1
|
Pang F, Li Q, Solanki MK, Wang Z, Xing YX, Dong DF. Soil phosphorus transformation and plant uptake driven by phosphate-solubilizing microorganisms. Front Microbiol 2024; 15:1383813. [PMID: 38601943 PMCID: PMC11005474 DOI: 10.3389/fmicb.2024.1383813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Phosphorus (P) is an important nutrient for plants, and a lack of available P greatly limits plant growth and development. Phosphate-solubilizing microorganisms (PSMs) significantly enhance the ability of plants to absorb and utilize P, which is important for improving plant nutrient turnover and yield. This article summarizes and analyzes how PSMs promote the absorption and utilization of P nutrients by plants from four perspectives: the types and functions of PSMs, phosphate-solubilizing mechanisms, main functional genes, and the impact of complex inoculation of PSMs on plant P acquisition. This article reviews the physiological and molecular mechanisms of phosphorus solubilization and growth promotion by PSMs, with a focus on analyzing the impact of PSMs on soil microbial communities and its interaction with root exudates. In order to better understand the ability of PSMs and their role in soil P transformation and to provide prospects for research on PSMs promoting plant P absorption. PSMs mainly activate insoluble P through the secretion of organic acids, phosphatase production, and mycorrhizal symbiosis, mycorrhizal symbiosis indirectly activates P via carbon exchange. PSMs can secrete organic acids and produce phosphatase, which plays a crucial role in soil P cycling, and related genes are involved in regulating the P-solubilization ability. This article reviews the mechanisms by which microorganisms promote plant uptake of soil P, which is of great significance for a deeper understanding of PSM-mediated soil P cycling, plant P uptake and utilization, and for improving the efficiency of P utilization in agriculture.
Collapse
Affiliation(s)
- Fei Pang
- College of Agriculture, Guangxi University, Nanning, China
| | - Qing Li
- College of Agriculture, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Smart Agricultural College, Yulin Normal University, Yulin, China
| | - Manoj Kumar Solanki
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, India
| | - Zhen Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Smart Agricultural College, Yulin Normal University, Yulin, China
| | - Yong-Xiu Xing
- College of Agriculture, Guangxi University, Nanning, China
| | - Deng-Feng Dong
- College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
2
|
Cheng Y, Narayanan M, Shi X, Chen X, Li Z, Ma Y. Phosphate-solubilizing bacteria: Their agroecological function and optimistic application for enhancing agro-productivity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166468. [PMID: 37619729 DOI: 10.1016/j.scitotenv.2023.166468] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/11/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023]
Abstract
Phosphorus (P) is a limiting nutrient in the soil-plant nutrient cycling. Although the exogenous application of chemical P fertilizers can satisfy crop P requirements during critical growth phases. While excessive P fertilizers use results in low phosphorus acquisition efficiency (PAE), it has serious environmental consequences and hastens the depletion of P mineral reserves. Phosphate-solubilizing bacteria (PSB) have the potential to make insoluble phosphate available to plants through solubilization and mineralization, increasing crop yields while maintaining environmental sustainability. Existing reviews mainly focus on the beneficial effects of PSB on crop performance and related mechanisms, while few of them elucidate the action mechanisms of PSB in soil-microbe-plant interactions for crop cultivation with high yield efficiency. Hence, this study provides a comprehensive review of the physicochemical and molecular mechanisms (e.g., root exudates, extracellular polysaccharides, organic acids, phosphatases, and phosphate-specific transport systems) of PSB to facilitate the P cycle in the soil-plant systems. Further, the potential of commercial applications of PSB (e.g., genetic engineering, seed priming and coating) are also discussed in order to highlight their contribution to sustainable agriculture. Finally, existing challenges and future prospects in agricultural applications are proposed. In conclusion, we firmly believe that PSB represent a highly significant biotechnological tool for enhancing agricultural productivity and offers a wide range of extensive potential applications.
Collapse
Affiliation(s)
- Yingying Cheng
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Mathiyazhagan Narayanan
- Division of Research and Innovation, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai 602105, Tamil Nadu, India
| | - Xiaojun Shi
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Xinping Chen
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Zhenlun Li
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing 400716, China.
| |
Collapse
|
3
|
Sucharski F, Gallo G, Coelho C, Hardy L, Würtele M. Modeling the role of charged residues in thermophilic proteins by rotamer and dynamic cross correlation analysis. J Mol Model 2023; 29:132. [PMID: 37036538 DOI: 10.1007/s00894-023-05490-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/24/2023] [Indexed: 04/11/2023]
Abstract
Discerning the determinants of protein thermostability is very important both from the theoretical and applied perspective. Different lines of evidence seem to indicate that a dynamical network of salt bridges/charged residues plays a fundamental role in the thermostability of enzymes. In this work, we applied measures of dynamic variance, like the Gini coefficients, Kullback-Leibler (KL) divergence and dynamic cross correlation (DCC) coefficients to compare the behavior of 3 pairs of homologous proteins from the thermophilic bacterium Thermus thermophilus and mesophilic Escherichia coli. Molecular dynamic (MD) simulations of these proteins were performed at 303 K and 363 K. In the characterization of their side chain rotamer distributions, the corresponding Gini coefficients and KL-divergence both revealed significant correlations with temperature. Similarly, a DCC analysis revealed a higher trend to de-correlate the movement of charged residues at higher temperatures in the thermophilic proteins, when compared with their mesophilic homologues. These results highlight the importance of dynamic electrostatic network interactions for the thermostability of enzymes.
Collapse
Affiliation(s)
- Fernanda Sucharski
- Department of Science and Technology, Federal University of São Paulo, Talim 330, São José Dos Campos, São Paulo, 12231-280, Brazil
| | - Gloria Gallo
- Department of Science and Technology, Federal University of São Paulo, Talim 330, São José Dos Campos, São Paulo, 12231-280, Brazil
| | - Camila Coelho
- Department of Science and Technology, Federal University of São Paulo, Talim 330, São José Dos Campos, São Paulo, 12231-280, Brazil
| | - Leon Hardy
- Department of Physics, University of South Florida, Tampa, USA
| | - Martin Würtele
- Department of Science and Technology, Federal University of São Paulo, Talim 330, São José Dos Campos, São Paulo, 12231-280, Brazil.
| |
Collapse
|
4
|
Gallo G, Barcick U, Coelho C, Salardani M, Camacho MF, Cajado-Carvalho D, Loures FV, Serrano SMT, Hardy L, Zelanis A, Würtele M. A proteomics-MM/PBSA dual approach for the analysis of SARS-CoV-2 main protease substrate peptide specificity. Peptides 2022; 154:170814. [PMID: 35644302 PMCID: PMC9134770 DOI: 10.1016/j.peptides.2022.170814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022]
Abstract
The main protease Mpro of SARS-CoV-2 is a well-studied major drug target. Additionally, it has been linked to this virus' pathogenicity, possibly through off-target effects. It is also an interesting diagnostic target. To obtain more data on possible substrates as well as to assess the enzyme's primary specificity a two-step approach was introduced. First, Terminal Amine Isobaric Labeling of Substrates (TAILS) was employed to identify novel Mpro cleavage sites in a mouse lung proteome library. In a second step, using a structural homology model, the MM/PBSA variant MM/GBSA (Molecular Mechanics Poisson-Boltzmann/Generalized Born Surface Area) free binding energy calculations were carried out to determine relevant interacting amino acids. As a result, 58 unique cleavage sites were detected, including six that displayed glutamine at the P1 position. Furthermore, modeling results indicated that Mpro has a far higher potential promiscuity towards substrates than expected. The combination of proteomics and MM/PBSA modeling analysis can thus be useful for elucidating the specificity of Mpro, and thus open novel perspectives for the development of future peptidomimetic drugs against COVID-19, as well as diagnostic tools.
Collapse
Affiliation(s)
- Gloria Gallo
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Uilla Barcick
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Camila Coelho
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Murilo Salardani
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Maurício F Camacho
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Daniela Cajado-Carvalho
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Flávio V Loures
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Solange M T Serrano
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Leon Hardy
- Department of Physics, University of South Florida, Tampa, United States
| | - André Zelanis
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Martin Würtele
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil.
| |
Collapse
|
5
|
Xiao F, Zhou Z, Song X, Gan M, Long J, Verkhivker G, Hu G. Dissecting mutational allosteric effects in alkaline phosphatases associated with different Hypophosphatasia phenotypes: An integrative computational investigation. PLoS Comput Biol 2022; 18:e1010009. [PMID: 35320273 PMCID: PMC8979438 DOI: 10.1371/journal.pcbi.1010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/04/2022] [Accepted: 03/10/2022] [Indexed: 11/18/2022] Open
Abstract
Hypophosphatasia (HPP) is a rare inherited disorder characterized by defective bone mineralization and is highly variable in its clinical phenotype. The disease occurs due to various loss-of-function mutations in ALPL, the gene encoding tissue-nonspecific alkaline phosphatase (TNSALP). In this work, a data-driven and biophysics-based approach is proposed for the large-scale analysis of ALPL mutations-from nonpathogenic to severe HPPs. By using a pipeline of synergistic approaches including sequence-structure analysis, network modeling, elastic network models and atomistic simulations, we characterized allosteric signatures and effects of the ALPL mutations on protein dynamics and function. Statistical analysis of molecular features computed for the ALPL mutations showed a significant difference between the control, mild and severe HPP phenotypes. Molecular dynamics simulations coupled with protein structure network analysis were employed to analyze the effect of single-residue variation on conformational dynamics of TNSALP dimers, and the developed machine learning model suggested that the topological network parameters could serve as a robust indicator of severe mutations. The results indicated that the severity of disease-associated mutations is often linked with mutation-induced modulation of allosteric communications in the protein. This study suggested that ALPL mutations associated with mild and more severe HPPs can exert markedly distinct effects on the protein stability and long-range network communications. By linking the disease phenotypes with dynamic and allosteric molecular signatures, the proposed integrative computational approach enabled to characterize and quantify the allosteric effects of ALPL mutations and role of allostery in the pathogenesis of HPPs.
Collapse
Affiliation(s)
- Fei Xiao
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Ziyun Zhou
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Xingyu Song
- Department of Chemistry, Multiscale Research Institute of Complex Systems and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Mi Gan
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Jie Long
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Gennady Verkhivker
- Department of Computational and Data Sciences, Chapman University, One University Drive, Orange, California, United States of America
- Department of Biomedical and Pharmaceutical Sciences, Chapman University Pharmacy School 9401 Jeronimo Rd, Irvine, California, United States of America
| | - Guang Hu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
- * E-mail:
| |
Collapse
|
6
|
Sheik Amamuddy O, Glenister M, Tshabalala T, Tastan Bishop Ö. MDM-TASK-web: MD-TASK and MODE-TASK web server for analyzing protein dynamics. Comput Struct Biotechnol J 2021; 19:5059-5071. [PMID: 34589183 PMCID: PMC8455658 DOI: 10.1016/j.csbj.2021.08.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/28/2021] [Accepted: 08/28/2021] [Indexed: 11/18/2022] Open
Abstract
The web server, MDM-TASK-web, combines the MD-TASK and MODE-TASK software suites, which are aimed at the coarse-grained analysis of static and all-atom MD-simulated proteins, using a variety of non-conventional approaches, such as dynamic residue network analysis, perturbation-response scanning, dynamic cross-correlation, essential dynamics and normal mode analysis. Altogether, these tools allow for the exploration of protein dynamics at various levels of detail, spanning single residue perturbations and weighted contact network representations, to global residue centrality measurements and the investigation of global protein motion. Typically, following molecular dynamic simulations designed to investigate intrinsic and extrinsic protein perturbations (for instance induced by allosteric and orthosteric ligands, protein binding, temperature, pH and mutations), this selection of tools can be used to further describe protein dynamics. This may lead to the discovery of key residues involved in biological processes, such as drug resistance. The server simplifies the set-up required for running these tools and visualizing their results. Several scripts from the tool suites were updated and new ones were also added and integrated with 2D/3D visualization via the web interface. An embedded work-flow, integrated documentation and visualization tools shorten the number of steps to follow, starting from calculations to result visualization. The Django-powered web server (available at https://mdmtaskweb.rubi.ru.ac.za/) is compatible with all major web browsers. All scripts implemented in the web platform are freely available at https://github.com/RUBi-ZA/MD-TASK/tree/mdm-task-web and https://github.com/RUBi-ZA/MODE-TASK/tree/mdm-task-web.
Collapse
Affiliation(s)
- Olivier Sheik Amamuddy
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
| | - Michael Glenister
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
| | - Thulani Tshabalala
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|