1
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Ma J, Wu C, Hart GW. Analytical and Biochemical Perspectives of Protein O-GlcNAcylation. Chem Rev 2021; 121:1513-1581. [DOI: 10.1021/acs.chemrev.0c00884] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Gerald W. Hart
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
3
|
Wu C, Muhataer X, Wang W, Deng M, Jin R, Lian Z, Luo D, Li Y, Yang X. Abnormal DNA methylation patterns in patients with infection‑caused leukocytopenia based on methylation microarrays. Mol Med Rep 2020; 21:2335-2348. [PMID: 32323775 PMCID: PMC7185277 DOI: 10.3892/mmr.2020.11061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 02/07/2020] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to investigate the association between gene methylation and leukocytopenia from the perspective of gene regulation. A total of 30 patients confirmed as having post-infection leukocytopenia at People's Hospital of Xinjiang Uygur Autonomous Region between January 2016 and June 2017 were successively recruited as the leukocytopenia group; 30 patients with post-infection leukocytosis were enrolled as the leukocytosis group. In addition, 30 healthy volunteers who received a health examination at the hospital during the same period were included as the normal control group. In each group, four individuals were randomly selected for whole genome methylation screening. After selection of key methylation sites, the remaining samples in each group were used for verification using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. The levels of serum complement factors C3 and C5 in the leukocytopenia group were significantly lower than those in the other two groups (P<0.05). According to whole-genome DNA methylation detection, 66 and 27 methylation loci may be associated with leukocytopenia and leukocytosis, respectively. Most of these abnormal loci are located on chromosomes 2, 6, 7, 1, 17 and 11. The rates of WW domain containing E3 ubiquitin protein ligase 2 gene methylation at cytosine-phosphate-guanine (CpG)_1, CpG_5/6 and CpG_7 in the leukocytopenia group were higher than in the other two groups (P<0.05); the rate of AKT2 CpG_1 methylation was higher in the leukocytopenia group than in the other two groups (P<0.05); the rate of calcium-binding atopy-related autoantigen 1 gene CpG_2 methylation was higher in the leukocytosis group than in the normal control group (P<0.05); and the rate of NADPH oxidase 5 gene CpG_3 methylation was higher in the leukocytosis group than in the normal control group (P<0.05). Chemotactic factor secretion and cell migration abnormalities, ubiquitination modification disorders and reduced oxidative burst may participate in infection-complicated leukocytopenia. The results of this study shed new light on the molecular biological mechanisms of infection-complicated leukocytopenia and provide novel avenues for diagnosis and treatment.
Collapse
Affiliation(s)
- Chao Wu
- Department of Respiratory and Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region 830001, P.R. China
| | - Xirennayi Muhataer
- Department of Respiratory and Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region 830001, P.R. China
| | - Wenyi Wang
- Department of Respiratory and Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region 830001, P.R. China
| | - Mingqin Deng
- Department of Respiratory and Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region 830001, P.R. China
| | - Rong Jin
- Department of Respiratory and Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region 830001, P.R. China
| | - Zhichuang Lian
- Department of Respiratory and Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region 830001, P.R. China
| | - Dan Luo
- Department of Respiratory and Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region 830001, P.R. China
| | - Yafang Li
- Department of Respiratory and Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region 830001, P.R. China
| | - Xiaohong Yang
- Department of Respiratory and Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region 830001, P.R. China
| |
Collapse
|
4
|
Selenko P. Quo Vadis Biomolecular NMR Spectroscopy? Int J Mol Sci 2019; 20:ijms20061278. [PMID: 30875725 PMCID: PMC6472163 DOI: 10.3390/ijms20061278] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 02/06/2023] Open
Abstract
In-cell nuclear magnetic resonance (NMR) spectroscopy offers the possibility to study proteins and other biomolecules at atomic resolution directly in cells. As such, it provides compelling means to complement existing tools in cellular structural biology. Given the dominance of electron microscopy (EM)-based methods in current structure determination routines, I share my personal view about the role of biomolecular NMR spectroscopy in the aftermath of the revolution in resolution. Specifically, I focus on spin-off applications that in-cell NMR has helped to develop and how they may provide broader and more generally applicable routes for future NMR investigations. I discuss the use of ‘static’ and time-resolved solution NMR spectroscopy to detect post-translational protein modifications (PTMs) and to investigate structural consequences that occur in their response. I argue that available examples vindicate the need for collective and systematic efforts to determine post-translationally modified protein structures in the future. Furthermore, I explain my reasoning behind a Quinary Structure Assessment (QSA) initiative to interrogate cellular effects on protein dynamics and transient interactions present in physiological environments.
Collapse
Affiliation(s)
- Philipp Selenko
- Weizmann Institute of Science, Department of Biological Regulation, 234 Herzl Street, Rehovot 76100, Israel.
| |
Collapse
|
5
|
Bourré G, Cantrelle FX, Kamah A, Chambraud B, Landrieu I, Smet-Nocca C. Direct Crosstalk Between O-GlcNAcylation and Phosphorylation of Tau Protein Investigated by NMR Spectroscopy. Front Endocrinol (Lausanne) 2018; 9:595. [PMID: 30386294 PMCID: PMC6198643 DOI: 10.3389/fendo.2018.00595] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/19/2018] [Indexed: 12/20/2022] Open
Abstract
The formation of intraneuronal fibrillar inclusions of tau protein is associated with several neurodegenerative diseases referred to as tauopathies including Alzheimer's disease (AD). A common feature of these pathologies is hyperphosphorylation of tau, the main component of fibrillar assemblies such as Paired Helical Filaments (PHFs). O-β-linked N-acetylglucosaminylation (O-GlcNAcylation) is another important posttranslational modification involved in regulation of tau pathophysiology. Among the benefits of O-GlcNAcylation, modulation of tau phosphorylation levels and inhibition of tau aggregation properties have been described while decreased O-GlcNAcylation could be involved in the raise of tau phosphorylation associated with AD. However, the molecular mechanisms at the basis of these observations remain to be defined. In this study, we identify by NMR spectroscopy O-GlcNAc sites in the longest isoform of tau and investigate the direct role of O-GlcNAcylation on tau phosphorylation and conversely, the role of phosphorylation on tau O-GlcNAcylation. We show here by a systematic examination of the quantitative modification patterns by NMR spectroscopy that O-GlcNAcylation does not modify phosphorylation of tau by the kinase activity of ERK2 or a rat brain extract while phosphorylation slightly increases tau O-GlcNAcylation by OGT. Our data suggest that indirect mechanisms act in the reciprocal regulation of tau phosphorylation and O-GlcNAcylation in vivo involving regulation of the enzymes responsible of phosphate and O-GlcNAc dynamics.
Collapse
Affiliation(s)
- Gwendoline Bourré
- Univ. Lille, CNRS UMR8576, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | | | - Amina Kamah
- Univ. Lille, CNRS UMR8576, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | | | - Isabelle Landrieu
- Univ. Lille, CNRS UMR8576, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Caroline Smet-Nocca
- Univ. Lille, CNRS UMR8576, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- *Correspondence: Caroline Smet-Nocca
| |
Collapse
|