1
|
White MEH, Sinn LR, Jones DM, de Folter J, Aulakh SK, Wang Z, Flynn HR, Krüger L, Tober-Lau P, Demichev V, Kurth F, Mülleder M, Blanchard V, Messner CB, Ralser M. Oxonium ion scanning mass spectrometry for large-scale plasma glycoproteomics. Nat Biomed Eng 2024; 8:233-247. [PMID: 37474612 PMCID: PMC10963274 DOI: 10.1038/s41551-023-01067-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 06/15/2023] [Indexed: 07/22/2023]
Abstract
Protein glycosylation, a complex and heterogeneous post-translational modification that is frequently dysregulated in disease, has been difficult to analyse at scale. Here we report a data-independent acquisition technique for the large-scale mass-spectrometric quantification of glycopeptides in plasma samples. The technique, which we named 'OxoScan-MS', identifies oxonium ions as glycopeptide fragments and exploits a sliding-quadrupole dimension to generate comprehensive and untargeted oxonium ion maps of precursor masses assigned to fragment ions from non-enriched plasma samples. By applying OxoScan-MS to quantify 1,002 glycopeptide features in the plasma glycoproteomes from patients with COVID-19 and healthy controls, we found that severe COVID-19 induces differential glycosylation in IgA, haptoglobin, transferrin and other disease-relevant plasma glycoproteins. OxoScan-MS may allow for the quantitative mapping of glycoproteomes at the scale of hundreds to thousands of samples.
Collapse
Affiliation(s)
- Matthew E H White
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Ludwig R Sinn
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - D Marc Jones
- Bioinformatics and Computational Biology Laboratory, The Francis Crick Institute, London, UK
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Joost de Folter
- Software Engineering and Artificial Intelligence Technology Platform, The Francis Crick Institute, London, UK
| | - Simran Kaur Aulakh
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Ziyue Wang
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Helen R Flynn
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Lynn Krüger
- Institute of Diagnostic Laboratory Medicine, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Human Medicine, Medical School Berlin, Berlin, Germany
| | - Pinkus Tober-Lau
- Department of Infectious Diseases and Critical Care Medicine, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Vadim Demichev
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Florian Kurth
- Department of Infectious Diseases and Critical Care Medicine, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Mülleder
- Core Facility High-throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Véronique Blanchard
- Institute of Diagnostic Laboratory Medicine, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Human Medicine, Medical School Berlin, Berlin, Germany
| | - Christoph B Messner
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK.
- Precision Proteomic Center, Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.
| | - Markus Ralser
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK.
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
2
|
Šimunović J, Gašperšič J, Černigoj U, Vidič J, Štrancar A, Novokmet M, Razdorov G, Pezer M, Lauc G, Trbojević-Akmačić I. High-throughput immunoaffinity enrichment and N-glycan analysis of human plasma haptoglobin. Biotechnol Bioeng 2023; 120:491-502. [PMID: 36324280 DOI: 10.1002/bit.28280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/24/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
Haptoglobin (Hp) is a positive acute phase protein, synthesized in the liver, with four N-glycosylation sites carrying mainly complex type N-glycans. Its glycosylation is altered in different types of diseases but still has not been extensively studied mainly due to analytical challenges, especially the lack of a fast, efficient, and robust high-throughput Hp isolation procedure. Here, we describe the development of a high-throughput method for Hp enrichment from human plasma, based on monolithic chromatographic support in immunoaffinity mode and downstream Hp N-glycome analysis by hydrophilic interaction ultrahigh-performance liquid chromatography with fluorescent detection (HILIC-UHPLC-FLR). Chromatographic monolithic supports in a 96-well format enable fast, efficient, and robust Hp enrichment directly from diluted plasma samples. The N-glycome analysis demonstrated that a degree of Hp deglycosylation differs depending on the conditions used for N-glycan release and on the specific glycosylation site, with Asn 241 being the most resistant to deglycosylation under tested conditions. HILIC-UHPLC-FLR analysis enables robust quantification of 28 individual chromatographic peaks, in which N-glycan compositions were determined by UHPLC coupled to electrospray ionization quadrupole time of flight mass spectrometry. The developed analytical approach enables fast evaluation of total Hp N-glycosylation and is applicable in large-scale studies.
Collapse
Affiliation(s)
| | | | - Urh Černigoj
- Sartorius BIA Separations d.o.o., Ajdovščina, Slovenia
| | - Jana Vidič
- Sartorius BIA Separations d.o.o., Ajdovščina, Slovenia
| | - Aleš Štrancar
- Sartorius BIA Separations d.o.o., Ajdovščina, Slovenia
| | | | | | - Marija Pezer
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.,Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | | |
Collapse
|
3
|
Itakura Y, Hasegawa Y, Kikkawa Y, Murakami Y, Sugiura K, Nagai-Okatani C, Sasaki N, Umemura M, Takahashi Y, Kimura T, Kuno A, Ishiwata T, Toyoda M. Spatiotemporal changes of tissue glycans depending on localization in cardiac aging. Regen Ther 2023; 22:68-78. [PMID: 36712959 PMCID: PMC9841240 DOI: 10.1016/j.reth.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/30/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
Heart failure is caused by various factors, making the underlying pathogenic mechanisms difficult to identify. Since cardiovascular disease tends to worsen over time, early diagnosis is key for treatment. In addition, understanding the qualitative changes in the heart associated with aging, where information on the direct influences of aging on cardiovascular disease is limited, would also be useful for treatment and diagnosis. To fill these research gaps, the focus of our study was to detect the structural and functional molecular changes associated with the heart over time, with a focus on glycans, which reflect the type and state of cells. METHODS We investigated glycan localization in the cardiac tissue of normal mice and their alterations during aging, using evanescent-field fluorescence-assisted lectin microarray, a technique based on lectin-glycan interaction, and lectin staining. RESULTS The glycan profiles in the left ventricle showed differences between the luminal side (medial) and wall side (lateral) regions. The medial region was characterized by the presence of sialic acid residues. Moreover, age-related changes in glycan profiles were observed at a younger age in the medial region. The difference in the age-related decrease in the level of α-galactose stained with Griffonia simplicifolia lectin-IB4 in different regions of the left ventricle suggests spatiotemporal changes in the number of microvessels. CONCLUSIONS The glycan profile, which retains diverse glycan structures, is supported by many cell populations, and maintains cardiac function. With further research, glycan localization and changes have the potential to be developed as a marker of the signs of heart failure.
Collapse
Key Words
- ACG, Agrocybe cylindracea galectin
- Aging
- BPL, Bauhinia purpurea alba lectin
- Calsepa, Calystegia sepium agglutinin
- Cardiac tissue
- ConA, Canavalia ensiformis lectin
- DAPI, 4′,6-diamidino-2-phenylindole
- DBA, Dolichos biflorus agglutinin
- ECA, Erythrina cristagalli agglutinin
- ECM, extracellular matrices
- EMT, endothelial-to-mesenchymal transition
- FITC, fluorescein isothiocyanate
- GSL-I, Griffonia simplicifolia lectin I
- Gal, galactose
- GalNAc, N-acetylgalactosamine
- GlcNAc, N-acetylglucosamine
- Glycan profile
- HE, hematoxylin-eosin
- LEL, Lycopersicon esculentum lectin
- LTL, Lotus tetragonolobus lectin
- Lectin microarray
- MAH, Maackia amurensis hemagglutinin
- MAL-I, Maackia amurensis lectin I
- Man, mannose
- Microvessels
- NPA, Narcissus pseudonarcissus agglutinin
- PBS, phosphate-buffered saline
- PCA, principal component analysis
- PHA-L, Phaseolus vulgaris leucoagglutinin
- PNA, Arachis hypogaea agglutinin
- RCA120, Ricinus communis agglutinin I
- SBA, Glycine max agglutinin
- SNA, Sambucus nigra agglutinin
- SSA, Sambucus sieboldiana agglutinin
- STL, Solanum tuberosum lectin
- TJA-I, Trichosanthes japonica agglutinin I
- UDA, Urtica dioica
- VVA, Vicia villosa agglutinin
- WFA, Wisteria floribunda agglutinin
- WGA, Triticum vulgaris agglutinin (wheat germ agglutinin)
- α-SMA, alpha smooth muscle actin
Collapse
Affiliation(s)
- Yoko Itakura
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Yasuko Hasegawa
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Yurika Kikkawa
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan,Laboratory of Stem Cell Biology, Department of Biosciences, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Yuina Murakami
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan,Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Kosuke Sugiura
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan,Laboratory of Stem Cell Biology, Department of Biosciences, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Chiaki Nagai-Okatani
- Cellular and Molecular Biotechnology Research Institute, National Institutes of Advanced Industrial Science and Technology, 5 Central, Tsukuba, 1-1-1 Higashi, Tsukuba-city, Ibaraki 305-8565, Japan
| | - Norihiko Sasaki
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Mariko Umemura
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Yuji Takahashi
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Tohru Kimura
- Laboratory of Stem Cell Biology, Department of Biosciences, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Atsushi Kuno
- Cellular and Molecular Biotechnology Research Institute, National Institutes of Advanced Industrial Science and Technology, 5 Central, Tsukuba, 1-1-1 Higashi, Tsukuba-city, Ibaraki 305-8565, Japan
| | - Toshiyuki Ishiwata
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Masashi Toyoda
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan,Corresponding author.
| |
Collapse
|
4
|
Bertok T, Bertokova A, Jane E, Hires M, Aguedo J, Potocarova M, Lukac L, Vikartovska A, Kasak P, Borsig L, Tkac J. Identification of Whole-Serum Glycobiomarkers for Colorectal Carcinoma Using Reverse-Phase Lectin Microarray. Front Oncol 2021; 11:735338. [PMID: 34956866 PMCID: PMC8695905 DOI: 10.3389/fonc.2021.735338] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common types of cancer among men and women worldwide. Efforts are currently underway to find novel and more cancer-specific biomarkers that could be detected in a non-invasive way. The analysis of aberrant glycosylation of serum glycoproteins is a way to discover novel diagnostic and prognostic CRC biomarkers. The present study investigated a whole-serum glycome with a panel of 16 different lectins in search for age-independent and CRC-specific glycomarkers using receiver operating characteristic (ROC) curve analyses and glycan heat matrices. Glycosylation changes present in the whole serum were identified, which could lead to the discovery of novel biomarkers for CRC diagnostics. In particular, the change in the bisecting glycans (recognized by Phaseolus vulgaris erythroagglutinin) had the highest discrimination potential for CRC diagnostics in combination with human L selectin providing area under the ROC curve (AUC) of 0.989 (95% CI 0.950-1.000), specificity of 1.000, sensitivity of 0.900, and accuracy of 0.960. We also implemented novel tools for identification of lectins with strong discrimination power.
Collapse
Affiliation(s)
- Tomas Bertok
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Aniko Bertokova
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Eduard Jane
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michal Hires
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Juvissan Aguedo
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Ludovit Lukac
- University Hospital Bratislava, Bratislava, Slovakia
| | - Alica Vikartovska
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Peter Kasak
- Center for Advanced Materials, Qatar University, Doha, Qatar
| | - Lubor Borsig
- Department of Physiology, University of Zurich, Zurich, Switzerland
- Comprehensive Cancer Center, Zurich, Switzerland
| | - Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
5
|
Goumenou A, Delaunay N, Pichon V. Recent Advances in Lectin-Based Affinity Sorbents for Protein Glycosylation Studies. Front Mol Biosci 2021; 8:746822. [PMID: 34778373 PMCID: PMC8585745 DOI: 10.3389/fmolb.2021.746822] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/23/2021] [Indexed: 01/29/2023] Open
Abstract
Glycosylation is one of the most significant post-translational modifications occurring to proteins, since it affects some of their basic properties, such as their half-life or biological activity. The developments in analytical methodologies has greatly contributed to a more comprehensive understanding of the quantitative and qualitative characteristics of the glycosylation state of proteins. Despite those advances, the difficulty of a full characterization of glycosylation still remains, mainly due to the complexity of the glycoprotein and/or glycopeptide mixture especially when they are present in complex biological samples. For this reason, various techniques that allow a prior selective enrichment of exclusively glycosylated proteins or glycopeptides have been developed in the past and are coupled either on- or off- line with separation and detection methods. One of the most commonly implemented enrichment methods includes the use of lectin proteins immobilized on various solid supports. Lectins are a group of different, naturally occurring proteins that share a common characteristic, which concerns their affinity for specific sugar moieties of glycoproteins. This review presents the different formats and conditions for the use of lectins in affinity chromatography and in solid phase extraction, including their use in dispersive mode, along with the recent progress made on either commercial or home-made lectin-based affinity sorbents, which can lead to a fast and automated glycosylation analysis.
Collapse
Affiliation(s)
- Anastasia Goumenou
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR 8231 Chemistry, Biology and Innovation (CBI), ESPCI Paris, CNRS, PSL University, Paris, France
| | - Nathalie Delaunay
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR 8231 Chemistry, Biology and Innovation (CBI), ESPCI Paris, CNRS, PSL University, Paris, France
| | - Valérie Pichon
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR 8231 Chemistry, Biology and Innovation (CBI), ESPCI Paris, CNRS, PSL University, Paris, France.,Sorbonne University, Paris, France
| |
Collapse
|
6
|
Franzka P, Krüger L, Schurig MK, Olecka M, Hoffmann S, Blanchard V, Hübner CA. Altered Glycosylation in the Aging Heart. Front Mol Biosci 2021; 8:673044. [PMID: 34124155 PMCID: PMC8194361 DOI: 10.3389/fmolb.2021.673044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/07/2021] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular disease is one of the leading causes of death in developed countries. Because the incidence increases exponentially in the aging population, aging is a major risk factor for cardiovascular disease. Cardiac hypertrophy, fibrosis and inflammation are typical hallmarks of the aged heart. The molecular mechanisms, however, are poorly understood. Because glycosylation is one of the most common post-translational protein modifications and can affect biological properties and functions of proteins, we here provide the first analysis of the cardiac glycoproteome of mice at different ages. Western blot as well as MALDI-TOF based glycome analysis suggest that high-mannose N-glycans increase with age. In agreement, we found an age-related regulation of GMPPB, the enzyme, which facilitates the supply of the sugar-donor GDP-mannose. Glycoprotein pull-downs from heart lysates of young, middle-aged and old mice in combination with quantitative mass spectrometry bolster widespread alterations of the cardiac glycoproteome. Major hits are glycoproteins related to the extracellular matrix and Ca2+-binding proteins of the endoplasmic reticulum. We propose that changes in the heart glycoproteome likely contribute to the age-related functional decline of the cardiovascular system.
Collapse
Affiliation(s)
- Patricia Franzka
- Institute of Human Genetics, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Lynn Krüger
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Mona K Schurig
- Institute of Human Genetics, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Maja Olecka
- Hoffmann Research Group, Leibniz-Institute on Aging-Fritz-Lipmann-Institute, Jena, Germany
| | - Steve Hoffmann
- Hoffmann Research Group, Leibniz-Institute on Aging-Fritz-Lipmann-Institute, Jena, Germany
| | - Véronique Blanchard
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin, Germany
| | - Christian A Hübner
- Institute of Human Genetics, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
7
|
Abstract
Human lifespan has increased significantly in the last 200 years, emphasizing our need to age healthily. Insights into molecular mechanisms of aging might allow us to slow down its rate or even revert it. Similar to aging, glycosylation is regulated by an intricate interplay of genetic and environmental factors. The dynamics of glycopattern variation during aging has been mostly explored for plasma/serum and immunoglobulin G (IgG) N-glycome, as we describe thoroughly in this chapter. In addition, we discuss the potential functional role of agalactosylated IgG glycans in aging, through modulation of inflammation level, as proposed by the concept of inflammaging. We also comment on the potential to use the plasma/serum and IgG N-glycome as a biomarker of healthy aging and on the interventions that modulate the IgG glycopattern. Finally, we discuss the current knowledge about animal models for human plasma/serum and IgG glycosylation and mention other, less explored, instances of glycopattern changes during organismal aging and cellular senescence.
Collapse
|
8
|
Dang K, Zhang W, Jiang S, Lin X, Qian A. Application of Lectin Microarrays for Biomarker Discovery. ChemistryOpen 2020; 9:285-300. [PMID: 32154049 PMCID: PMC7050261 DOI: 10.1002/open.201900326] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
Many proteins in living organisms are glycosylated. As their glycan patterns exhibit protein-, cell-, and tissue-specific heterogeneity, changes in the glycosylation levels could serve as useful indicators of various pathological and physiological states. Thus, the identification of glycoprotein biomarkers from specific changes in the glycan profiles of glycoproteins is a trending field. Lectin microarrays provide a new glycan analysis platform, which enables rapid and sensitive analysis of complex glycans without requiring the release of glycans from the protein. Recent developments in lectin microarray technology enable high-throughput analysis of glycans in complex biological samples. In this review, we will discuss the basic concepts and recent progress in lectin microarray technology, the application of lectin microarrays in biomarker discovery, and the challenges and future development of this technology. Given the tremendous technical advancements that have been made, lectin microarrays will become an indispensable tool for the discovery of glycoprotein biomarkers.
Collapse
Affiliation(s)
- Kai Dang
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| | - Wenjuan Zhang
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| | - Shanfeng Jiang
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| | - Xiao Lin
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| | - Airong Qian
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| |
Collapse
|
9
|
Quantitative proteomics to study aging in rabbit liver. Mech Ageing Dev 2020; 187:111227. [PMID: 32126221 DOI: 10.1016/j.mad.2020.111227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 01/24/2020] [Accepted: 02/27/2020] [Indexed: 12/23/2022]
Abstract
Aging globally effects cellular and organismal metabolism across a range of mammalian species, including humans and rabbits. Rabbits (Oryctolagus cuniculus are an attractive model system of aging due to their genetic similarity with humans and their short lifespans. This model can be used to understand metabolic changes in aging especially in major organs such as liver where we detected pronounced variations in fat metabolism, mitochondrial dysfunction, and protein degradation. Such changes in the liver are consistent across several mammalian species however in rabbits the downstream effects of these changes have not yet been explored. We have applied proteomics to study changes in the liver proteins from young, middle, and old age rabbits using a multiplexing cPILOT strategy. This resulted in the identification of 2,586 liver proteins, among which 45 proteins had significant p < 0.05) changes with aging. Seven proteins were differentially-expressed at all ages and include fatty acid binding protein, aldehyde dehydrogenase, enoyl-CoA hydratase, 3-hydroxyacyl CoA dehydrogenase, apolipoprotein C3, peroxisomal sarcosine oxidase, adhesion G-protein coupled receptor, and glutamate ionotropic receptor kinate. Insights to how alterations in metabolism affect protein expression in liver have been gained and demonstrate the utility of rabbit as a model of aging.
Collapse
|
10
|
Thompson HJ. Improving Human Dietary Choices Through Understanding of the Tolerance and Toxicity of Pulse Crop Constituents. Curr Opin Food Sci 2019; 30:93-97. [PMID: 32864345 PMCID: PMC7449238 DOI: 10.1016/j.cofs.2019.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Chickpea, dry bean, dry pea, and lentil are prominent dietary grain legumes commonly referred to as pulses. Pulses have been a staple component of the human diet for more than 8,000 years; however, in the last 70 years they have virtually disappeared from most Western diets. Reduced intake has occurred concomitantly with inadequate dietary fiber consumption and the onset of the obesity pandemic. Misinformation about tolerance and toxicity of several pulse crop constituents remains a barrier to public health efforts to increase dietary intake. Of particular concern are lectins which participate in agglutination reactions with cell surface proteins and galacto-oligosaccharides which have been associated with intestinal discomfort and flatulence. The scientific basis of these concerns is reviewed.
Collapse
Affiliation(s)
- Henry J Thompson
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523-1173
| |
Collapse
|
11
|
Brambilla D, Chiari M, Gori A, Cretich M. Towards precision medicine: the role and potential of protein and peptide microarrays. Analyst 2019; 144:5353-5367. [PMID: 31384857 DOI: 10.1039/c9an01142k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Although the traditional strategy of developing general medical treatments for heterogeneous patient populations has a well-established track record, the acknowledgment that one-size-does-not-fit-all is pushing health-care to enter a new era of tailored interventions. The advent of precision medicine is fueled by the high-throughput analysis of individual DNA variants and mRNA expression profiles. However, due to the role of proteins in providing a more direct view of disease states than genomics alone, the ability to comprehensively analyze protein alterations and post translational modifications (PTMs) is a necessary step to unravel disease mechanisms, develop novel biomarkers and targeted therapies. Protein and peptide microarrays can play a major role in this frame, due to high-throughput, low sample consumption and wide applicability. Here, their current role and potentialities are discussed through the review of some promising applications in the fields of PTMs analysis, enzyme screening, high-content immune-profiling and the phenotyping of extracellular vesicles.
Collapse
Affiliation(s)
- Dario Brambilla
- Consiglio Nazionale delle Ricerche, Istituto di Chimica del Riconoscimento Molecolare (ICRM), Via Mario Bianco, 9, 20131, Milano, Italy.
| | | | | | | |
Collapse
|