA-AM. Together, in GHA cells, LCT induced [Ca2+]i rises by inducing Ca2+ entry via store-operated Ca2+ channels and Ca2+ release from the endoplasmic reticulum. Moreover, BAPTA-AM has a protective effect on inhibiting LCT-activated mitochondrial apoptotic pathway. This study provided new insights into the molecular protective mechanism of LCT-induced cytotoxicity in normal human astrocytes.
Collapse
Affiliation(s)
- Shu-Shong Hsu
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan; Department of Surgery, National Defense Medical Center, Taipei, 11490, Taiwan; Department of Nursing, Meiho University, Pingtung, 91202, Taiwan
| | - Chung-Ren Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
| | - Wei-Zhe Liang
- Department of Pharmacy, Tajen University, Pingtung, 90741, Taiwan; Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan.
| |
Collapse
|
16
|
Pshezhetsky AV, Ashmarina M. Keeping it trim: roles of neuraminidases in CNS function. Glycoconj J 2018; 35:375-386. [PMID: 30088207 PMCID: PMC6182584 DOI: 10.1007/s10719-018-9837-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 12/11/2022]
Abstract
The sialylated glyconjugates (SGC) are found in abundance on the surface of brain cells, where they form a dense array of glycans mediating cell/cell and cell/protein recognition in numerous physiological and pathological processes. Metabolic genetic blocks in processing and catabolism of SGC result in development of severe storage disorders, dominated by CNS involvement including marked neuroinflammation and neurodegeneration, the pathophysiological mechanisms of which are still discussed. SGC patterns in the brain are cell and organelle-specific, dynamic and maintained by highly coordinated processes of their biosynthesis, trafficking, processing and catabolism. The changes in the composition of SGC during development and aging of the brain cannot be explained based solely on the regulation of the SGC-synthesizing enzymes, sialyltransferases, suggesting that neuraminidases (sialidases) hydrolysing the removal of terminal sialic acid residues also play an essential role. In the current review we summarize the roles of three mammalian neuraminidases: neuraminidase 1, neuraminidase 3 and neuraminidase 4 in processing brain SGC. Emerging data demonstrate that these enzymes with different, yet overlapping expression patterns, intracellular localization and substrate specificity play essential roles in the physiology of the CNS.
Collapse
Affiliation(s)
- Alexey V Pshezhetsky
- Sainte-Justine Hospital Research Center, Department of Paediatrics, University of Montreal, CHU Ste-Justine, Centre de recherche, 3175 Côte-Sainte-Catherine, Montréal, Québec, H3T 1C5, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, H3A0C7, Canada.
| | - Mila Ashmarina
- Sainte-Justine Hospital Research Center, Department of Paediatrics, University of Montreal, CHU Ste-Justine, Centre de recherche, 3175 Côte-Sainte-Catherine, Montréal, Québec, H3T 1C5, Canada
| |
Collapse
|
17
|
Biological and Pathological Roles of Ganglioside Sialidases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:121-150. [DOI: 10.1016/bs.pmbts.2017.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|