1
|
Alqahtani SM, Al-Kuraishy HM, Al-Gareeb AI, Alexiou A, Fawzy MN, Papadakis M, Al-Botaty BM, Alruwaili M, El-Saber Batiha G. The neuroprotective role of Humanin in Alzheimer's disease: The molecular effects. Eur J Pharmacol 2025; 998:177510. [PMID: 40090538 DOI: 10.1016/j.ejphar.2025.177510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/06/2025] [Accepted: 03/14/2025] [Indexed: 03/18/2025]
Abstract
Humanin (HN) is an endogenous micropeptide also known as a mitochondria-derived peptide. It has a neuroprotective effect against Alzheimer's disease (AD) and other neurodegenerative diseases by improving hippocampal acetylcholine and attenuating the development of oxidative stress and associated neurotoxicity. HN protects the neuron from the toxic effects of amyloid beta (Aβ). HN is regarded as a biomarker of mitochondrial stress. Interestingly, aging reduces brain expression of HN, leading to cognitive impairment and elevating the risk of neurodegeneration, including AD. However, in old subjects and AD patients, circulating HN levels increase as a compensatory mechanism to reduce neurodegeneration and mitochondrial dysfunction in AD. Conversely, other studies demonstrated a reduction in circulating HN levels in AD. These findings indicated controversial points regarding the precise mechanistic role of HN in AD. Therefore, the aim of this review was to discuss the exact role of HN in AD neuropathology and also to discuss the molecular mechanisms of HN in AD.
Collapse
Affiliation(s)
- Saad Misfer Alqahtani
- Department of Pathology, College of Medicine, The University Hospital, Najran University, Najran, Saudi Arabia.
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq.
| | - Ali I Al-Gareeb
- Jabir Ibn Hayyan Medical University, Al-Ameer Qu, PO.Box13, Kufa, Najaf, Iraq.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India; Department of Research & Development, Funogen, Athens, Greece.
| | - Mohamed N Fawzy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University- Arish Branch, Arish, 45511, Egypt.
| | - Marios Papadakis
- University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany.
| | - Basant M Al-Botaty
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Ain Helwan, 11795, Cairo, Egypt.
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AlBeheira, Damanhour, 22511, Egypt.
| |
Collapse
|
2
|
Cohn W, Campagna J, Wi D, Lee JT, Beniwal S, Elezi G, Zhu C, Jagodzinska B, Whitelegge J, Damoiseaux R, John V. Discovery of a small molecule secreted clusterin enhancer that improves memory in Alzheimer's disease mice. NPJ DRUG DISCOVERY 2025; 2:7. [PMID: 40322539 PMCID: PMC12048343 DOI: 10.1038/s44386-025-00009-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 03/10/2025] [Indexed: 05/08/2025]
Abstract
Despite substantial research and drug discovery efforts, Alzheimer's Disease (AD) remains the sixth leading cause of death in the United States, underscoring the urgent need for novel therapeutic targets. A mutation in the clusterin (CLU) gene that hinders expression of the cyto-protective secreted isoform of clusterin (sCLU) that affects the aggregation and clearance of two key proteins implicated in AD, Aβ and tau, is the third most significant genetic risk factor for late-onset AD. Here, we present findings from our drug discovery program to identify small molecules that enhance sCLU levels and assess their impact on AD pathology and cognition in a murine model of AD. A high-throughput screening campaign identified two classes of epigenetic modulators that increase sCLU levels with subsequent medicinal chemistry efforts leading to bromodomain and extra-terminal (BET) inhibitor new chemical entities (NCEs) with enhanced potency, drug-like properties, and oral brain bioavailability. The lead candidate NCE, DDL-357, increased brain sCLU in the murine ApoE4TR-5XFAD model of AD in a subchronic study. In a follow-up chronic study in the murine 3xTg-AD model, DDL-357 reduced phospho-tau in brain and led to improvements in mouse performance and memory in the Barnes maze testing paradigm. Proteomic analysis of brain tissue from both AD models revealed changes in proteins involved in mitochondrial function and synaptic plasticity. These findings reveal the potential of sCLU enhancement as a target for therapeutic development in AD and support the continued development of the preclinical lead candidate.
Collapse
Affiliation(s)
- Whitaker Cohn
- The Drug Discovery Lab, Mary S. Easton Center for Alzheimer’s Disease Research, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, University of California Los Angeles, Los Angeles, USA
- Pasarow Mass Spectrometry Laboratory, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, 760 Westwood Plaza, University of California Los Angeles, Los Angeles, USA
| | - Jesus Campagna
- The Drug Discovery Lab, Mary S. Easton Center for Alzheimer’s Disease Research, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, University of California Los Angeles, Los Angeles, USA
| | - Dongwook Wi
- The Drug Discovery Lab, Mary S. Easton Center for Alzheimer’s Disease Research, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, University of California Los Angeles, Los Angeles, USA
| | - Jessica T. Lee
- The Drug Discovery Lab, Mary S. Easton Center for Alzheimer’s Disease Research, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, University of California Los Angeles, Los Angeles, USA
| | - Sahiba Beniwal
- The Drug Discovery Lab, Mary S. Easton Center for Alzheimer’s Disease Research, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, University of California Los Angeles, Los Angeles, USA
| | - Gazmend Elezi
- Pasarow Mass Spectrometry Laboratory, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, 760 Westwood Plaza, University of California Los Angeles, Los Angeles, USA
| | - Chunni Zhu
- The Drug Discovery Lab, Mary S. Easton Center for Alzheimer’s Disease Research, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, University of California Los Angeles, Los Angeles, USA
| | - Barbara Jagodzinska
- The Drug Discovery Lab, Mary S. Easton Center for Alzheimer’s Disease Research, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, University of California Los Angeles, Los Angeles, USA
| | - Julian Whitelegge
- Pasarow Mass Spectrometry Laboratory, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, 760 Westwood Plaza, University of California Los Angeles, Los Angeles, USA
| | - Robert Damoiseaux
- Department of Molecular and Medical Pharmacology, 650 Charles E. Young Drive, University of California Los Angeles, Los Angeles, USA
| | - Varghese John
- The Drug Discovery Lab, Mary S. Easton Center for Alzheimer’s Disease Research, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, University of California Los Angeles, Los Angeles, USA
| |
Collapse
|
3
|
Ran Y, Guo Z, Zhang L, Li H, Zhang X, Guan X, Cui X, Chen H, Cheng M. Mitochondria‑derived peptides: Promising microproteins in cardiovascular diseases (Review). Mol Med Rep 2025; 31:127. [PMID: 40084698 PMCID: PMC11924172 DOI: 10.3892/mmr.2025.13492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/27/2025] [Indexed: 03/16/2025] Open
Abstract
Mitochondria‑derived peptides (MDPs) are a unique class of peptides encoded by short open reading frames in mitochondrial DNA, including the mitochondrial open reading frame of the 12S ribosomal RNA type‑c (MOTS‑c). Recent studies suggest that MDPs offer therapeutic benefits in various diseases, including neurodegenerative disorders and types of cancer, due to their ability to increase cellular resilience. Mitochondrial dysfunction is a key factor in the onset and progression of cardiovascular diseases (CVDs), such as atherosclerosis and heart failure, as it disrupts energy metabolism, increases oxidative stress and promotes inflammation. MDPs such as humanin and MOTS‑c have emerged as important regulators of mitochondrial health, as they show protective effects against these processes. Recent studies have shown that MDPs can restore mitochondrial function, reduce oxidative damage and alleviate inflammation, thus counteracting the pathological mechanisms that drive CVDs. Therefore, MDPs hold promise as therapeutic agents that are capable of slowing, stopping, or even reversing CVD progression and their use presents a promising strategy for future treatments. However, the clinical application of MDPs remains challenging due to their low bioavailability, poor stability and high synthesis costs. Thus, it is necessary to improve drug delivery systems to enhance the bioavailability of MDPs. Moreover, integrating basic research with clinical trials is essential to bridge the gap between experimental findings and clinical applications.
Collapse
Affiliation(s)
- Yutong Ran
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Zhiliang Guo
- Department of Spinal Surgery, The 80th Group Army Hospital of Chinese PLA, Weifang, Shandong 261021, P.R. China
| | - Lijuan Zhang
- Stroke Centre, Second People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Hong Li
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Xiaoyun Zhang
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Xiumei Guan
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Xiaodong Cui
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Hao Chen
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Min Cheng
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
4
|
Zhong A, Li S, Zhang J, Zhao J, Yao C. Endogenous micropeptides as potential diagnostic biomarkers and therapeutic drugs. Front Pharmacol 2025; 16:1545575. [PMID: 40264667 PMCID: PMC12011824 DOI: 10.3389/fphar.2025.1545575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/26/2025] [Indexed: 04/24/2025] Open
Abstract
Micropeptides, these small proteins derived from non-coding RNA, typically consist of no more than 100 amino acids in length. Despite the challenges in analysis and identification, their various critical functions within organisms cannot be overlooked. They play a significant role in maintaining energy metabolism balance, regulating the immune system, and influencing the development of tumors, which also gives them a decisive impact on the occurrence and development of various diseases. This review aims to outline the role and potential value of micropeptides, introducing their tissue classification and distribution, biological functions, and mechanisms, with a focus on their potential as diagnostic markers and therapeutic drugs.
Collapse
Affiliation(s)
- Aixi Zhong
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Medical University, Dalian, China
| | - Shuai Li
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jingxuan Zhang
- Zhongshan College of Dalian Medical University, Dalian, China
| | - Jingyuan Zhao
- Central Hospital of Dalian University of Technology, Dalian, China
| | - Chenhui Yao
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
5
|
Jiang W, Vogelgsang J, Dan S, Durning P, McCoy TH, Berretta S, Klengel T. Association of RDoC dimensions with post mortem brain transcriptional profiles in Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2025; 17:e70103. [PMID: 40352682 PMCID: PMC12064340 DOI: 10.1002/dad2.70103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/16/2025] [Accepted: 02/28/2025] [Indexed: 05/14/2025]
Abstract
INTRODUCTION Neuropsychiatric symptoms are common in people with Alzheimer's disease (AD) across all severity stages. Their heterogeneous presentation and variable temporal association with cognitive decline suggest shared and distinct biological mechanisms. We hypothesized that specific patterns of gene expression associate with distinct National Institute of Mental Health Research Domain Criteria (RDoC) domains in AD. METHODS Post-mortem bulk RNA sequencing of the insula and anterior cingulate cortex from 60 brain donors, representing the spectrum of canonical Alzheimer's disease neuropathology, was combined with natural language processing approaches based on the RDoC Clinical Domains to uncover transcriptomic patterns linked to disease progression. RESULTS Distinct sets of >100 genes (P false discovery rate < 0.05) were specifically associated with at least one clinical domain (cognitive, social, negative, positive, arousal). In addition, dysregulation of immune response pathways was shared across domains and brain regions. DISCUSSION Our findings provide evidence for distinct transcriptional profiles associated with RDoC domains suggesting that each dimension is characterized by sets of genes providing insight into the underlying mechanisms. Highlights Post mortem brain tissue investigations are critically important for Alzheimer's disease (AD) research.Neuropsychiatric symptoms in AD are common and an important aspect of AD.Categorical phenotypes are commonly used, but insufficiently describe the heterogenous presentation of AD.Using natural language processing (NLP) of post mortem brain donor health records provides insight into dimensional phenotypes of AD.We provide evidence for distinct RNA expression profiles associated with NLP-derived Research Domain Criteria clinical domain scores.
Collapse
Affiliation(s)
- Weiqian Jiang
- Department of PsychiatryHarvard Medical SchoolMcLean HospitalBelmontMassachusettsUSA
| | - Jonathan Vogelgsang
- Department of PsychiatryHarvard Medical SchoolMcLean HospitalBelmontMassachusettsUSA
| | - Shu Dan
- Department of PsychiatryHarvard Medical SchoolMcLean HospitalBelmontMassachusettsUSA
| | - Peter Durning
- Department of PsychiatryHarvard Medical SchoolMcLean HospitalBelmontMassachusettsUSA
| | - Thomas H. McCoy
- Center for Quantitative HealthMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Sabina Berretta
- Department of PsychiatryHarvard Medical SchoolMcLean HospitalBelmontMassachusettsUSA
| | - Torsten Klengel
- Department of PsychiatryHarvard Medical SchoolMcLean HospitalBelmontMassachusettsUSA
| |
Collapse
|
6
|
Ng N, Newbery M, Miles N, Ooi L. Mitochondrial therapeutics and mitochondrial transfer for neurodegenerative diseases and aging. Neural Regen Res 2025; 20:794-796. [PMID: 38886943 PMCID: PMC11433913 DOI: 10.4103/nrr.nrr-d-23-02106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/25/2024] [Accepted: 04/22/2024] [Indexed: 06/20/2024] Open
Affiliation(s)
- Neville Ng
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Michelle Newbery
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Nicole Miles
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Lezanne Ooi
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
7
|
Soltany A, Daryanoosh F, Gholampour F, Sadat Hosseini N, Khoramipour K. Potential Role of High-Intensity Interval Training-Induced Increase in Humanin Levels for the Management of Type 2 Diabetes. J Cell Mol Med 2025; 29:e70396. [PMID: 39936487 PMCID: PMC11815479 DOI: 10.1111/jcmm.70396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 02/13/2025] Open
Abstract
This study investigated the effect of 8 weeks of high-intensity interval training (HIIT) on oxidative stress, inflammation, and apoptosis in rats with type 2 diabetes (T2D), focusing on the role of the Humanin (HN). In this study, 28 male Wistar rats were assigned to one of four groups: healthy control (CO), diabetes control (T2D), exercise (EX), and diabetes + exercise (T2D + EX). After diabetes induction (2-month high-fat diet and injection of 35 mg/kg streptozotocin), the animals in the EX and T2D + EX groups underwent an 8-week HIIT protocol (4-10, interval of 80%-100% of maximum speed). HOMA-IR, fasting blood glucose, and HN levels were measured in the serum. The expression of HN, Bax, Bcl-2, CAT, GPx, MDA, TNFα, and IL-10 was measured in the soleus muscle. Our results showed that the serum level of HN and the muscle levels of IL-10, SOD, CAT, and Bax were higher in the T2D + EX group than in the T2D group. However, the HOMA-IR index and the muscle levels of MDA, TNFα, and Bcl-2 were lower in the T2D + EX group than in the T2D group. Muscle levels of HN and GPx showed no significant difference between the T2D + EX and T2D groups. The result of Pearson analysis showed a significant correlation between HN and MDA, SOD, Bax and Bcl-2. This study provides evidence that there is a correlation between serum Humanin levels and HIIT. HIIT benefits T2D rats by reducing inflammation and oxidative stress. Given Humanin's established involvement in inflammation and oxidative stress, it is possible that the benefits of HIIT on T2D rats are mediated by humanin.
Collapse
Affiliation(s)
- Afsaneh Soltany
- Department of Biology, College of ScienceShiraz UniversityShirazIran
| | - Farhad Daryanoosh
- Department of Sports Sciences, Faculty of Educational Sciences and PsychologyShiraz UniversityShirazIran
| | | | - Najmeh Sadat Hosseini
- Physiology and Neuroscience Research Center, Institute of Physiology and PharmacologyKerman University of Medical SciencesKermanIran
| | - Kayvan Khoramipour
- i+HeALTH Strategic Research Group, Department of Health SciencesMiguel de Cervantes European University (UEMC)ValladolidSpain
| |
Collapse
|
8
|
Li M, Liu Z, Cao X, Xiao W, Wang S, Zhao C, Zhao Y, Xie Y. [Gly14]-Humanin ameliorates high glucose-induced endothelial senescence via SIRT6. Sci Rep 2024; 14:30924. [PMID: 39730568 DOI: 10.1038/s41598-024-81878-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 11/29/2024] [Indexed: 12/29/2024] Open
Abstract
High glucose (HG) induced endothelial senescence is related to endothelial dysfunction and cardiovascular complications in diabetic patients. Humanin, a member of mitochondrial derived peptides (MDPs), is thought to contribute to aging-related cardiovascular protection. The goal of the study is to explore the pathogenesis of HG-induced endothelial senescence and potential anti-senescent effects of Humanin. Human umbilical vein endothelial cells (HUVECs) were exposed to glucose to induce senescence, determined by β-galactosidase staining and the expressions of p21, p53, and p16. A clinically relevant dose of HG (15 mM, HG) induced endothelial senescence after 72 h incubation without elevated apoptosis. HG-induced senescence was attributed to the induction of reactive oxygen species (ROS) caused by SIRT6 downregulation, as ROS inhibitor N-acetyl cysteine blocked HG-induced senescence, while inactivation of SIRT6 increased ROS levels and promoted senescence. Strikingly. pretreatment with [Gly14]-Humanin (HNG) antagonized the downregulation of SIRT6 in response to HG and alleviated ROS production and cell senescence. HG-induced reduction of SIRT6 results in ROS overproduction and endothelial senescence. Humanin protects against HG-induced endothelial senescence via SIRT6. This study provides new directions for biological products related to Humanin to be a potential candidate for the prevention of vascular aging in diabetes.
Collapse
Affiliation(s)
- Muqin Li
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Department of Endocrinology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, 222061, JiangSu, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215004, China
| | - Zhihua Liu
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Xueqin Cao
- Department of Endocrinology, The Fourth Affiliated Hospital of Soochow University, Chongwen Road No. 9, Suzhou, 215000, Jiangsu, China
| | - Wenjin Xiao
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Shurong Wang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Chengyuan Zhao
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Department of endocrinology, Taizhou school of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Nanjing Medical University, 366 Taihu Road, Taizhou, 225300, China
| | - Ying Zhao
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Soochow Medical College of Soochow University, Suzhou, 215123, China.
| | - Ying Xie
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| |
Collapse
|
9
|
Xiao X, Wang Y, Li T, Wang Q, Luo X, Li J, Gao L. Microproteins encoded by short open reading frames: Vital regulators in neurological diseases. Prog Neurobiol 2024; 243:102694. [PMID: 39586488 DOI: 10.1016/j.pneurobio.2024.102694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/18/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Short open reading frames (sORFs) are frequently overlooked because of their historical classification as non-coding elements or dismissed as "transcriptional noise". However, advanced genomic and proteomic technologies have allowed for screening and validating sORFs-encoded peptides, revealing their fundamental regulatory roles in cellular processes and sparking a growing interest in microprotein biology. In neuroscience, microproteins serve as neurotransmitters in signal transmission and regulate metabolism and emotions, exerting pivotal effects on neurological conditions such as nerve injury, neurogenic tumors, inflammation, and neurodegenerative diseases. This review summarizes the origins, characteristics, classifications, and functions of microproteins, focusing on their molecular mechanisms in neurological disorders. Potential applications, future perspectives, and challenges are discussed.
Collapse
Affiliation(s)
- Xiao Xiao
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Yitian Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Tingyu Li
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Qiang Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Xiaolei Luo
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Jingdong Li
- Institute of Hepato-Biliary-Pancreatic-Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637100, PR China.
| | - Linbo Gao
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
10
|
Kütük D, Öner Ç, Başar M, Akcay B, Olcay İO, Çolak E, Selam B, Cincik M. Comparison of the Mitophagy and Apoptosis Related Gene Expressions in Waste Embryo Culture Medium of Female Infertility Types. Life (Basel) 2024; 14:1507. [PMID: 39598305 PMCID: PMC11595419 DOI: 10.3390/life14111507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/25/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
Mitochondria is an important organelle for the oocyte-to-embryo transition in the early embryonic development period. The oocyte uses mitochondria functionally and its mitochondrial DNA (mtDNA) content as the main energy source in the embryo development at the preimplantation stage. The aim of this study is to compare mitophagic, apoptotic and humanin gene expressions from the culture medium fluid in which embryos are developed and monitored among normoresponder (NOR), polycystic ovary syndrome (PCOS), young and older patients with poor ovarian reserve (POR). The study groups consisted of infertile patients who applied to the Bahçeci Umut IVF Center as NOR (Control), PCOS, POR-Advanced (POR-A) and POR-Young (POR-Y). After the isolation of total RNA from the collected samples, MFN1, MFN2, PINK1, PARKIN, SMN1, SMN2, p53 and Humanin gene expressions were determined by Real Time-PCR. The average age of only the POR-A was determined to be higher than the NOR (p < 0.001). The MFN1, SMN2 (p < 0.05), Humanin and p53 gene expressions (p < 0.001) increased, while PINK1 gene expression decreased (p < 0.05), in the POR-Y compared to the NOR. A decrease in MFN2, PARKIN (p < 0.05) and PINK1 gene expressions was determined in the PCOS compared to the NOR (p < 0.001). Furthermore, a decrease was observed in MFN2, PINK1 (p < 0.001) and Humanin gene expressions compared to the NOR (p < 0.05). The current data are the first in the literature determining the apoptotic and mitophagic status of the oocyte. The current results prove that waste embryo culture fluid may provide a non-invasive profile for important cellular parameters such as mitochondrial dysfunction in female infertility. The evaluation of significant cellular parameters can be performed much earlier without any intervention into the embryo.
Collapse
Affiliation(s)
- Duygu Kütük
- Department of Histology and Embryology, Medical Faculty, Maltepe University, 34858 İstanbul, Turkey
- IVF Laboratory, Bahçeci Umut Assisted Reproduction Center, 34662 İstanbul, Turkey
| | - Çağrı Öner
- Department of Medical Biology, Medical Faculty, Kırklareli University, 39100 Kırklareli, Turkey;
| | - Murat Başar
- Department of Obstetrics, Gynecology & Reproductive Sciences, Medical Faculty, Yale University, New Haven, CT 06520, USA
| | - Berkay Akcay
- IVF Laboratory, Bahçeci Umut Assisted Reproduction Center, 34662 İstanbul, Turkey
| | - İbrahim Orçun Olcay
- IVF Laboratory, Bahçeci Umut Assisted Reproduction Center, 34662 İstanbul, Turkey
| | - Ertuğrul Çolak
- Department of Biostatistics, Medical Faculty, Eskişehir Osmangazi University, 26040 Eskişehir, Turkey
| | - Belgin Selam
- Department of Obstetrics and Gynecology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 İstanbul, Turkey
| | - Mehmet Cincik
- Department of Histology and Embryology, Medical Faculty, Maltepe University, 34858 İstanbul, Turkey
| |
Collapse
|
11
|
Li Y, Li Z, Ren Y, Lei Y, Yang S, Shi Y, Peng H, Yang W, Guo T, Yu Y, Xiong Y. Mitochondrial-derived peptides in cardiovascular disease: Novel insights and therapeutic opportunities. J Adv Res 2024; 64:99-115. [PMID: 38008175 PMCID: PMC11464474 DOI: 10.1016/j.jare.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND Mitochondria-derived peptides (MDPs) represent a recently discovered family of peptides encoded by short open reading frames (ORFs) found within mitochondrial genes. This group includes notable members including humanin (HN), mitochondrial ORF of the 12S rDNA type-c (MOTS-c), and small humanin-like peptides 1-6 (SHLP1-6). MDPs assume pivotal roles in the regulation of diverse cellular processes, encompassing apoptosis, inflammation, and oxidative stress, which are all essential for sustaining cellular viability and normal physiological functions. Their emerging significance extends beyond this, prompting a deeper exploration into their multifaceted roles and potential applications. AIM OF REVIEW This review aims to comprehensively explore the biogenesis, various types, and diverse functions of MDPs. It seeks to elucidate the central roles and underlying mechanisms by which MDPs participate in the onset and development of cardiovascular diseases (CVDs), bridging the connections between cell apoptosis, inflammation, and oxidative stress. Furthermore, the review highlights recent advancements in clinical research related to the utilization of MDPs in CVD diagnosis and treatment. KEY SCIENTIFIC CONCEPTS OF REVIEW MDPs levels are diminished with aging and in the presence of CVDs, rendering them potential new indicators for the diagnosis of CVDs. Also, MDPs may represent a novel and promising strategy for CVD therapy. In this review, we delve into the biogenesis, various types, and diverse functions of MDPs. We aim to shed light on the pivotal roles and the underlying mechanisms through which MDPs contribute to the onset and advancement of CVDs connecting cell apoptosis, inflammation, and oxidative stress. We also provide insights into the current advancements in clinical research related to the utilization of MDPs in the treatment of CVDs. This review may provide valuable information with MDPs for CVD diagnosis and treatment.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Zhuozhuo Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Yuanyuan Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Ying Lei
- School of Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Silong Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Yuqi Shi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Han Peng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Weijie Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Tiantian Guo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Yi Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China; School of Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China.
| | - Yuyan Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, 710018 Xi'an, Shaanxi, PR China.
| |
Collapse
|
12
|
Nichols C, Do-Thi VA, Peltier DC. Noncanonical microprotein regulation of immunity. Mol Ther 2024; 32:2905-2929. [PMID: 38734902 PMCID: PMC11403233 DOI: 10.1016/j.ymthe.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/19/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024] Open
Abstract
The immune system is highly regulated but, when dysregulated, suboptimal protective or overly robust immune responses can lead to immune-mediated disorders. The genetic and molecular mechanisms of immune regulation are incompletely understood, impeding the development of more precise diagnostics and therapeutics for immune-mediated disorders. Recently, thousands of previously unrecognized noncanonical microprotein genes encoded by small open reading frames have been identified. Many of these microproteins perform critical functions, often in a cell- and context-specific manner. Several microproteins are now known to regulate immunity; however, the vast majority are uncharacterized. Therefore, illuminating what is often referred to as the "dark proteome," may present opportunities to tune immune responses more precisely. Here, we review noncanonical microprotein biology, highlight recently discovered examples regulating immunity, and discuss the potential and challenges of modulating dysregulated immune responses by targeting microproteins.
Collapse
Affiliation(s)
- Cydney Nichols
- Morris Green Scholars Program, Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Van Anh Do-Thi
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Daniel C Peltier
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
13
|
Li M, Shen T, Yao R, Sun H, Liu X, Li Z, Zhang J. Mitochondrial dysfunction is associated with cognitive impairment in adults with OSA without dementia. Sleep Med 2024; 119:234-243. [PMID: 38704871 DOI: 10.1016/j.sleep.2024.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
STUDY OBJECTIVES Increased reactive oxygen species associated with loss of mitochondrial function affect synaptic activity, which is an important mechanism underlying cognitive decline. This study assesses the role of mitochondrial proteins in neuron-derived exosomes (NDEs) on cognitive impairment in patients with obstructive sleep apnea (OSA) without dementia. METHODS Analyses were conducted in 268 study participants with complete polysomnography data, cognitive tests, and important clinical data available. NDEs were isolated immunochemically for enzyme-linked immunosorbent assay quantification of mitochondrial proteins, i.e., humanin and mitochondrial open reading frame of the 12S rRNA-c (MOTS-c), and synaptic protein, i.e., neurogranin (NRGN). A mediation analysis of the relationship between sleep parameters and cognition was performed using humanin, MOTS-c, and NRGN values as a mediating factor. Twenty-two patients with moderate to severe OSA who received CPAP therapy were followed up, and humanin, MOTS-c and NRGN levels were reassessed after 1 year of treatment. RESULTS All participants were divided into the OSA + MCI group (n = 91), OSA-MCI group (n = 89), MCI group (MCI without OSA) (n = 38) and control group (normal cognitive state without OSA) (n = 50). The mean CD63-normalized NDE levels of humanin, MOTS-c, and NRGN in the OSA + MCI group were higher than those in the OSA-MCI and control groups. The NDE levels of humanin, MOTS-c, and NRGN in the MCI group were lower than those in controls. The odds of cognitive impairment in patients with OSA were higher with higher NDE levels of humanin, MOTS-c, and NRGN (odds ratio (OR): 2.100, 95 % confidence interval (CI): 1.646-2.679, P < 0.001; OR: 5.453, 95 % CI: 3.112-9.556, P < 0.001; OR: 3.115, 95 % CI: 2.163-4.484, P < 0.001). The impaired cognitive performance was associated with higher NDE levels of humanin (β: 0.505, SE: 0.048, P < 0.001), MOTS-c (β: 0.580, SE: 0.001, P < 0.001), and NRGN (β: 0.585, SE: 0.553, P < 0.001). The relationship between sleep parameters (mean SaO2 and T90) and MoCA scores was mediated by the NDE levels of humanin, MOTS-c, and NRGN with the proportion of mediation varying from 35.33 % to 149.07 %. Receiver operating characteristic curve revealed an area under the curve of 0.905 for humanin, 0.873 for MOTS-c, and 0.934 for NRGN to predict MCI in OSA patients without dementia. Increased humanin, MOTS-c, and NRGN levels significantly decreased after CPAP treatment. CONCLUSIONS Mitochondrial dysfunction is implicated in cognitive impairment in OSA patients without dementia, and mainly mediates the association between intermittent hypoxia and cognitive impairment in adults with OSA without dementia. Mitochondrial dysfunction can be partially reversible by CPAP treatment. Mitochondrial proteins can be used as markers of cognitive impairment in patients with OSA.
Collapse
Affiliation(s)
- Mengfan Li
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Tengqun Shen
- Department of Resident Standardized Training Management, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Ran Yao
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Hairong Sun
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Xiaoxiao Liu
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Zhenguang Li
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Jinbiao Zhang
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China.
| |
Collapse
|
14
|
Huth A, Ayoub I, Barateau L, Gerdes LA, Severac D, Krebs S, Blum H, Tumani H, Haas J, Wildemann B, Kümpfel T, Beltrán E, Liblau RS, Dauvilliers Y, Dornmair K. Single cell transcriptomics of cerebrospinal fluid cells from patients with recent-onset narcolepsy. J Autoimmun 2024; 146:103234. [PMID: 38663202 DOI: 10.1016/j.jaut.2024.103234] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/23/2024] [Accepted: 04/16/2024] [Indexed: 12/05/2024]
Abstract
Narcolepsy is a rare cause of hypersomnolence and may be associated or not with cataplexy, i.e. sudden muscle weakness. These forms are designated narcolepsy-type 1 (NT1) and -type 2 (NT2), respectively. Notable characteristics of narcolepsy are that most patients carry the HLA-DQB1*06:02 allele and NT1-patients have strongly decreased levels of hypocretin-1 (synonym orexin-A) in the cerebrospinal fluid (CSF). The pathogenesis of narcolepsy is still not completely understood but the strong HLA-bias and increased frequencies of CD4+ T cells reactive to hypocretin in the peripheral blood suggest autoimmune processes in the hypothalamus. Here we analyzed the transcriptomes of CSF-cells from twelve NT1 and two NT2 patients by single cell RNAseq (scRNAseq). As controls, we used CSF cells from patients with multiple sclerosis, radiologically isolated syndrome, and idiopathic intracranial hypertension. From 27,255 CSF cells, we identified 20 clusters of different cell types and found significant differences in three CD4+ T cell and one monocyte clusters between narcolepsy and multiple sclerosis patients. Over 1000 genes were differentially regulated between patients with NT1 and other diseases. Surprisingly, the most strongly upregulated genes in narcolepsy patients as compared to controls were coding for the genome-encoded MTRNR2L12 and MTRNR2L8 peptides, which are homologous to the mitochondria-encoded HUMANIN peptide that is known playing a role in other neurological diseases including Alzheimer's disease.
Collapse
Affiliation(s)
- Alina Huth
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
| | - Ikram Ayoub
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, Toulouse, France
| | - Lucie Barateau
- Sleep-Wake Disorders Center, Department of Neurology, Gui-de-Chauliac Hospital, Institute for Neurosciences of Montpellier INM, INSERM, University of Montpellier, Montpellier, France
| | - Lisa Ann Gerdes
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Dany Severac
- GenomiX, MGX, BioCampus Montpellier, CNRS, INSERM, Univ. Montpellier, F-34094, Montpellier, France
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center of the LMU, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center of the LMU, Munich, Germany
| | | | - Jürgen Haas
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
| | - Eduardo Beltrán
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Roland S Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, Toulouse, France
| | - Yves Dauvilliers
- Sleep-Wake Disorders Center, Department of Neurology, Gui-de-Chauliac Hospital, Institute for Neurosciences of Montpellier INM, INSERM, University of Montpellier, Montpellier, France
| | - Klaus Dornmair
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
15
|
Duffy EE, Assad EG, Kalish BT, Greenberg ME. Small but mighty: the rise of microprotein biology in neuroscience. Front Mol Neurosci 2024; 17:1386219. [PMID: 38807924 PMCID: PMC11130481 DOI: 10.3389/fnmol.2024.1386219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024] Open
Abstract
The mammalian central nervous system coordinates a network of signaling pathways and cellular interactions, which enable a myriad of complex cognitive and physiological functions. While traditional efforts to understand the molecular basis of brain function have focused on well-characterized proteins, recent advances in high-throughput translatome profiling have revealed a staggering number of proteins translated from non-canonical open reading frames (ncORFs) such as 5' and 3' untranslated regions of annotated proteins, out-of-frame internal ORFs, and previously annotated non-coding RNAs. Of note, microproteins < 100 amino acids (AA) that are translated from such ncORFs have often been neglected due to computational and biochemical challenges. Thousands of putative microproteins have been identified in cell lines and tissues including the brain, with some serving critical biological functions. In this perspective, we highlight the recent discovery of microproteins in the brain and describe several hypotheses that have emerged concerning microprotein function in the developing and mature nervous system.
Collapse
Affiliation(s)
- Erin E. Duffy
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Elena G. Assad
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Brian T. Kalish
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Division of Neonatology, Department of Paediatrics, Hospital for Sick Children, Toronto, ON, Canada
| | | |
Collapse
|
16
|
Kal S, Mahata S, Jati S, Mahata SK. Mitochondrial-derived peptides: Antidiabetic functions and evolutionary perspectives. Peptides 2024; 172:171147. [PMID: 38160808 PMCID: PMC10838678 DOI: 10.1016/j.peptides.2023.171147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Mitochondrial-derived peptides (MDPs) are a novel class of bioactive microproteins encoded by short open-reading frames (sORF) in mitochondrial DNA (mtDNA). Currently, three types of MDPs have been identified: Humanin (HN), MOTS-c (Mitochondrial ORF within Twelve S rRNA type-c), and SHLP1-6 (small Humanin-like peptide, 1 to 6). The 12 S ribosomal RNA (MT-RNR1) gene harbors the sequence for MOTS-c, whereas HN and SHLP1-6 are encoded by the 16 S ribosomal RNA (MT-RNR2) gene. Special genetic codes are used in mtDNA as compared to nuclear DNA: (i) ATA and ATT are used as start codons in addition to the standard start codon ATG; (ii) AGA and AGG are used as stop codons instead of coding for arginine; (iii) the standard stop codon UGA is used to code for tryptophan. While HN, SHLP6, and MOTS-c are encoded by the H (heavy owing to high guanine + thymine base composition)-strand of the mtDNA, SHLP1-5 are encoded by the L (light owing to less guanine + thymine base composition)-strand. MDPs attenuate disease pathology including Type 1 diabetes (T1D), Type 2 diabetes (T2D), gestational diabetes, Alzheimer's disease (AD), cardiovascular diseases, prostate cancer, and macular degeneration. The current review will focus on the MDP regulation of T2D, T1D, and gestational diabetes along with an emphasis on the evolutionary pressures for conservation of the amino acid sequences of MDPs.
Collapse
Affiliation(s)
- Satadeepa Kal
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sumana Mahata
- Department of Anesthesiology, Riverside University Health System, Moreno Valley, CA, USA
| | - Suborno Jati
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Sushil K Mahata
- Department of Medicine, University of California San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
17
|
Thapak P, Ying Z, Palafox-Sanchez V, Zhang G, Yang X, Gomez-Pinilla F. Humanin ameliorates TBI-related cognitive impairment by attenuating mitochondrial dysfunction and inflammation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166937. [PMID: 37926362 DOI: 10.1016/j.bbadis.2023.166937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/27/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
Traumatic brain injury (TBI) often results in a reduction of the capacity of cells to sustain energy demands, thus, compromising neuronal function and plasticity. Here we show that the mitochondrial activator humanin (HN) counteracts a TBI-related reduction in mitochondrial bioenergetics, including oxygen consumption rate. HN normalized the disruptive action of TBI on memory function, and restored levels of synaptic proteins (synapsin 1 and p-CREB). HN also counteracted TBI-related elevations of pro-inflammatory cytokines in plasma (TNF-α, INF-y, IL 17, IL 5, MCP 5, GCSF, RANNETS, sTNFRI) as well as in the hippocampus (gp-130 and p-STAT3). Gp-130 is an integral part of cytokine receptor impinging on STAT3 (Tyr-705) signaling. Furthermore, HN reduced astrocyte proliferation in TBI. The overall evidence suggests that HN plays an integral role in normalizing fundamental aspects of TBI pathology which are central to energy balance, brain function, and plasticity.
Collapse
Affiliation(s)
- Pavan Thapak
- Depts. of Neurosurgery and Integrative Biology and Physiology, UCLA BIRC, University of California, Los Angeles 90064, USA
| | - Zhe Ying
- Depts. of Neurosurgery and Integrative Biology and Physiology, UCLA BIRC, University of California, Los Angeles 90064, USA
| | - Victoria Palafox-Sanchez
- Depts. of Neurosurgery and Integrative Biology and Physiology, UCLA BIRC, University of California, Los Angeles 90064, USA
| | - Guanglin Zhang
- Depts. of Neurosurgery and Integrative Biology and Physiology, UCLA BIRC, University of California, Los Angeles 90064, USA
| | - Xia Yang
- Depts. of Neurosurgery and Integrative Biology and Physiology, UCLA BIRC, University of California, Los Angeles 90064, USA
| | - Fernando Gomez-Pinilla
- Depts. of Neurosurgery and Integrative Biology and Physiology, UCLA BIRC, University of California, Los Angeles 90064, USA.
| |
Collapse
|
18
|
Karachaliou CE, Livaniou E. Neuroprotective Action of Humanin and Humanin Analogues: Research Findings and Perspectives. BIOLOGY 2023; 12:1534. [PMID: 38132360 PMCID: PMC10740898 DOI: 10.3390/biology12121534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Humanin is a 24-mer peptide first reported in the early 2000s as a new neuroprotective/cytoprotective factor rescuing neuronal cells from death induced by various Alzheimer's disease-associated insults. Nowadays it is known that humanin belongs to the novel class of the so-called mitochondrial-derived peptides (which are encoded by mitochondrial DNA) and has been shown to exert beneficial cytoprotective effects in a series of in vitro and/or in vivo experimental models of human diseases, including not only neurodegenerative disorders but other human diseases as well (e.g., age-related macular degeneration, cardiovascular diseases, or diabetes mellitus). This review article is focused on the presentation of recent in vitro and in vivo research results associated with the neuroprotective action of humanin as well as of various, mainly synthetic, analogues of the peptide; moreover, the main mode(s)/mechanism(s) through which humanin and humanin analogues may exert in vitro and in vivo regarding neuroprotection have been reported. The prospects of humanin and humanin analogues to be further investigated in the frame of future research endeavors against neurodegenerative/neural diseases have also been briefly discussed.
Collapse
Affiliation(s)
| | - Evangelia Livaniou
- Immunopeptide Chemistry Lab., Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, P.O. Box 60037, 153 10 Agia Paraskevi, Greece;
| |
Collapse
|
19
|
Singh S, Yang F, Sivils A, Cegielski V, Chu XP. Amylin and Secretases in the Pathology and Treatment of Alzheimer's Disease. Biomolecules 2022; 12:996. [PMID: 35883551 PMCID: PMC9312829 DOI: 10.3390/biom12070996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's disease remains a prevailing neurodegenerative condition which has an array physical, emotional, and financial consequences to patients and society. In the past decade, there has been a greater degree of investigation on therapeutic small peptides. This group of biomolecules have a profile of fundamentally sound characteristics which make them an intriguing area for drug development. Among these biomolecules, there are four modulatory mechanisms of interest in this review: alpha-, beta-, gamma-secretases, and amylin. These protease-based biomolecules all have a contributory role in the amyloid cascade hypothesis. Moreover, the involvement of various biochemical pathways intertwines these peptides to have shared regulators (i.e., retinoids). Further clinical and translational investigation must occur to gain a greater understanding of its potential application in patient care. The aim of this narrative review is to evaluate the contemporary literature on these protease biomolecule modulators and determine its utility in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | - Xiang-Ping Chu
- Department of Biomedical Sciences, School of Medicine, University of Missouri, Kansas City, MO 64108, USA; (S.S.); (F.Y.); (A.S.); (V.C.)
| |
Collapse
|
20
|
Ikegawa N, Kozuka A, Morita N, Murakami M, Sasakawa N, Niikura T. Humanin derivative, HNG, enhances neurotransmitter release. Biochim Biophys Acta Gen Subj 2022; 1866:130204. [PMID: 35843407 DOI: 10.1016/j.bbagen.2022.130204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Humanin (HN) is an endogenous 24-residue peptide that was first identified as a protective factor against neuronal death in Alzheimer's disease (AD). We previously demonstrated that the highly potent HN derivative HNG (HN with substitution of Gly for Ser14) ameliorated cognitive impairment in AD mouse models. Despite the accumulating evidence on the antagonizing effects of HN against cognitive deficits, the mechanisms behind these effects remain to be elucidated. METHODS The extracellular fluid in the hippocampus of wild-type young mice was collected by microdialysis and the amounts of neurotransmitters were measured. The kinetic analysis of exocytosis was performed by amperometry using neuroendocrine cells. RESULTS The hippocampal acetylcholine (ACh) levels were increased by intraperitoneal injection of HNG. HNG did not affect the physical activities of the mice but modestly improved their object memory. In a neuronal cell model, rat pheochromocytoma PC12 cells, HNG enhanced ACh-induced dopamine release. HNG increased ACh-induced secretory events and vesicular quantal size in primary neuroendocrine cells. CONCLUSIONS These findings suggest that HN directly enhances regulated exocytosis in neurons, which can contribute to the improvement of cognitive functions. GENERAL SIGNIFICANCE The regulator of exocytosis is a novel physiological role of HN, which provides a molecular clue for HN's effects on brain functions under health and disease.
Collapse
Affiliation(s)
- Natsumi Ikegawa
- Department of Information and Communication Sciences, Faculty of Science and Technology, Sophia University, Japan
| | - Ayari Kozuka
- Department of Information and Communication Sciences, Faculty of Science and Technology, Sophia University, Japan
| | - Nozomi Morita
- Department of Information and Communication Sciences, Faculty of Science and Technology, Sophia University, Japan
| | - Minetaka Murakami
- Department of Information and Communication Sciences, Faculty of Science and Technology, Sophia University, Japan
| | - Nobuyuki Sasakawa
- Department of Information and Communication Sciences, Faculty of Science and Technology, Sophia University, Japan
| | - Takako Niikura
- Department of Information and Communication Sciences, Faculty of Science and Technology, Sophia University, Japan.
| |
Collapse
|
21
|
Thiankhaw K, Chattipakorn K, Chattipakorn SC, Chattipakorn N. Roles of humanin and derivatives on the pathology of neurodegenerative diseases and cognition. Biochim Biophys Acta Gen Subj 2022; 1866:130097. [DOI: 10.1016/j.bbagen.2022.130097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 10/19/2022]
|