1
|
Abduh MS, Alwassil OI, Aldaqal SM, Alfwuaires MA, Farhan M, Hanieh H. A pyrazolopyridine as a novel AhR signaling activator with anti-breast cancer properties in vitro and in vivo. Biochem Pharmacol 2024; 222:116079. [PMID: 38402910 DOI: 10.1016/j.bcp.2024.116079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/29/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Breast cancer is one of the main causes of malignancy-related deaths globally and has a significant impact on women's quality of life. Despite significant therapeutic advances, there is a medical need for targeted therapies in breast cancer. Aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor mediates responses to environment stimuli, is emerging as a unique pleiotropic target. Herein, a combined molecular simulation and in vitro investigations identified 3-(3-fluorophenyl)-1H-pyrazolo[3,4-b]pyridine (3FPP) as a novel AhR ligand in T47D and MDA-MB-231 breast cancer cells. Its agonistic effects induced formation of the AhR-AhR nuclear translocator (Arnt) heterodimer and prompted its binding to the penta-nucleotide sequence, called xenobiotic-responsive element (XRE) motif. Moreover, 3FPP augmented the promoter-driven luciferase activities and expression of AhR-regulated genes encoding cytochrome P450 1A1 (CYP1A1) and microRNA (miR)-212/132 cluster. It reduced cell viability, migration, and invasion of both cell lines through AhR signaling. These anticancer properties were concomitant with reduced levels of B-cell lymphoma 2 (BCL-2), SRY-related HMG-box4 (SOX4), snail family zinc finger 2 (SNAI2), and cadherin 2 (CDH2). In vivo, 3FPP suppressed tumor growth and activated AhR signaling in an orthotopic mouse model. In conclusion, our results introduce the fused pyrazolopyridine 3FPP as a novel AhR agonist with AhR-specific anti-breast cancer potential in vitro and in vivo.
Collapse
Affiliation(s)
- Maisa S Abduh
- Immune Responses in Different Diseases Research Group, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Osama I Alwassil
- Department of Pharmaceutical Sciences, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11451, Saudi Arabia.
| | - Saleh M Aldaqal
- Immune Responses in Different Diseases Research Group, Department of Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Manal A Alfwuaires
- Department of Biological Sciences, College of Science, King Faisal University, Hofuf 31982, Saudi Arabia.
| | - Mahdi Farhan
- International Medical Research Center (iMReC), Aqaba 77110, Jordan; Drug Development Department, UniTechPharma, Fribourg 1700, Switzerland.
| | - Hamza Hanieh
- International Medical Research Center (iMReC), Aqaba 77110, Jordan; Basic Medical Sciences Department, Faculty of Medicine, Aqaba Medical Sciences University, Aqaba 77110, Jordan.
| |
Collapse
|
2
|
Jiang C, Storey KB, Yang H, Sun L. Aestivation in Nature: Physiological Strategies and Evolutionary Adaptations in Hypometabolic States. Int J Mol Sci 2023; 24:14093. [PMID: 37762394 PMCID: PMC10531719 DOI: 10.3390/ijms241814093] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Aestivation is considered to be one of the "purest" hypometabolic states in nature, as it involves aerobic dormancy that can be induced and sustained without complex factors. Animals that undergo aestivation to protect themselves from environmental stressors such as high temperatures, droughts, and food shortages. However, this shift in body metabolism presents new challenges for survival, including oxidative stress upon awakening from aestivation, accumulation of toxic metabolites, changes in energy sources, adjustments to immune status, muscle atrophy due to prolonged immobility, and degeneration of internal organs due to prolonged food deprivation. In this review, we summarize the physiological and metabolic strategies, key regulatory factors, and networks utilized by aestivating animals to address the aforementioned components of aestivation. Furthermore, we present a comprehensive overview of the advancements made in aestivation research across major species, including amphibians, fish, reptiles, annelids, mollusks, and echinoderms, categorized according to their respective evolutionary positions. This approach offers a distinct perspective for comparative analysis, facilitating an understanding of the shared traits and unique features of aestivation across different groups of organisms.
Collapse
Affiliation(s)
- Chunxi Jiang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences & Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (C.J.); (H.Y.)
- Laboratory for Marine Ecology and Environmental Science & Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences & Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (C.J.); (H.Y.)
- Laboratory for Marine Ecology and Environmental Science & Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences & Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (C.J.); (H.Y.)
- Laboratory for Marine Ecology and Environmental Science & Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Malik AI, Storey JM, Storey KB. Regulation of the unfolded protein response during dehydration stress in African clawed frogs, Xenopus laevis. Cell Stress Chaperones 2023; 28:529-540. [PMID: 35484355 PMCID: PMC10468459 DOI: 10.1007/s12192-022-01275-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/28/2022] Open
Abstract
The unfolded protein response (UPR) is a wide-ranging cellular response to accumulation of malfolded proteins in the endoplasmic reticulum (ER) and acts as a quality control mechanism to halt protein processing and repair/destroy malfolded proteins under stress conditions of many kinds. Among vertebrate species, amphibians experience the greatest challenges in maintaining water and osmotic balance, the high permeability of their skin making them very susceptible to dehydration and challenging their ability to maintain cellular homeostasis. The present study evaluates the involvement of the UPR in dealing with dehydration-mediated disruption of protein processing in the tissues of African clawed frogs, Xenopus laevis. This primarily aquatic frog must deal with seasonal drought conditions in its native southern Africa environment. Key markers of cellular stress that impact protein processing were identified in six tissues of frogs that had lost 28% of total body water, as compared with fully hydrated controls. This included upregulation of glucose-regulated proteins (GRPs) that are resident chaperones in the ER, particularly 2-ninefold increases in GRP58, GRP75, and/or GRP94 in the lung and skin. Activating transcription factors (ATF3, ATF4, ATF6) that mediate UPR responses also responded to dehydration stress, particularly in skeletal muscle where both ATF3 and ATF4 rose strongly in the nucleus. Other protein markers of the UPR including GADD34, GADD153, EDEM, and XBP-1 also showed selective upregulation in frog tissues in response to dehydration and nuclear levels of the transcription factors XBP-1 and P-CREB rose indicating up-regulation of genes under their control.
Collapse
Affiliation(s)
- Amal Idris Malik
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Janet M Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
4
|
Erman A, Hawkins LJ, Storey KB. MicroRNA, mRNA and protein responses to dehydration in skeletal muscle of the African-clawed frog, Xenopus laevis. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Hanieh H, Ibrahim HIM, Mohammed M, Alwassil OI, Abukhalil MH, Farhan M. Activation of aryl hydrocarbon receptor signaling by gallic acid suppresses progression of human breast cancer in vitro and in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153817. [PMID: 34782204 DOI: 10.1016/j.phymed.2021.153817] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 10/11/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Despite the significant advances in diagnosis and treatment, breast cancer remains the most common malignancy and the second cause of death in women. Increasingly, preclinical evidence has suggested aryl hydrocarbon receptor (Ahr), a ligand activated transcription factor, a promising therapeutic target in breast cancer. PURPOSE This study aims at screening a number of phenolic compounds to identify an Ahr ligand with suppressive effects on human breast cancer. METHODS Potential interactions between Ahr and phenolic compounds were predicted in silico, and physical interaction was examined by ligand competitive binding in vitro. The MDA-MB-231 and T47D breast cancer cell lines were used to examine the expression of Ahr downstream genes and progression of breast cancer cells in vitro. Binding of Ahr/Ahr nuclear transporter (Arnt) complex to the xenobiotic-responsive element (XRE)-box was examined by DNA-protein interaction (DPI)-ELISA, promoter activity was assessed using luciferase reporter system, and RNA interreference was carried out using electroporation. The real-time PCR and/or immunoblotting were used to quantify gene expressions. Tumor growth in vivo was assessed using a murine orthotopic model. RESULTS A combined computational modeling and in vitro approaches identified gallic acid (GA) as an Ahr ligand with agonistic properties. It induced binding of Ahr/Arnt to the XRE-box, enhanced the promoter activity and expression of Ahr downstream genes including cytochrome P450 1A1 (CYP1A1), and SRY-related HMG-box4 (SOX4)-targeting miR-212/132 cluster and miR-335 in both MDA-MB-231 and T47D cells. GA increased apoptosis while decreased proliferation, migration and invasion capacities of breast cancer cells in an Ahr-dependent fashion. Furthermore, it reduced the levels of B-cell lymphoma 2 (BCL-2), cyclooxygenase-2 (COX-2) and SOX4, while selectively increased that of tumor protein 53 (P53), in an Ahr-dependent and -independent fashions. In an in vivo orthotopic model, GA activated Ahr signaling and reduced the growth of breast cancer cells. CONCLUSION We identified GA as an Ahr phenolic ligand, and provided evidence on the role of Ahr in mediating its anti-breast cancer effects, indicating that GA, and possibly other phenolic compounds, have important therapeutic implications in human breast cancer through activation of Ahr signaling.
Collapse
Affiliation(s)
- Hamza Hanieh
- Department of Medical Analysis, Department of Biological Sciences, Al-Hussein Bin Talal University, Ma'an 71111, Jordan; International Medical Research Center (iMReC), Aqaba 77110, Jordan.
| | - Hairul-Islam M Ibrahim
- Biological Sciences Department, College of Science, King Faisal University, Hofuf 31982, Saudi Arabia
| | - Maged Mohammed
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Hofuf 31982, Saudi Arabia; Department of Pharmacognosy, College of Pharmacy, Zagazig University, Zagazig 44111, Egypt
| | - Osama I Alwassil
- Department of Pharmaceutical Sciences, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11451, Saudi Arabia
| | - Mohammad H Abukhalil
- Department of Medical Analysis, Department of Biological Sciences, Al-Hussein Bin Talal University, Ma'an 71111, Jordan; International Medical Research Center (iMReC), Aqaba 77110, Jordan
| | - Mahdi Farhan
- International Medical Research Center (iMReC), Aqaba 77110, Jordan; Department of Drug Development, UniTechPharma, Fribourg 1700, Switzerland
| |
Collapse
|
6
|
Insights from a vertebrate model organism on the molecular mechanisms of whole-body dehydration tolerance. Mol Cell Biochem 2021; 476:2381-2392. [PMID: 33595794 DOI: 10.1007/s11010-021-04072-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/16/2021] [Indexed: 10/25/2022]
Abstract
Studies on the molecular mechanisms of dehydration tolerance have been largely limited to plants and invertebrates. Currently, research in whole body dehydration of complex animals is limited to cognitive and behavioral effects in humans, leaving the molecular mechanisms of vertebrate dehydration relatively unexplored. The present review summarizes studies to date on the African clawed frog (Xenopus laevis) and examines whole-body dehydration on physiological, cellular and molecular levels. This aquatic frog is exposed to seasonal droughts in its native habitat and can endure a loss of over 30% of its total body water. When coping with dehydration, osmoregulatory processes prioritize water retention in skeletal tissues and vital organs over plasma volume. Although systemic blood circulation is maintained in the vital organs and even elevated in the brain during dehydration, it is done so at the expense of reduced circulation to the skeletal muscles. Increased hemoglobin affinity for oxygen helps to counteract impaired blood circulation and metabolic enzymes show altered kinetic and regulatory parameters that support the use of anaerobic glycolysis. Recent studies with X. laevis also show that pro-survival pathways such as antioxidant defenses and heat shock proteins are activated in an organ-specific manner during dehydration. These pathways are tightly coordinated at the post-transcriptional level by non-coding RNAs, and at the post-translational level by reversible protein phosphorylation. Paired with ongoing research on the X. laevis genome, the African clawed frog is poised to be an ideal animal model with which to investigate the molecular adaptations for dehydration tolerance much more deeply.
Collapse
|
7
|
Wang F, Chen X, Sun B, Ma Y, Niu W, Zhai J, Sun Y. Hypermethylation-mediated downregulation of lncRNA PVT1 promotes granulosa cell apoptosis in premature ovarian insufficiency via interacting with Foxo3a. J Cell Physiol 2021; 236:5162-5175. [PMID: 33393111 DOI: 10.1002/jcp.30222] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Long noncoding RNA PVT1 is involved in the progression of female gynecological cancers. However, the role of PVT1 in ovarian granulosa cell apoptosis-mediated premature ovarian insufficiency (POI) remains unclear. This study aims to elucidate the role of PVT1 in ovarian granulosa cell apoptosis-mediated POI. The expression of PVT1 was compared between ovarian tissues from POI patients and normal controls. The methylation level in the PVT1 promoter region was detected by methylation-specific polymerase chain reaction. The interaction between PVT1 and forkhead box class O3A (Foxo3a) was confirmed by RNA pull-down and RNA immunoprecipitation assays. Granulosa cell apoptosis was detected using flow cytometry. The effect of PVT1 on transcription activity of Foxo3a was detected by luciferase reporter assay. The expression of PVT1 was low in the POI ovarian tissues compared with the controls, and such a low expression was related to the hypermethylation of the PVT1 promoter. PVT1 was localized in both the cytoplasm and the nucleus of granulosa cells. We determined that PVT1 could bind with Foxo3a and that downregulating PVT1 by small interfering RNAs inhibited Foxo3a phosphorylation by promoting SCP4-mediated Foxo3a dephosphorylation, resulting in an increase in Foxo3a transcription activity. Moreover, downregulating PVT1 promoted granulosa cell apoptosis by increasing the Foxo3a protein levels. An in vivo experiment showed that the injection of PVT1 overexpressing vectors restored the ovarian function in POI mice. Hypermethylation-induced downregulation of PVT1 promotes granulosa cell apoptosis in POI by inhibiting Foxo3a phosphorylation and increases the Foxo3a transcription activity.
Collapse
Affiliation(s)
- Fang Wang
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuemei Chen
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Bo Sun
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yujia Ma
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenbin Niu
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jun Zhai
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yingpu Sun
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Luu BE, Zhang Y, Storey KB. The regulation of Akt and FoxO transcription factors during dehydration in the African clawed frog (Xenopus laevis). Cell Stress Chaperones 2020; 25:887-897. [PMID: 32451989 PMCID: PMC7591653 DOI: 10.1007/s12192-020-01123-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022] Open
Abstract
The African clawed frog (Xenopus laevis) naturally tolerates severe dehydration using biochemical adaptation, one of which is the elevation of antioxidant defenses during whole-body dehydration. The present study investigated the role and regulation of a pathway known to regulate oxidative stress response, the Akt-FoxO signaling pathway, in clawed frog skeletal muscle, responding to medium (15%) and high (30%) dehydration. Protein levels of total and phosphorylated Akt, FoxO1, and FoxO3 were assessed via immunoblotting, in addition to the levels of the E3 ubiquitin ligase known to be associated with muscle atrophy, MAFbx. Akt activity/phosphorylation in addition to its total protein levels were decreased in the skeletal muscle during dehydration, and this corresponded with decreases in the relative phosphorylation of FoxO1 and FoxO3 as well on several residues. Akt is an inhibitor of FoxO1 and FoxO3 activity via phosphorylation, suggesting that FoxO activities were increased during dehydration stress. Furthermore, MAFbx showed decreased protein expression during high dehydration as well, suggesting that the clawed frog may exhibit some natural resistance to skeletal muscle atrophy during severe dehydration conditions. In addition to identifying that the suppression of Akt could lead to an activation of FoxO transcription factors in X. laevis during dehydration, these investigations suggest that X. laevis dehydration may implicate FoxO1 and FoxO3 in controlling skeletal muscle atrophy in X. laevis exposed to dehydration. This study implicates the Akt signaling pathway, its regulation of FoxO transcription factors, and FoxO-controlled targets, in stress adaptation against dehydration.
Collapse
Affiliation(s)
- Bryan E Luu
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
- Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Yichi Zhang
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
9
|
Chen C, Tan H, Bi J, Li L, Rong T, Lin Y, Sun P, Liang J, Jiao Y, Li Z, Sun L, Shen J. LncRNA-SULT1C2A regulates Foxo4 in congenital scoliosis by targeting rno-miR-466c-5p through PI3K-ATK signalling. J Cell Mol Med 2019; 23:4582-4591. [PMID: 31044535 PMCID: PMC6584475 DOI: 10.1111/jcmm.14355] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/31/2019] [Accepted: 04/10/2019] [Indexed: 12/17/2022] Open
Abstract
Congenital scoliosis (CS) is the result of anomalous vertebrae development, but the pathogenesis of CS remains unclear. Long non‐coding RNAs (lncRNAs) have been implicated in embryo development, but their role in CS remains unknown. In this study, we investigated the role and mechanisms of a specific lncRNA, SULT1C2A, in somitogenesis in a rat model of vitamin A deficiency (VAD)‐induced CS. Bioinformatics analysis and quantitative real‐time PCR (qRT‐PCR) indicated that SULT1C2A expression was down‐regulated in VAD group, accompanied by increased expression of rno‐miR‐466c‐5p but decreased expression of Foxo4 and somitogenesis‐related genes such as Pax1, Nkx3‐2 and Sox9 on gestational day (GD) 9. Luciferase reporter and small interfering RNA (siRNA) assays showed that SULT1C2A functioned as a competing endogenous RNA to inhibit rno‐miR‐466c‐5p expression by direct binding, and rno‐miR‐466c‐5p inhibited Foxo4 expression by binding to its 3′ untranslated region (UTR). The spatiotemporal expression of SULT1C2A, rno‐miR‐466c‐5p and Foxo4 axis was dynamically altered on GDs 3, 8, 11, 15 and 21 as detected by qRT‐PCR and northern blot analyses, with parallel changes in Protein kinase B (AKT) phosphorylation and PI3K expression. Taken together, our findings indicate that SULT1C2A enhanced Foxo4 expression by negatively modulating rno‐miR‐466c‐5p expression via the PI3K‐ATK signalling pathway in the rat model of VAD‐CS. Thus, SULT1C2A may be a potential target for treating CS.
Collapse
Affiliation(s)
- Chong Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Haining Tan
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jiaqi Bi
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Lin Li
- Beijing Zhongke Jingyun Technology Company Ltd., Beijing, China
| | - Tianhua Rong
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Youxi Lin
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Peiyu Sun
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Department of Orthopedics Surgery, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Jinqian Liang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yang Jiao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zheng Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Liang Sun
- Beijing Zhongke Jingyun Technology Company Ltd., Beijing, China
| | - Jianxiong Shen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|