1
|
Xia Y, Wang L, Ma X, Li X. Investigation on the Genomic Characterization of Uterine Sarcoma for rAd- p53 Combined with Chemotherapy Treatment. Hum Gene Ther 2020; 31:881-890. [PMID: 32013587 DOI: 10.1089/hum.2019.305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The aim is to investigate the genomic characterization of uterine sarcoma for rAd-p53 (Gendicine®) combined with chemotherapy treatment. We recently published an article on 12 cases of uterine sarcomas, which were treated with rAd-p53 combined with chemotherapy. We found that rAd-p53 combined with chemotherapy is effective for various uterine sarcomas. Pretreatment pathological specimens of four uterine sarcoma patients were collected from the above recent clinical research and numbered 1-4A/B. Tumor samples were subjected to targeted sequencing by using a 416 genes panel. We profiled the mutation spectrum and tumor mutation burden in the tumors, identified mutated genes, and explored their gene function. We also verified the p53 protein expression using immunohistochemistry. We identified a total of 30 mutated genes that were found from the next-generation sequencing test results. The average number of mutated genes was up to seven in the five samples. TP53 gene was mutated in two of the four patients, No. 1 and No. 4B. They are c.C833G (p.P278R) missense mutation and a point mutation (C141*) that result in a premature stop codon. We did not find a mutated TP53 gene in the other two cases, but we identified mutated genes, including CREBBP, LYN, CDKN2A, and JAK2, which were located upstream of the TP53 gene; they may have an impact on TP53. We also identified 11 additional genes which are involved in p53-related signaling pathways or have interaction with p53. Compared to solid tumor mutational burden (TMB) distribution, none of their TMB was ranking in the top 25%. Mutant p53 protein expression was positive in two specimens. Our results demonstrated that the TP53 signaling pathway plays an important role in uterine sarcoma tumorigenesis. TP53 and the upstream genes such as CREBBP, LYN, CDKN2A, and JAK2 may be involved in the genomic characterization for rAd-p53 (Gendicine) combined with chemotherapy in uterine sarcoma. Besides, the average amount of mutated genes from every patient is large.
Collapse
Affiliation(s)
- Yu Xia
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lei Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaolin Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiuqin Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Kurbegovic A, Trudel M. The master regulators Myc and p53 cellular signaling and functions in polycystic kidney disease. Cell Signal 2020; 71:109594. [PMID: 32145315 DOI: 10.1016/j.cellsig.2020.109594] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 01/08/2023]
Abstract
The transcription factors Myc and p53 associated with oncogenesis play determinant roles in a human genetic disorder, autosomal dominant polycystic kidney disease (ADPKD), that was coined early in ADPKD etiology a «neoplasia in disguise ». These factors are interdependent master cell regulators of major biological processes including proliferation, apoptosis, cell growth, metabolism, inflammation, fibrosis and differentiation that are all modulated in ADPKD. Myc and p53 proteins evolved to respond and carry out overlapping functions via opposing mechanisms of action. Studies in human ADPKD kidneys, caused by mutations in the PKD1 or PKD2 genes, reveal reduced p53 expression and high expression of Myc in the cystic tubular epithelium. Myc and p53 via direct interaction act respectively, as transcriptional activator and repressor of PKD1 gene expression, consistent with increased renal PKD1 levels in ADPKD. Mouse models generated by Pkd1 and Pkd2 gene dosage dysregulation reproduce renal cystogenesis with activation of Myc expression and numerous signaling pathways, strikingly similar to those determined in human ADPKD. In fact, upregulation of renal Myc expression is also detected in virtually all non-orthologous animal models of PKD. A definitive causal connection of Myc with cystogenesis was established by renal overexpression of Myc in transgenic mice that phenocopies human ADPKD. The network of activated signaling pathways in human and mouse cystogenesis individually or in combination can target Myc as a central node of PKD pathogenesis. One or many of the multiple functions of Myc upon activation can play a role in every phases of ADPKD development and lend credence to the notion of "Myc addiction" for cystogenesis. We propose that the residual p53 levels are conducive to an ADPKD biological program without cancerogenesis while a "p53 dependent annihilation" mechanism would be permissive to oncogenesis. Of major importance, Myc ablation in orthologous mouse models or direct inhibition in non-orthologous mouse model significantly delays cystogenesis consistent with pharmacologic or genetic inhibition of Myc upstream regulator or downstream targets in the mouse. Together, these studies on PKD proteins upon dysregulation not only converged on Myc as a focal point but also attribute to Myc upregulation a causal and « driver » role in pathogenesis. This review will present and discuss our current knowledge on Myc and p53, focused on PKD mouse models and ADPKD.
Collapse
Affiliation(s)
- Almira Kurbegovic
- Institut de Recherches Cliniques de Montréal, Molecular Genetics and Development, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Marie Trudel
- Institut de Recherches Cliniques de Montréal, Molecular Genetics and Development, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
3
|
E Hermosilla V, Salgado G, Riffo E, Escobar D, Hepp MI, Farkas C, Galindo M, Morín V, García-Robles MA, Castro AF, Pincheira R. SALL2 represses cyclins D1 and E1 expression and restrains G1/S cell cycle transition and cancer-related phenotypes. Mol Oncol 2018; 12:1026-1046. [PMID: 29689621 PMCID: PMC6026872 DOI: 10.1002/1878-0261.12308] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 12/25/2022] Open
Abstract
SALL2 is a poorly characterized transcription factor that belongs to the Spalt‐like family involved in development. Mutations on SALL2 have been associated with ocular coloboma and cancer. In cancers, SALL2 is deregulated and is proposed as a tumor suppressor in ovarian cancer. SALL2 has been implicated in stemness, cell death, proliferation, and quiescence. However, mechanisms underlying roles of SALL2 related to cancer remain largely unknown. Here, we investigated the role of SALL2 in cell proliferation using mouse embryo fibroblasts (MEFs) derived from Sall2−/− mice. Compared to Sall2+/+ MEFs, Sall2−/− MEFs exhibit enhanced cell proliferation and faster postmitotic progression through G1 and S phases. Accordingly, Sall2−/− MEFs exhibit higher mRNA and protein levels of cyclins D1 and E1. Chromatin immunoprecipitation and promoter reporter assays showed that SALL2 binds and represses CCND1 and CCNE1 promoters, identifying a novel mechanism by which SALL2 may control cell cycle. In addition, the analysis of tissues from Sall2+/+ and Sall2−/− mice confirmed the inverse correlation between expression of SALL2 and G1‐S cyclins. Consistent with an antiproliferative function of SALL2, immortalized Sall2−/− MEFs showed enhanced growth rate, foci formation, and anchorage‐independent growth, confirming tumor suppressor properties for SALL2. Finally, cancer data analyses show negative correlations between SALL2 and G1‐S cyclins’ mRNA levels in several cancers. Altogether, our results demonstrated that SALL2 is a negative regulator of cell proliferation, an effect mediated in part by repression of G1‐S cyclins’ expression. Our results have implications for the understanding and significance of SALL2 role under physiological and pathological conditions.
Collapse
Affiliation(s)
- Viviana E Hermosilla
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Ginessa Salgado
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Elizabeth Riffo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - David Escobar
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Matías I Hepp
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Carlos Farkas
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Mario Galindo
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Violeta Morín
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - María A García-Robles
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Ariel F Castro
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Roxana Pincheira
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| |
Collapse
|
4
|
Epigenetics of Renal Development and Disease. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2016; 89:565-573. [PMID: 28018145 PMCID: PMC5168832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An understanding of epigenetics is indispensable to our understanding of gene regulation under normal and pathological states. This knowledge will help with designing better therapeutic approaches in regenerative tissue medicine. Epigenetics allows us to parse out the mechanisms by which transcriptional regulators gain access to specific gene loci thereby imprinting epigenetic information affecting chromatin function. This epigenetic memory forms the basis of cell lineage specification in multicellular organisms. Post-translational modifications to DNA and histones in the nucleosome core form characteristic epigenetic codes which are distinct for self-renewing and primed progenitor cell populations. Studies of chromatin modifiers and modifications in renal development and disease have been gaining momentum. Both congenital and adult renal diseases have a gene-environment component, which involves alterations to the epigenetic information imprinted during development. This epigenetic memory must be characterized to establish optimal treatment of both acute and chronic renal diseases.
Collapse
|
5
|
Abstract
Epigenetic regulation refers to heritable changes in gene expression that do not involve any alteration of the DNA sequence. DNA methylation, histone modification, and gene regulation by microRNAs are well-known epigenetic modulations that are closely associated with several cellular processes and diverse disease states, such as cancers, even under precancerous conditions. More recently, several studies have indicated that epigenetic changes may be associated with renal cystic diseases, including autosomal dominant polycystic kidney disease, and the restoration of altered epigenetic factors may become a therapeutic target of renal cystic disease and would be expected to have minimal side effects. This review focuses on recently reported findings on epigenetic and considers the potential of targeting epigenetic regulation as a novel therapeutic approach to control cystogenesis.
Collapse
|
6
|
Fischer M, Steiner L, Engeland K. The transcription factor p53: not a repressor, solely an activator. Cell Cycle 2014; 13:3037-58. [PMID: 25486564 PMCID: PMC4612452 DOI: 10.4161/15384101.2014.949083] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/10/2014] [Indexed: 12/12/2022] Open
Abstract
The predominant function of the tumor suppressor p53 is transcriptional regulation. It is generally accepted that p53-dependent transcriptional activation occurs by binding to a specific recognition site in promoters of target genes. Additionally, several models for p53-dependent transcriptional repression have been postulated. Here, we evaluate these models based on a computational meta-analysis of genome-wide data. Surprisingly, several major models of p53-dependent gene regulation are implausible. Meta-analysis of large-scale data is unable to confirm reports on directly repressed p53 target genes and falsifies models of direct repression. This notion is supported by experimental re-analysis of representative genes reported as directly repressed by p53. Therefore, p53 is not a direct repressor of transcription, but solely activates its target genes. Moreover, models based on interference of p53 with activating transcription factors as well as models based on the function of ncRNAs are also not supported by the meta-analysis. As an alternative to models of direct repression, the meta-analysis leads to the conclusion that p53 represses transcription indirectly by activation of the p53-p21-DREAM/RB pathway.
Collapse
Key Words
- CDE, cell cycle-dependent element
- CDKN1A
- CHR, cell cycle genes homology region
- ChIP, chromatin immunoprecipitation
- DREAM complex
- DREAM, DP, RB-like, E2F4, and MuvB complex
- E2F/RB complex
- HPV, human papilloma virus
- NF-Y, Nuclear factor Y
- cdk, cyclin-dependent kinase
- genome-wide meta-analysis
- p53
Collapse
Affiliation(s)
- Martin Fischer
- Molecular Oncology; Medical School; University of Leipzig; Leipzig, Germany
| | - Lydia Steiner
- Center for Complexity & Collective Computation; Wisconsin Institute for Discovery; Madison, WI USA
- Computational EvoDevo Group & Bioinformatics Group; Department of Computer Science and Interdisciplinary Center for Bioinformatics; University of Leipzig; Leipzig, Germany
| | - Kurt Engeland
- Molecular Oncology; Medical School; University of Leipzig; Leipzig, Germany
| |
Collapse
|
7
|
Farkas C, Martins CP, Escobar D, Hepp MI, Castro AF, Evan G, Gutiérrez JL, Warren R, Donner DB, Pincheira R. Wild type p53 transcriptionally represses the SALL2 transcription factor under genotoxic stress. PLoS One 2013; 8:e73817. [PMID: 24040083 PMCID: PMC3765348 DOI: 10.1371/journal.pone.0073817] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 07/24/2013] [Indexed: 12/20/2022] Open
Abstract
SALL2- a member of the Spalt gene family- is a poorly characterized transcription factor found deregulated in various cancers, which suggests it plays a role in the disease. We previously identified SALL2 as a novel interacting protein of neurotrophin receptors and showed that it plays a role in neuronal function, which does not necessarily explain why or how SALL2 is deregulated in cancer. Previous evidences indicate that SALL2 gene is regulated by the WT1 and AP4 transcription factors. Here, we identified SALL2 as a novel downstream target of the p53 tumor suppressor protein. Bioinformatic analysis of the SALL2 gene revealed several putative p53 half sites along the promoter region. Either overexpression of wild-type p53 or induction of the endogenous p53 by the genotoxic agent doxorubicin repressed SALL2 promoter activity in various cell lines. However R175H, R249S, and R248W p53 mutants, frequently found in the tumors of cancer patients, were unable to repress SALL2 promoter activity, suggesting that p53 specific binding to DNA is important for the regulation of SALL2. Electrophoretic mobility shift assay demonstrated binding of p53 to one of the identified p53 half sites in the Sall2 promoter, and chromatin immunoprecipitation analysis confirmed in vivo interaction of p53 with the promoter region of Sall2 containing this half site. Importantly, by using a p53ER (TAM) knockin model expressing a variant of p53 that is completely dependent on 4-hydroxy-tamoxifen for its activity, we show that p53 activation diminished SALL2 RNA and protein levels during genotoxic cellular stress in primary mouse embryo fibroblasts (MEFs) and radiosensitive tissues in vivo. Thus, our finding indicates that p53 represses SALL2 expression in a context-specific manner, adding knowledge to the understanding of SALL2 gene regulation, and to a potential mechanism for its deregulation in cancer.
Collapse
Affiliation(s)
- Carlos Farkas
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Li Y, Liu J, McLaughlin N, Bachvarov D, Saifudeen Z, El-Dahr SS. Genome-wide analysis of the p53 gene regulatory network in the developing mouse kidney. Physiol Genomics 2013; 45:948-64. [PMID: 24003036 DOI: 10.1152/physiolgenomics.00113.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Despite mounting evidence that p53 senses and responds to physiological cues in vivo, existing knowledge regarding p53 function and target genes is largely derived from studies in cancer or stressed cells. Herein we utilize p53 transcriptome and ChIP-Seq (chromatin immunoprecipitation-high throughput sequencing) analyses to identify p53 regulated pathways in the embryonic kidney, an organ that develops via mesenchymal-epithelial interactions. This integrated approach allowed identification of novel genes that are possible direct p53 targets during kidney development. We find the p53-regulated transcriptome in the embryonic kidney is largely composed of genes regulating developmental, morphogenesis, and metabolic pathways. Surprisingly, genes in cell cycle and apoptosis pathways account for <5% of differentially expressed transcripts. Of 7,893 p53-occupied genomic regions (peaks), the vast majority contain consensus p53 binding sites. Interestingly, 78% of p53 peaks in the developing kidney lie within proximal promoters of annotated genes compared with 7% in a representative cancer cell line; 25% of the differentially expressed p53-bound genes are present in nephron progenitors and nascent nephrons, including key transcriptional regulators, components of Fgf, Wnt, Bmp, and Notch pathways, and ciliogenesis genes. The results indicate widespread p53 binding to the genome in vivo and context-dependent differences in the p53 regulon between cancer, stress, and development. To our knowledge, this is the first comprehensive analysis of the p53 transcriptome and cistrome in a developing mammalian organ, substantiating the role of p53 as a bona fide developmental regulator. We conclude p53 targets transcriptional networks regulating nephrogenesis and cellular metabolism during kidney development.
Collapse
Affiliation(s)
- Yuwen Li
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University Health Sciences Center, New Orleans, Louisiana
| | | | | | | | | | | |
Collapse
|
9
|
Fischer M, Grundke I, Sohr S, Quaas M, Hoffmann S, Knörck A, Gumhold C, Rother K. p53 and cell cycle dependent transcription of kinesin family member 23 (KIF23) is controlled via a CHR promoter element bound by DREAM and MMB complexes. PLoS One 2013; 8:e63187. [PMID: 23650552 PMCID: PMC3641139 DOI: 10.1371/journal.pone.0063187] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/28/2013] [Indexed: 12/12/2022] Open
Abstract
The microtubule-dependent molecular motor KIF23 (Kinesin family member 23) is one of two components of the centralspindlin complex assembled during late stages of mitosis. Formation of this complex is known as an essential step for cytokinesis. Here, we identified KIF23 as a new transcriptional target gene of the tumor suppressor protein p53. We showed that p53 reduces expression of KIF23 on the mRNA as well as the protein level in different cell types. Promoter reporter assays revealed that this repression results from downregulation of KIF23 promoter activity. CDK inhibitor p21WAF1/CIP1 was shown to be necessary to mediate p53-dependent repression. Furthermore, we identified the highly conserved cell cycle genes homology region (CHR) in the KIF23 promoter to be strictly required for p53-dependent repression as well as for cell cycle-dependent expression of KIF23. Cell cycle- and p53-dependent regulation of KIF23 appeared to be controlled by differential binding of DREAM and MMB complexes to the CHR element. With this study, we describe a new mechanism for transcriptional regulation of KIF23. Considering the strongly supporting function of KIF23 in cytokinesis, its p53-dependent repression may contribute to the prevention of uncontrolled cell growth.
Collapse
Affiliation(s)
- Martin Fischer
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
| | - Inga Grundke
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
| | - Sindy Sohr
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
| | - Marianne Quaas
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
| | - Saskia Hoffmann
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
| | - Arne Knörck
- Department of Medical Biochemistry and Molecular Biology, Center of Human and Molecular Biology, Medical Center, Saarland University, Homburg, Germany
| | - Catalina Gumhold
- Department of Medical Biochemistry and Molecular Biology, Center of Human and Molecular Biology, Medical Center, Saarland University, Homburg, Germany
| | - Karen Rother
- Department of Medical Biochemistry and Molecular Biology, Center of Human and Molecular Biology, Medical Center, Saarland University, Homburg, Germany
- * E-mail:
| |
Collapse
|
10
|
The NF-Y/p53 liaison: well beyond repression. Biochim Biophys Acta Rev Cancer 2011; 1825:131-9. [PMID: 22138487 DOI: 10.1016/j.bbcan.2011.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/09/2011] [Accepted: 11/12/2011] [Indexed: 12/15/2022]
Abstract
NF-Y is a sequence-specific transcription factor - TF - targeting the common CCAAT promoter element. p53 is a master TF controlling the response to stress signals endangering genome integrity, often mutated in human cancers. The NF-Y/p53 - and p63, p73 - interaction results in transcriptional repression of a subset of genes within the vast NF-Y regulome under DNA-damage conditions. Recent data shows that NF-Y is also involved in pro-apoptotic activities, either directly, by mediating p53 transcriptional activation, or indirectly, by being targeted by a non coding RNA, PANDA. The picture is subverted in cells carrying Gain-of-function mutant p53, through interactions with TopBP1, a protein also involved in DNA repair and replication. In summary, the connection between p53 and NF-Y is crucial in determining cell survival or death.
Collapse
|
11
|
Abstract
Polycystic kidney disease (PKD) is a common genetic disorder in which extensive epithelial-lined cysts develop in the kidneys. In previous studies, abnormalities of polycystin protein and its interacting proteins, as well as primary cilia, have been suggested to play critical roles in the development of renal cysts. However, although several therapeutic targets for PKD have been suggested, no early diagnosis or effective treatments are currently available. Current developments are active for treatment of PKD including inhibitors or antagonists of PPAR-γ, TNF-α, CDK and VEGF. These drugs are potential therapeutic targets in PKD, and need to be determined about pathological functions in human PKD. It has recently been reported that the alteration of epigenetic regulation, as well as gene mutations, may affect the pathogenesis of PKD. In this review, we will discuss recent approaches to PKD therapy. It provides important information regarding potential targets for PKD.
Collapse
Affiliation(s)
- Eun Young Park
- Department of Biological Science, Sookmyung Women's University, Seoul 140-742, Korea
| | | | | |
Collapse
|
12
|
Rinn JL, Huarte M. To repress or not to repress: this is the guardian's question. Trends Cell Biol 2011; 21:344-53. [PMID: 21601459 DOI: 10.1016/j.tcb.2011.04.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/11/2011] [Accepted: 04/13/2011] [Indexed: 10/18/2022]
Abstract
p53 is possibly the most central tumor suppressor gene of our cells, integrating stress signals to activate a transcriptional program responsible for maintaining cellular homeostasis. Many of the downstream effects of p53 are a consequence of its activity as a transcription factor, resulting in the induction of multiple target genes. In addition to gene activation, however, gene repression is an essential part of the p53 cellular response. Despite extensive research efforts towards the elucidation of p53 functions, the molecular mechanisms and biological consequences of gene repression by p53 have not been studied extensively. We review our current knowledge of the mechanisms and biological consequences of p53 repression, with special attention to recently discovered mechanisms of repression that involve non-coding RNA molecules, an emerging aspect of regulation in the p53 cellular network.
Collapse
Affiliation(s)
- John L Rinn
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | | |
Collapse
|
13
|
One function--multiple mechanisms: the manifold activities of p53 as a transcriptional repressor. J Biomed Biotechnol 2011; 2011:464916. [PMID: 21436991 PMCID: PMC3062963 DOI: 10.1155/2011/464916] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 01/17/2011] [Indexed: 12/31/2022] Open
Abstract
Maintenance of genome integrity is a dynamic process involving complex regulation systems. Defects in one or more of these pathways could result in cancer. The most important tumor-suppressor is the transcription factor p53, and its functional inactivation is frequently observed in many tumor types. The tumor suppressive function of p53 is mainly attributed to its ability to regulate numerous target genes at the transcriptional level. While the mechanism of transcriptional induction by p53 is well characterized, p53-dependent repression is not understood in detail. Here, we review the manifold mechanisms of p53 as a transcriptional repressor. We classify two different categories of repressed genes based on the underlying mechanism, and novel mechanisms which involve regulation through noncoding RNAs are discussed. The complete elucidation of p53 functions is important for our understanding of its tumor-suppressor activity and, therefore, represents the key for the development of novel therapeutic approaches.
Collapse
|
14
|
Islam MR, Jimenez T, Pelham C, Rodova M, Puri S, Magenheimer BS, Maser RL, Widmann C, Calvet JP. MAP/ERK kinase kinase 1 (MEKK1) mediates transcriptional repression by interacting with polycystic kidney disease-1 (PKD1) promoter-bound p53 tumor suppressor protein. J Biol Chem 2010; 285:38818-31. [PMID: 20923779 DOI: 10.1074/jbc.m110.145284] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades regulate a wide variety of cellular processes that ultimately depend on changes in gene expression. We have found a novel mechanism whereby one of the key MAP3 kinases, Mekk1, regulates transcriptional activity through an interaction with p53. The tumor suppressor protein p53 down-regulates a number of genes, including the gene most frequently mutated in autosomal dominant polycystic kidney disease (PKD1). We have discovered that Mekk1 translocates to the nucleus and acts as a co-repressor with p53 to down-regulate PKD1 transcriptional activity. This repression does not require Mekk1 kinase activity, excluding the need for an Mekk1 phosphorylation cascade. However, this PKD1 repression can also be induced by the stress-pathway stimuli, including TNFα, suggesting that Mekk1 activation induces both JNK-dependent and JNK-independent pathways that target the PKD1 gene. An Mekk1-p53 interaction at the PKD1 promoter suggests a new mechanism by which abnormally elevated stress-pathway stimuli might directly down-regulate the PKD1 gene, possibly causing haploinsufficiency and cyst formation.
Collapse
Affiliation(s)
- M Rafiq Islam
- Department of Chemistry/Physics, Northwest Missouri State University, Maryville, Missouri 64468, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|