1
|
Liu Y, Jiao Y, Fan Q, Li X, Liu Z, Qin D, Hu J, Liu L, Shuai J, Li Z. Morphological entropy encodes cellular migration strategies on multiple length scales. NPJ Syst Biol Appl 2024; 10:26. [PMID: 38453929 PMCID: PMC10920856 DOI: 10.1038/s41540-024-00353-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/26/2024] [Indexed: 03/09/2024] Open
Abstract
Cell migration is crucial for numerous physiological and pathological processes. A cell adapts its morphology, including the overall and nuclear morphology, in response to various cues in complex microenvironments, such as topotaxis and chemotaxis during migration. Thus, the dynamics of cellular morphology can encode migration strategies, from which diverse migration mechanisms can be inferred. However, deciphering the mechanisms behind cell migration encoded in morphology dynamics remains a challenging problem. Here, we present a powerful universal metric, the Cell Morphological Entropy (CME), developed by combining parametric morphological analysis with Shannon entropy. The utility of CME, which accurately quantifies the complex cellular morphology at multiple length scales through the deviation from a perfectly circular shape, is illustrated using a variety of normal and tumor cell lines in different in vitro microenvironments. Our results show how geometric constraints affect the MDA-MB-231 cell nucleus, the emerging interactions of MCF-10A cells migrating on collagen gel, and the critical transition from proliferation to invasion in tumor spheroids. The analysis demonstrates that the CME-based approach provides an effective and physically interpretable tool to measure morphology in real-time across multiple length scales. It provides deeper insight into cell migration and contributes to the understanding of different behavioral modes and collective cell motility in more complex microenvironments.
Collapse
Affiliation(s)
- Yanping Liu
- Department of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China.
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China.
| | - Yang Jiao
- Materials Science and Engineering, Arizona State University, Tempe, AZ, USA
- Department of Physics, Arizona State University, Tempe, AZ, USA
| | - Qihui Fan
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Xinwei Li
- Department of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Zhichao Liu
- Department of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Dui Qin
- Department of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Jun Hu
- Department of Neurology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Liyu Liu
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing, China
| | - Jianwei Shuai
- Department of Physics, Xiamen University, Xiamen, China.
- Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.
| | - Zhangyong Li
- Department of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China.
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China.
| |
Collapse
|
2
|
Suarez-Martinez E, Suazo-Sanchez I, Celis-Romero M, Carnero A. 3D and organoid culture in research: physiology, hereditary genetic diseases and cancer. Cell Biosci 2022; 12:39. [PMID: 35365227 PMCID: PMC8973959 DOI: 10.1186/s13578-022-00775-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/13/2022] [Indexed: 02/08/2023] Open
Abstract
In nature, cells reside in tissues subject to complex cell–cell interactions, signals from extracellular molecules and niche soluble and mechanical signaling. These microenvironment interactions are responsible for cellular phenotypes and functions, especially in normal settings. However, in 2D cultures, where interactions are limited to the horizontal plane, cells are exposed uniformly to factors or drugs; therefore, this model does not reconstitute the interactions of a natural microenvironment. 3D culture systems more closely resemble the architectural and functional properties of in vivo tissues. In these 3D cultures, the cells are exposed to different concentrations of nutrients, growth factors, oxygen or cytotoxic agents depending on their localization and communication. The 3D architecture also differentially alters the physiological, biochemical, and biomechanical properties that can affect cell growth, cell survival, differentiation and morphogenesis, cell migration and EMT properties, mechanical responses and therapy resistance. This latter point may, in part, explain the failure of current therapies and affect drug discovery research. Organoids are a promising 3D culture system between 2D cultures and in vivo models that allow the manipulation of signaling pathways and genome editing of cells in a body-like environment but lack the many disadvantages of a living system. In this review, we will focus on the role of stem cells in the establishment of organoids and the possible therapeutic applications of this model, especially in the field of cancer research.
Collapse
Affiliation(s)
- Elisa Suarez-Martinez
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Av Manuel Siurot sn, 41013, Sevilla, Spain.,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Suazo-Sanchez
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Av Manuel Siurot sn, 41013, Sevilla, Spain.,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Celis-Romero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Av Manuel Siurot sn, 41013, Sevilla, Spain.,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Av Manuel Siurot sn, 41013, Sevilla, Spain. .,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
3
|
Perini G, Rosa E, Friggeri G, Di Pietro L, Barba M, Parolini O, Ciasca G, Moriconi C, Papi M, De Spirito M, Palmieri V. INSIDIA 2.0 High-Throughput Analysis of 3D Cancer Models: Multiparametric Quantification of Graphene Quantum Dots Photothermal Therapy for Glioblastoma and Pancreatic Cancer. Int J Mol Sci 2022; 23:3217. [PMID: 35328638 PMCID: PMC8948775 DOI: 10.3390/ijms23063217] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/04/2022] Open
Abstract
Cancer spheroids are in vitro 3D models that became crucial in nanomaterials science thanks to the possibility of performing high throughput screening of nanoparticles and combined nanoparticle-drug therapies on in vitro models. However, most of the current spheroid analysis methods involve manual steps. This is a time-consuming process and is extremely liable to the variability of individual operators. For this reason, rapid, user-friendly, ready-to-use, high-throughput image analysis software is necessary. In this work, we report the INSIDIA 2.0 macro, which offers researchers high-throughput and high content quantitative analysis of in vitro 3D cancer cell spheroids and allows advanced parametrization of the expanding and invading cancer cellular mass. INSIDIA has been implemented to provide in-depth morphologic analysis and has been used for the analysis of the effect of graphene quantum dots photothermal therapy on glioblastoma (U87) and pancreatic cancer (PANC-1) spheroids. Thanks to INSIDIA 2.0 analysis, two types of effects have been observed: In U87 spheroids, death is accompanied by a decrease in area of the entire spheroid, with a decrease in entropy due to the generation of a high uniform density spheroid core. On the other hand, PANC-1 spheroids' death caused by nanoparticle photothermal disruption is accompanied with an overall increase in area and entropy due to the progressive loss of integrity and increase in variability of spheroid texture. We have summarized these effects in a quantitative parameter of spheroid disruption demonstrating that INSIDIA 2.0 multiparametric analysis can be used to quantify cell death in a non-invasive, fast, and high-throughput fashion.
Collapse
Affiliation(s)
- Giordano Perini
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.P.); (E.R.); (G.F.); (G.C.); (M.D.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; (L.D.P.); (M.B.); (O.P.)
| | - Enrico Rosa
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.P.); (E.R.); (G.F.); (G.C.); (M.D.S.)
| | - Ginevra Friggeri
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.P.); (E.R.); (G.F.); (G.C.); (M.D.S.)
| | - Lorena Di Pietro
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; (L.D.P.); (M.B.); (O.P.)
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Marta Barba
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; (L.D.P.); (M.B.); (O.P.)
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Ornella Parolini
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; (L.D.P.); (M.B.); (O.P.)
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Gabriele Ciasca
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.P.); (E.R.); (G.F.); (G.C.); (M.D.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; (L.D.P.); (M.B.); (O.P.)
| | - Chiara Moriconi
- Theolytics, The Sherard Building, Edmund Halley Road, Oxford Science Park, Oxford OX4 4DQ, UK; or
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.P.); (E.R.); (G.F.); (G.C.); (M.D.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; (L.D.P.); (M.B.); (O.P.)
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.P.); (E.R.); (G.F.); (G.C.); (M.D.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; (L.D.P.); (M.B.); (O.P.)
| | - Valentina Palmieri
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.P.); (E.R.); (G.F.); (G.C.); (M.D.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; (L.D.P.); (M.B.); (O.P.)
- Istituto dei Sistemi Complessi, CNR, Via dei Taurini 19, 00185 Rome, Italy
| |
Collapse
|
4
|
Ruiz-Garcia H, Alvarado-Estrada K, Schiapparelli P, Quinones-Hinojosa A, Trifiletti DM. Engineering Three-Dimensional Tumor Models to Study Glioma Cancer Stem Cells and Tumor Microenvironment. Front Cell Neurosci 2020; 14:558381. [PMID: 33177991 PMCID: PMC7596188 DOI: 10.3389/fncel.2020.558381] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) is the most common and devastating primary brain tumor, leading to a uniform fatality after diagnosis. A major difficulty in eradicating GBM is the presence of microscopic residual infiltrating disease remaining after multimodality treatment. Glioma cancer stem cells (CSCs) have been pinpointed as the treatment-resistant tumor component that seeds ultimate tumor progression. Despite the key role of CSCs, the ideal preclinical model to study the genetic and epigenetic landmarks driving their malignant behavior while simulating an accurate interaction with the tumor microenvironment (TME) is still missing. The introduction of three-dimensional (3D) tumor platforms, such as organoids and 3D bioprinting, has allowed for a better representation of the pathophysiologic interactions between glioma CSCs and the TME. Thus, these technologies have enabled a more detailed study of glioma biology, tumor angiogenesis, treatment resistance, and even performing high-throughput screening assays of drug susceptibility. First, we will review the foundation of glioma biology and biomechanics of the TME, and then the most up-to-date insights about the applicability of these new tools in malignant glioma research.
Collapse
Affiliation(s)
- Henry Ruiz-Garcia
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States.,Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, United States
| | | | - Paula Schiapparelli
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, United States
| | | | - Daniel M Trifiletti
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States.,Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|