1
|
Shin Y, Petassi MT, Jessop AM, Kim SY, Matei R, Morse K, Raina VB, Roy U, Greene EC. Structural basis for Rad54- and Hed1-mediated regulation of Rad51 during the transition from mitotic to meiotic recombination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.645561. [PMID: 40196570 PMCID: PMC11974805 DOI: 10.1101/2025.03.26.645561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Rad51 catalyzes the DNA pairing reactions that take place during homologous recombination (HR), and HR must be tightly regulated to ensure physiologically appropriate outcomes. Rad54 is an ATP-dependent DNA motor protein that stimulates Rad51 activity during mitosis. In meiosis Rad51 is downregulated by the protein Hed1, which blocks Rad54 binding to Rad51, and allows Dmc1 to function as the active recombinase. We currently have a poor understanding of the regulatory interplay between Rad54, Hed1, Rad51 and Dmc1. Here, we identify a conserved Rad51 interaction motif within Rad54, and we solve a CryoEM structure of this motif bound to Rad51. We also identify a distinct Rad51 interaction motif within Hed1 and solve its structure bound to Rad51. These structures explain how Rad54 engages Rad51 to promote recombination between sister chromatids during mitosis and how Rad51 is downregulated by Hed1 upon entry into meiosis such that its meiosis-specific homolog Dmc1 can promote recombination between homologous chromosomes.
Collapse
Affiliation(s)
- Yeonoh Shin
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Michael T Petassi
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Aidan M Jessop
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Stefan Y Kim
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Razvan Matei
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Katherine Morse
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Vivek B Raina
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Upasana Roy
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Eric C Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| |
Collapse
|
2
|
Uhrig M, Sharma N, Maxwell P, Gomez J, Selemenakis P, Mazin A, Wiese C. Disparate requirements for RAD54L in replication fork reversal. Nucleic Acids Res 2024; 52:12390-12404. [PMID: 39315725 PMCID: PMC11551752 DOI: 10.1093/nar/gkae828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
RAD54L is a DNA motor protein with multiple roles in homologous recombination DNA repair. In vitro, RAD54L was shown to also catalyze the reversal and restoration of model replication forks. In cells, however, little is known about how RAD54L may regulate the dynamics of DNA replication. Here, we show that RAD54L restrains the progression of replication forks and functions as a fork remodeler in human cancer cell lines and non-transformed cells. Analogous to HLTF, SMARCAL1 and FBH1, and consistent with a role in fork reversal, RAD54L decelerates fork progression in response to replication stress and suppresses the formation of replication-associated ssDNA gaps. Interestingly, loss of RAD54L prevents nascent strand DNA degradation in both BRCA1/2- and 53BP1-deficient cells, suggesting that RAD54L functions in both pathways of RAD51-mediated replication fork reversal. In the HLTF/SMARCAL1 pathway, RAD54L is critical, but its ability to catalyze branch migration is dispensable, indicative of its function downstream of HLTF/SMARCAL1. Conversely, in the FBH1 pathway, branch migration activity of RAD54L is essential, and FBH1 engagement is dependent on its concerted action with RAD54L. Collectively, our results reveal disparate requirements for RAD54L in two distinct RAD51-mediated fork reversal pathways, positing its potential as a future therapeutic target.
Collapse
Affiliation(s)
- Mollie E Uhrig
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Petey Maxwell
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Jordi Gomez
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Platon Selemenakis
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Alexander V Mazin
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Claudia Wiese
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
3
|
van de Kamp G, Heemskerk T, Kanaar R, Essers J. Synergistic Roles of Non-Homologous End Joining and Homologous Recombination in Repair of Ionizing Radiation-Induced DNA Double Strand Breaks in Mouse Embryonic Stem Cells. Cells 2024; 13:1462. [PMID: 39273031 PMCID: PMC11393957 DOI: 10.3390/cells13171462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
DNA double strand breaks (DSBs) are critical for the efficacy of radiotherapy as they lead to cell death if not repaired. DSBs caused by ionizing radiation (IR) initiate histone modifications and accumulate DNA repair proteins, including 53BP1, which forms distinct foci at damage sites and serves as a marker for DSBs. DSB repair primarily occurs through Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR). NHEJ directly ligates DNA ends, employing proteins such as DNA-PKcs, while HR, involving proteins such as Rad54, uses a sister chromatid template for accurate repair and functions in the S and G2 phases of the cell cycle. Both pathways are crucial, as illustrated by the IR sensitivity in cells lacking DNA-PKcs or Rad54. We generated mouse embryonic stem (mES) cells which are knockout (KO) for DNA-PKcs and Rad54 to explore the combined role of HR and NHEJ in DSB repair. We found that cells lacking both DNA-PKcs and Rad54 are hypersensitive to X-ray radiation, coinciding with impaired 53BP1 focus resolution and a more persistent G2 phase cell cycle block. Additionally, mES cells deficient in DNA-PKcs or both DNA-PKcs and Rad54 exhibit an increased nuclear size approximately 18-24 h post-irradiation. To further explore the role of Rad54 in the absence of DNA-PKcs, we generated DNA-PKcs KO mES cells expressing GFP-tagged wild-type (WT) or ATPase-defective Rad54 to track the Rad54 foci over time post-irradiation. Cells lacking DNA-PKcs and expressing ATPase-defective Rad54 exhibited a similar phenotypic response to IR as those lacking both DNA-PKcs and Rad54. Despite a strong G2 phase arrest, live-cell imaging showed these cells eventually progress through mitosis, forming micronuclei. Additionally, mES cells lacking DNA-PKcs showed increased Rad54 foci over time post-irradiation, indicating an enhanced reliance on HR for DSB repair without DNA-PKcs. Our findings underscore the essential roles of HR and NHEJ in maintaining genomic stability post-IR in mES cells. The interplay between these pathways is crucial for effective DSB repair and cell cycle progression, highlighting potential targets for enhancing radiotherapy outcomes.
Collapse
Affiliation(s)
- Gerarda van de Kamp
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Oncode Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Tim Heemskerk
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Oncode Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Oncode Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Jeroen Essers
- Oncode Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Vascular Surgery, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
4
|
Zainu A, Dupaigne P, Bouchouika S, Cau J, Clément JAJ, Auffret P, Ropars V, Charbonnier JB, de Massy B, Mercier R, Kumar R, Baudat F. FIGNL1-FIRRM is essential for meiotic recombination and prevents DNA damage-independent RAD51 and DMC1 loading. Nat Commun 2024; 15:7015. [PMID: 39147779 PMCID: PMC11327267 DOI: 10.1038/s41467-024-51458-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/07/2024] [Indexed: 08/17/2024] Open
Abstract
During meiosis, nucleoprotein filaments of the strand exchange proteins RAD51 and DMC1 are crucial for repairing SPO11-generated DNA double-strand breaks (DSBs) by homologous recombination (HR). A balanced activity of positive and negative RAD51/DMC1 regulators ensures proper recombination. Fidgetin-like 1 (FIGNL1) was previously shown to negatively regulate RAD51 in human cells. However, FIGNL1's role during meiotic recombination in mammals remains unknown. Here, we decipher the meiotic functions of FIGNL1 and FIGNL1 Interacting Regulator of Recombination and Mitosis (FIRRM) using male germline-specific conditional knock-out (cKO) mouse models. Both FIGNL1 and FIRRM are required for completing meiotic prophase in mouse spermatocytes. Despite efficient recruitment of DMC1 on ssDNA at meiotic DSB hotspots, the formation of late recombination intermediates is defective in Firrm cKO and Fignl1 cKO spermatocytes. Moreover, the FIGNL1-FIRRM complex limits RAD51 and DMC1 accumulation on intact chromatin, independently from the formation of SPO11-catalyzed DSBs. Purified human FIGNL1ΔN alters the RAD51/DMC1 nucleoprotein filament structure and inhibits strand invasion in vitro. Thus, this complex might regulate RAD51 and DMC1 association at sites of meiotic DSBs to promote proficient strand invasion and processing of recombination intermediates.
Collapse
Affiliation(s)
- Akbar Zainu
- Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France
| | - Pauline Dupaigne
- Genome Integrity and Cancers UMR9019 CNRS, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Soumya Bouchouika
- Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier, CNRS-UMR 5535, Univ Montpellier, Montpellier, France
| | - Julien Cau
- Biocampus Montpellier, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Julie A J Clément
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France
| | - Pauline Auffret
- Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France
- Ifremer, IRSI, Service de Bioinformatique (SeBiMER), Plouzané, France
| | - Virginie Ropars
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Jean-Baptiste Charbonnier
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Bernard de Massy
- Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France
| | - Raphael Mercier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Rajeev Kumar
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Frédéric Baudat
- Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
5
|
Sridalla K, Woodhouse MV, Hu J, Scheer J, Ferlez B, Crickard JB. The translocation activity of Rad54 reduces crossover outcomes during homologous recombination. Nucleic Acids Res 2024; 52:7031-7048. [PMID: 38828785 PMCID: PMC11229335 DOI: 10.1093/nar/gkae474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
Homologous recombination (HR) is a template-based DNA double-strand break repair pathway that requires the selection of an appropriate DNA sequence to facilitate repair. Selection occurs during a homology search that must be executed rapidly and with high fidelity. Failure to efficiently perform the homology search can result in complex intermediates that generate genomic rearrangements, a hallmark of human cancers. Rad54 is an ATP dependent DNA motor protein that functions during the homology search by regulating the recombinase Rad51. How this regulation reduces genomic exchanges is currently unknown. To better understand how Rad54 can reduce these outcomes, we evaluated several amino acid mutations in Rad54 that were identified in the COSMIC database. COSMIC is a collection of amino acid mutations identified in human cancers. These substitutions led to reduced Rad54 function and the discovery of a conserved motif in Rad54. Through genetic, biochemical and single-molecule approaches, we show that disruption of this motif leads to failure in stabilizing early strand invasion intermediates, causing increased crossovers between homologous chromosomes. Our study also suggests that the translocation rate of Rad54 is a determinant in balancing genetic exchange. The latch domain's conservation implies an interaction likely fundamental to eukaryotic biology.
Collapse
Affiliation(s)
- Krishay Sridalla
- Deparment of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Mitchell V Woodhouse
- Deparment of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Jingyi Hu
- Deparment of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Jessica Scheer
- Deparment of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Bryan Ferlez
- Deparment of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - J Brooks Crickard
- Deparment of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
6
|
Bergis-Ser C, Reji M, Latrasse D, Bergounioux C, Benhamed M, Raynaud C. Chromatin dynamics and RNA metabolism are double-edged swords for the maintenance of plant genome integrity. NATURE PLANTS 2024; 10:857-873. [PMID: 38658791 DOI: 10.1038/s41477-024-01678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024]
Abstract
Maintenance of genome integrity is an essential process in all organisms. Mechanisms avoiding the formation of DNA lesions or mutations are well described in animals because of their relevance to human health and cancer. In plants, they are of growing interest because DNA damage accumulation is increasingly recognized as one of the consequences of stress. Although the cellular response to DNA damage is mostly studied in response to genotoxic treatments, the main source of DNA lesions is cellular activity itself. This can occur through the production of reactive oxygen species as well as DNA processing mechanisms such as DNA replication or transcription and chromatin dynamics. In addition, how lesions are formed and repaired is greatly influenced by chromatin features and dynamics and by DNA and RNA metabolism. Notably, actively transcribed regions or replicating DNA, because they are less condensed and are sites of DNA processing, are more exposed to DNA damage. However, at the same time, a wealth of cellular mechanisms cooperate to favour DNA repair at these genomic loci. These intricate relationships that shape the distribution of mutations along the genome have been studied extensively in animals but much less in plants. In this Review, we summarize how chromatin dynamics influence lesion formation and DNA repair in plants, providing a comprehensive view of current knowledge and highlighting open questions with regard to what is known in other organisms.
Collapse
Affiliation(s)
- Clara Bergis-Ser
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
| | - Meega Reji
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
- Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, India
| | - David Latrasse
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
| | - Catherine Bergounioux
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
| | - Moussa Benhamed
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
- Université Paris Cité, Institute of Plant Sciences Paris-Saclay, Gif-sur-Yvette, France
- Institut Universitaire de France, Orsay, France
| | - Cécile Raynaud
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France.
| |
Collapse
|
7
|
Mahapatra K, Roy S. SOG1 and BRCA1 Interdependently Regulate RAD54 Expression for Repairing Salinity-Induced DNA Double-Strand Breaks in Arabidopsis. PLANT & CELL PHYSIOLOGY 2024; 65:708-728. [PMID: 38242160 DOI: 10.1093/pcp/pcae008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/04/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
As sessile organisms, land plants experience various forms of environmental stresses throughout their life span. Therefore, plants have developed extensive and complicated defense mechanisms, including a robust DNA damage response (DDR) and DNA repair systems for maintaining genome integrity. In Arabidopsis, the NAC [NO APICAL MERISTEM (NAM), ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR (ATAF), CUP-SHAPED COTYLEDON (CUC)] domain family transcription factor SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1) plays an important role in regulating DDR. Here, we show that SOG1 plays a key role in regulating the repair of salinity-induced DNA double-strand breaks (DSBs) via the homologous recombination (HR) pathway in Arabidopsis. The sog1-1 mutant seedlings display a considerably slower rate of repair of salinity-induced DSBs. Accumulation of SOG1 protein increases in wild-type Arabidopsis under salinity stress, and it enhances the expression of HR pathway-related genes, including RAD51, RAD54 and BReast CAncer gene 1 (BRCA1), respectively, as found in SOG1 overexpression lines. SOG1 binds specifically to the AtRAD54 promoter at the 5'-(N)4GTCAA(N)3C-3' consensus sequence and positively regulates its expression under salinity stress. The phenotypic responses of sog1-1/atrad54 double mutants suggest that SOG1 functions upstream of RAD54, and both these genes are essential in regulating DDR under salinity stress. Furthermore, SOG1 interacts directly with BRCA1, an important component of the HR-mediated DSB repair pathway in plants, where BRCA1 appears to facilitate the binding of SOG1 to the RAD54 promoter. At the genetic level, SOG1 and BRCA1 function interdependently in modulating RAD54 expression under salinity-induced DNA damage. Together, our results suggest that SOG1 regulates the repair of salinity-induced DSBs via the HR-mediated pathway through genetic interactions with RAD54 and BRCA1 in Arabidopsis.
Collapse
Affiliation(s)
- Kalyan Mahapatra
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, 713 104 West Bengal, India
| | - Sujit Roy
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, 713 104 West Bengal, India
| |
Collapse
|
8
|
Uhrig ME, Sharma N, Maxwell P, Selemenakis P, Mazin AV, Wiese C. Disparate requirements for RAD54L in replication fork reversal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.26.550704. [PMID: 37546955 PMCID: PMC10402051 DOI: 10.1101/2023.07.26.550704] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
RAD54L is a DNA motor protein with multiple roles in homologous recombination DNA repair (HR). In vitro , RAD54L was shown to also catalyze the reversal and restoration of model replication forks. In cells, however, little is known about how RAD54L may regulate the dynamics of DNA replication. Here, we show that RAD54L restrains the progression of replication forks and functions as a fork remodeler in human cells. Analogous to HLTF, SMARCAL1, and FBH1, and consistent with a role in fork reversal, RAD54L decelerates fork progression in response to replication stress and suppresses the formation of replication-associated ssDNA gaps. Interestingly, loss of RAD54L prevents nascent strand DNA degradation in both BRCA1/2- and 53BP1-deficient cells, suggesting that RAD54L functions in both pathways of RAD51-mediated replication fork reversal. In the HLTF/SMARCAL1 pathway, RAD54L is critical, but its ability to catalyze branch migration is dispensable, indicative of its function downstream of HLTF/SMARCAL1. Conversely, in the FBH1 pathway, branch migration activity of RAD54L is essential, and FBH1 engagement is dependent on its concerted action with RAD54L. Collectively, our results reveal disparate requirements for RAD54L in two distinct RAD51-mediated fork reversal pathways, positing its potential as a future therapeutic target.
Collapse
|
9
|
Wang Z, Zheng Z, Wang B, Zhan C, Yuan X, Lin X, Xin Q, Zhong Z, Qiu X. Characterization of a G2M checkpoint-related gene model and subtypes associated with immunotherapy response for clear cell renal cell carcinoma. Heliyon 2024; 10:e29289. [PMID: 38617927 PMCID: PMC11015143 DOI: 10.1016/j.heliyon.2024.e29289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/16/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) presents challenges in early diagnosis and effective treatment. In this study, we aimed to establish a prognostic model based on G2M checkpoint-related genes and identify associated clusters in ccRCC through clinical bioinformatic analysis and experimental validation. Utilizing a single-cell RNA dataset (GSE159115) and bulk-sequencing data from The Cancer Genome Atlas (TCGA) database, we analyzed the G2M checkpoint pathway in ccRCC. Differential expression analysis identified 45 genes associated with the G2M checkpoint, leading to the construction of a predictive model with four key genes (E2F2, GTSE1, RAD54L, and UBE2C). The model demonstrated reliable predictive ability for 1-, 3-, and 5-year overall survival, with AUC values of 0.794, 0.790, and 0.794, respectively. Patients in the high-risk group exhibited a worse prognosis, accompanied by significant differences in immune cell infiltration, immune function, TIDE and IPS scores, and drug sensitivities. Two clusters of ccRCC were identified using the "ConsensusClusterPlus" package, cluster 1 exhibited a worse survival rate and was resistant to chemotherapeutic drugs of Axitinib, Erlotinib, Pazopanib, Sunitinib, and Temsirolimus, but not Sorafenib. Targeted experiments on RAD54L, a gene involved in DNA repair processes, revealed its crucial role in inhibiting proliferation, invasion, and migration in 786-O cells. In conclusion, our study offers valuable insights into the molecular mechanisms underlying ccRCC, identifying potential prognostic genes and molecular subtypes associated with the G2M checkpoint. These findings hold promise for guiding personalized treatment strategies in the management of ccRCC.
Collapse
Affiliation(s)
- Zhenwei Wang
- Department of Urology, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Zongtai Zheng
- Department of Urology, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Bangqi Wang
- Department of Urology, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Changxin Zhan
- Department of Urology, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China
| | - Xuefeng Yuan
- Department of Urology, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoqi Lin
- Department of Urology, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Qifan Xin
- Department of Urology, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Zhihui Zhong
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, 525200, Guangdong, China
| | - Xiaofu Qiu
- Department of Urology, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
10
|
Mai Y, Lin T, Zhang L, Yang W, Liu S, Wang M, Liu P, Li Z, Luo W. RAD54B inhibits vascular endothelial senescence via suppression of CHK1/p53/p21 pathway. Can J Physiol Pharmacol 2024; 102:137-149. [PMID: 37748205 DOI: 10.1139/cjpp-2023-0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
RAD54B belongs to the SNF2/SWI2 superfamily, participating in homologous recombination repair. DNA damage is the central driver of aging, but there is no direct evidence of an association between RAD54B and vascular aging. The present study sought to investigate the role and mechanisms of RAD54B in endothelial senescence. In senescent animal models, including spontaneously hypertensive rats, normal aging mice, and D-gal-induced senescent mice, and senescent cell models induced by H2O2, D-gal, and culture, RAD54B was remarkably downregulated. Knockdown of RAD54B increased the expression of p53 and p21, increased the ratio of SA-β-gal-positive cells, and decreased the proportion of EdU-positive cells. Conversely, overexpression of RAD54B reversed the senescent phenotypes stimulated by H2O2 and delayed replicative endothelial senescence. Mechanistically, silencing RAD54B compensatorily increased the expression of RAD51/XRCC4, which remained unchanged in H2O2-induced senescence. RAD54B lacking the SNF2 domain could still reverse the increasing expression of p53/p21 induced by H2O2. RAD54B reduced γH2A.X expression and inhibited the expression and phosphorylation of CHK1. In conclusion, RAD54B exerts a direct protective effect against DNA damage through enhancing homologous recombination repair in endothelial senescence, resulting in inhibition of the downstream CHK1/p53/p21 pathway, suggesting that RAD54B may be a potential therapeutic target for vascular aging-associated diseases.
Collapse
Affiliation(s)
- Yanqi Mai
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratory of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, P. R. China
| | - Tong Lin
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratory of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, P. R. China
- Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, P. R. China
| | - Lili Zhang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratory of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, P. R. China
| | - Wanqi Yang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratory of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, P. R. China
| | - Sitong Liu
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratory of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, P. R. China
| | - Minghui Wang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratory of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, P. R. China
| | - Peiqing Liu
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratory of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, P. R. China
| | - Zhuoming Li
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratory of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, P. R. China
| | - Wenwei Luo
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratory of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, P. R. China
- Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, P. R. China
| |
Collapse
|
11
|
Ito M, Fujita Y, Shinohara A. Positive and negative regulators of RAD51/DMC1 in homologous recombination and DNA replication. DNA Repair (Amst) 2024; 134:103613. [PMID: 38142595 DOI: 10.1016/j.dnarep.2023.103613] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/10/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023]
Abstract
RAD51 recombinase plays a central role in homologous recombination (HR) by forming a nucleoprotein filament on single-stranded DNA (ssDNA) to catalyze homology search and strand exchange between the ssDNA and a homologous double-stranded DNA (dsDNA). The catalytic activity of RAD51 assembled on ssDNA is critical for the DNA-homology-mediated repair of DNA double-strand breaks in somatic and meiotic cells and restarting stalled replication forks during DNA replication. The RAD51-ssDNA complex also plays a structural role in protecting the regressed/reversed replication fork. Two types of regulators control RAD51 filament formation, stability, and dynamics, namely positive regulators, including mediators, and negative regulators, so-called remodelers. The appropriate balance of action by the two regulators assures genome stability. This review describes the roles of positive and negative RAD51 regulators in HR and DNA replication and its meiosis-specific homolog DMC1 in meiotic recombination. We also provide future study directions for a comprehensive understanding of RAD51/DMC1-mediated regulation in maintaining and inheriting genome integrity.
Collapse
Affiliation(s)
- Masaru Ito
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| | - Yurika Fujita
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
12
|
Xu R, Pan Z, Nakagawa T. Gross Chromosomal Rearrangement at Centromeres. Biomolecules 2023; 14:28. [PMID: 38254628 PMCID: PMC10813616 DOI: 10.3390/biom14010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Centromeres play essential roles in the faithful segregation of chromosomes. CENP-A, the centromere-specific histone H3 variant, and heterochromatin characterized by di- or tri-methylation of histone H3 9th lysine (H3K9) are the hallmarks of centromere chromatin. Contrary to the epigenetic marks, DNA sequences underlying the centromere region of chromosomes are not well conserved through evolution. However, centromeres consist of repetitive sequences in many eukaryotes, including animals, plants, and a subset of fungi, including fission yeast. Advances in long-read sequencing techniques have uncovered the complete sequence of human centromeres containing more than thousands of alpha satellite repeats and other types of repetitive sequences. Not only tandem but also inverted repeats are present at a centromere. DNA recombination between centromere repeats can result in gross chromosomal rearrangement (GCR), such as translocation and isochromosome formation. CENP-A chromatin and heterochromatin suppress the centromeric GCR. The key player of homologous recombination, Rad51, safeguards centromere integrity through conservative noncrossover recombination between centromere repeats. In contrast to Rad51-dependent recombination, Rad52-mediated single-strand annealing (SSA) and microhomology-mediated end-joining (MMEJ) lead to centromeric GCR. This review summarizes recent findings on the role of centromere and recombination proteins in maintaining centromere integrity and discusses how GCR occurs at centromeres.
Collapse
Affiliation(s)
- Ran Xu
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| | - Ziyi Pan
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| | - Takuro Nakagawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| |
Collapse
|
13
|
Han J, Mu Y, Huang J. Preserving genome integrity: The vital role of SUMO-targeted ubiquitin ligases. CELL INSIGHT 2023; 2:100128. [PMID: 38047137 PMCID: PMC10692494 DOI: 10.1016/j.cellin.2023.100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 12/05/2023]
Abstract
Various post-translational modifications (PTMs) collaboratively fine-tune protein activities. SUMO-targeted ubiquitin E3 ligases (STUbLs) emerge as specialized enzymes that recognize SUMO-modified substrates through SUMO-interaction motifs and subsequently ubiquitinate them via the RING domain, thereby bridging the SUMO and ubiquitin signaling pathways. STUbLs participate in a wide array of molecular processes, including cell cycle regulation, DNA repair, replication, and mitosis, operating under both normal conditions and in response to challenges such as genotoxic stress. Their ability to catalyze various types of ubiquitin chains results in diverse proteolytic and non-proteolytic outcomes for target substrates. Importantly, STUbLs are strategically positioned in close proximity to SUMO proteases and deubiquitinases (DUBs), ensuring precise and dynamic control over their target proteins. In this review, we provide insights into the unique properties and indispensable roles of STUbLs, with a particular emphasis on their significance in preserving genome integrity in humans.
Collapse
Affiliation(s)
- Jinhua Han
- Institute of Geriatrics, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, 310030, Zhejiang, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yanhua Mu
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Jun Huang
- Institute of Geriatrics, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, 310030, Zhejiang, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| |
Collapse
|
14
|
Yamaya K, Wang B, Memar N, Odiba A, Woglar A, Gartner A, Villeneuve A. Disparate roles for C. elegans DNA translocase paralogs RAD-54.L and RAD-54.B in meiotic prophase germ cells. Nucleic Acids Res 2023; 51:9183-9202. [PMID: 37548405 PMCID: PMC10516670 DOI: 10.1093/nar/gkad638] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/06/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023] Open
Abstract
RAD54 family DNA translocases partner with RAD51 recombinases to ensure stable genome inheritance, exhibiting biochemical activities both in promoting recombinase removal and in stabilizing recombinase association with DNA. Understanding how such disparate activities of RAD54 paralogs align with their biological roles is an ongoing challenge. Here we investigate the in vivo functions of Caenorhabditis elegans RAD54 paralogs RAD-54.L and RAD-54.B during meiotic prophase, revealing distinct contributions to the dynamics of RAD-51 association with DNA and to the progression of meiotic double-strand break repair (DSBR). While RAD-54.L is essential for RAD-51 removal from meiotic DSBR sites to enable recombination progression, RAD-54.B is largely dispensable for meiotic DSBR. However, RAD-54.B is required to prevent hyperaccumulation of RAD-51 on unbroken DNA during the meiotic sub-stage when DSBs and early recombination intermediates form. Moreover, DSB-independent hyperaccumulation of RAD-51 foci in the absence of RAD-54.B is RAD-54.L-dependent, revealing a hidden activity of RAD-54.L in promoting promiscuous RAD-51 association that is antagonized by RAD-54.B. We propose a model wherein a division of labor among RAD-54 paralogs allows germ cells to ramp up their capacity for efficient homologous recombination that is crucial to successful meiosis while counteracting potentially deleterious effects of unproductive RAD-51 association with unbroken DNA.
Collapse
Affiliation(s)
- Kei Yamaya
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Bin Wang
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, 530007 Nanning, China
| | - Nadin Memar
- IBS Center for Genomic Integrity and Department for Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Arome Solomon Odiba
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, 530007 Nanning, China
| | - Alexander Woglar
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
- Swiss Institute for Experimental Cancer Research (ISREC) and School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Anton Gartner
- IBS Center for Genomic Integrity and Department for Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Anne M Villeneuve
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
15
|
Simpson D, Ling J, Jing Y, Adamson B. Mapping the Genetic Interaction Network of PARP inhibitor Response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.19.553986. [PMID: 37645833 PMCID: PMC10462155 DOI: 10.1101/2023.08.19.553986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Genetic interactions have long informed our understanding of the coordinated proteins and pathways that respond to DNA damage in mammalian cells, but systematic interrogation of the genetic network underlying that system has yet to be achieved. Towards this goal, we measured 147,153 pairwise interactions among genes implicated in PARP inhibitor (PARPi) response. Evaluating genetic interactions at this scale, with and without exposure to PARPi, revealed hierarchical organization of the pathways and complexes that maintain genome stability during normal growth and defined changes that occur upon accumulation of DNA lesions due to cytotoxic doses of PARPi. We uncovered unexpected relationships among DNA repair genes, including context-specific buffering interactions between the minimally characterized AUNIP and BRCA1-A complex genes. Our work thus establishes a foundation for mapping differential genetic interactions in mammalian cells and provides a comprehensive resource for future studies of DNA repair and PARP inhibitors.
Collapse
Affiliation(s)
- Danny Simpson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Jia Ling
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Yangwode Jing
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Britt Adamson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
16
|
Emmenecker C, Mézard C, Kumar R. Repair of DNA double-strand breaks in plant meiosis: role of eukaryotic RecA recombinases and their modulators. PLANT REPRODUCTION 2023; 36:17-41. [PMID: 35641832 DOI: 10.1007/s00497-022-00443-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Homologous recombination during meiosis is crucial for the DNA double-strand breaks (DSBs) repair that promotes the balanced segregation of homologous chromosomes and enhances genetic variation. In most eukaryotes, two recombinases RAD51 and DMC1 form nucleoprotein filaments on single-stranded DNA generated at DSB sites and play a central role in the meiotic DSB repair and genome stability. These nucleoprotein filaments perform homology search and DNA strand exchange to initiate repair using homologous template-directed sequences located elsewhere in the genome. Multiple factors can regulate the assembly, stability, and disassembly of RAD51 and DMC1 nucleoprotein filaments. In this review, we summarize the current understanding of the meiotic functions of RAD51 and DMC1 and the role of their positive and negative modulators. We discuss the current models and regulators of homology searches and strand exchange conserved during plant meiosis. Manipulation of these repair factors during plant meiosis also holds a great potential to accelerate plant breeding for crop improvements and productivity.
Collapse
Affiliation(s)
- Côme Emmenecker
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
- University of Paris-Sud, Université Paris-Saclay, 91405, Orsay, France
| | - Christine Mézard
- Institut Jean-Pierre Bourgin (IJPB), CNRS, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France.
| | - Rajeev Kumar
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France.
| |
Collapse
|
17
|
Chen G, Mishina K, Zhu H, Kikuchi S, Sassa H, Oono Y, Komatsuda T. Genome-Wide Analysis of Snf2 Gene Family Reveals Potential Role in Regulation of Spike Development in Barley. Int J Mol Sci 2022; 24:ijms24010457. [PMID: 36613901 PMCID: PMC9820626 DOI: 10.3390/ijms24010457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
Sucrose nonfermenting 2 (Snf2) family proteins, as the catalytic core of ATP-dependent chromatin remodeling complexes, play important roles in nuclear processes as diverse as DNA replication, transcriptional regulation, and DNA repair and recombination. The Snf2 gene family has been characterized in several plant species; some of its members regulate flower development in Arabidopsis. However, little is known about the members of the family in barley (Hordeum vulgare). Here, 38 Snf2 genes unevenly distributed among seven chromosomes were identified from the barley (cv. Morex) genome. Phylogenetic analysis categorized them into 18 subfamilies. They contained combinations of 21 domains and consisted of 3 to 34 exons. Evolution analysis revealed that segmental duplication contributed predominantly to the expansion of the family in barley, and the duplicated gene pairs have undergone purifying selection. About eight hundred Snf2 family genes were identified from 20 barley accessions, ranging from 38 to 41 genes in each. Most of these genes were subjected to purification selection during barley domestication. Most were expressed abundantly during spike development. This study provides a comprehensive characterization of barley Snf2 family members, which should help to improve our understanding of their potential regulatory roles in barley spike development.
Collapse
Affiliation(s)
- Gang Chen
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba 305-8602, Japan
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo 271-8510, Japan
| | - Kohei Mishina
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba 305-8602, Japan
| | - Hongjing Zhu
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba 305-8602, Japan
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo 271-8510, Japan
| | - Shinji Kikuchi
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo 271-8510, Japan
| | - Hidenori Sassa
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo 271-8510, Japan
| | - Youko Oono
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba 305-8602, Japan
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo 271-8510, Japan
- Correspondence: (Y.O.); (T.K.); Tel.: +81-29-838-7443 (Y.O.); +86-531-6665-8143 (T.K.)
| | - Takao Komatsuda
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba 305-8602, Japan
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo 271-8510, Japan
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Jinan 252100, China
- Correspondence: (Y.O.); (T.K.); Tel.: +81-29-838-7443 (Y.O.); +86-531-6665-8143 (T.K.)
| |
Collapse
|
18
|
Rad52's DNA annealing activity drives template switching associated with restarted DNA replication. Nat Commun 2022; 13:7293. [PMID: 36435847 PMCID: PMC9701231 DOI: 10.1038/s41467-022-35060-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/17/2022] [Indexed: 11/28/2022] Open
Abstract
It is thought that many of the simple and complex genomic rearrangements associated with congenital diseases and cancers stem from mistakes made during the restart of collapsed replication forks by recombination enzymes. It is hypothesised that this recombination-mediated restart process transitions from a relatively accurate initiation phase to a less accurate elongation phase characterised by extensive template switching between homologous, homeologous and microhomologous DNA sequences. Using an experimental system in fission yeast, where fork collapse is triggered by a site-specific replication barrier, we show that ectopic recombination, associated with the initiation of recombination-dependent replication (RDR), is driven mainly by the Rad51 recombinase, whereas template switching, during the elongation phase of RDR, relies more on DNA annealing by Rad52. This finding provides both evidence and a mechanistic basis for the transition hypothesis.
Collapse
|
19
|
Halder S, Sanchez A, Ranjha L, Reginato G, Ceppi I, Acharya A, Anand R, Cejka P. Double-stranded DNA binding function of RAD51 in DNA protection and its regulation by BRCA2. Mol Cell 2022; 82:3553-3565.e5. [PMID: 36070766 DOI: 10.1016/j.molcel.2022.08.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/16/2022] [Accepted: 08/10/2022] [Indexed: 11/26/2022]
Abstract
RAD51 and the breast cancer suppressor BRCA2 have critical functions in DNA double-strand (dsDNA) break repair by homologous recombination and the protection of newly replicated DNA from nucleolytic degradation. The recombination function of RAD51 requires its binding to single-stranded DNA (ssDNA), whereas binding to dsDNA is inhibitory. Using reconstituted MRE11-, EXO1-, and DNA2-dependent nuclease reactions, we show that the protective function of RAD51 unexpectedly depends on its binding to dsDNA. The BRC4 repeat of BRCA2 abrogates RAD51 binding to dsDNA and accordingly impairs the function of RAD51 in protection. The BRCA2 C-terminal RAD51-binding segment (TR2) acts in a dominant manner to overcome the effect of BRC4. Mechanistically, TR2 stabilizes RAD51 binding to dsDNA, even in the presence of BRC4, promoting DNA protection. Our data suggest that RAD51's dsDNA-binding capacity may have evolved together with its function in replication fork protection and provide a mechanistic basis for the DNA-protection function of BRCA2.
Collapse
Affiliation(s)
- Swagata Halder
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500 Bellinzona, Switzerland
| | - Aurore Sanchez
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500 Bellinzona, Switzerland
| | - Lepakshi Ranjha
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500 Bellinzona, Switzerland
| | - Giordano Reginato
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500 Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8049 Zürich, Switzerland
| | - Ilaria Ceppi
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500 Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8049 Zürich, Switzerland
| | - Ananya Acharya
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500 Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8049 Zürich, Switzerland
| | - Roopesh Anand
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500 Bellinzona, Switzerland
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500 Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8049 Zürich, Switzerland.
| |
Collapse
|
20
|
Selemenakis P, Sharma N, Uhrig ME, Katz J, Kwon Y, Sung P, Wiese C. RAD51AP1 and RAD54L Can Underpin Two Distinct RAD51-Dependent Routes of DNA Damage Repair via Homologous Recombination. Front Cell Dev Biol 2022; 10:866601. [PMID: 35652094 PMCID: PMC9149245 DOI: 10.3389/fcell.2022.866601] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
Homologous recombination DNA repair (HR) is a complex DNA damage repair pathway and an attractive target of inhibition in anti-cancer therapy. To help guide the development of efficient HR inhibitors, it is critical to identify compensatory HR sub-pathways. In this study, we describe a novel synthetic interaction between RAD51AP1 and RAD54L, two structurally unrelated proteins that function downstream of the RAD51 recombinase in HR. We show that concomitant deletion of RAD51AP1 and RAD54L further sensitizes human cancer cell lines to treatment with olaparib, a Poly (adenosine 5′-diphosphate-ribose) polymerase inhibitor, to the DNA inter-strand crosslinking agent mitomycin C, and to hydroxyurea, which induces DNA replication stress. We also show that the RAD54L paralog RAD54B compensates for RAD54L deficiency, although, surprisingly, less extensively than RAD51AP1. These results, for the first time, delineate RAD51AP1- and RAD54L-dependent sub-pathways and will guide the development of inhibitors that target HR stimulators of strand invasion.
Collapse
Affiliation(s)
- Platon Selemenakis
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States.,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, United States
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Mollie E Uhrig
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Jeffrey Katz
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Claudia Wiese
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
21
|
Li P, Chen C, Li J, Yang L, Wang Y, Dong Z, Mi J, Zhang Y, Wang J, Wang H, Rodriguez R, Tian J, Wang Z. Homologous Recombination Related Signatures Predict Prognosis and Immunotherapy Response in Metastatic Urothelial Carcinoma. Front Genet 2022; 13:875128. [PMID: 35559013 PMCID: PMC9086193 DOI: 10.3389/fgene.2022.875128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: This study used homologous recombination (HR) related signatures to develop a clinical prediction model for screening immune checkpoint inhibitors (ICIs) advantaged populations and identify hub genes in advanced metastatic urothelial carcinoma. Methods: The single-sample gene enrichment analysis and weighted gene co-expression network analysis were applied to identify modules associated with immune response and HR in IMvigor210 cohort samples. The principal component analysis was utilized to determine the differences in HR-related module gene signature scores across different tissue subtypes and clinical variables. Risk prediction models and nomograms were developed using differential gene expression analysis associated with HR scores, least absolute shrinkage and selection operator, and multivariate proportional hazards model regression. Additionally, hub genes were identified by analyzing the contribution of HR-related genes to principal components and overall survival analysis. Finally, clinical features from GSE133624, GSE13507, the TCGA, and other data sets were analyzed to validate the relationship between hub genes and tumor growth and mutation. Results: The HR score was significantly higher in the complete/partial response group than in the stable/progressive disease group. The majority of genes associated with HR were discovered to be involved in the cell cycle and others. Genomically unstable, high tumor level, and high immune level samples all exhibited significantly higher HR score than other sample categories, and higher HR scores were related to improved survival following ICIs treatment. The risk scores for AUNIP, SEPT, FAM72D, CAMKV, CXCL9, and FOXN4 were identified, and the training and verification groups had markedly different survival times. The risk score, tumor neoantigen burden, mismatch repair, and cell cycle regulation were discovered to be independent predictors of survival time following immunotherapy. Patients with a high level of expression of hub genes such as EME1, RAD51AP1, and RAD54L had a greater chance of surviving following immunotherapy. These genes are expressed at significantly higher levels in tumors, high-grade cancer, and invasive cancer than other categories, and are associated with TP53 and RB1 mutations. Conclusion: HR-related genes are upregulated in genomically unstable samples, the survival time of mUC patients after treatment with ICIs can be predicted using a normogram model based on HR signature.
Collapse
Affiliation(s)
- Pan Li
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Chaohu Chen
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jianpeng Li
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Li Yang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China.,Key Laboratory of Gansu Province for Urological Diseases, Lanzhou, China.,Clinical Center of Gansu Province for Nephron-Urology, Lanzhou, China
| | - Yuhan Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhilong Dong
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China.,Key Laboratory of Gansu Province for Urological Diseases, Lanzhou, China.,Clinical Center of Gansu Province for Nephron-Urology, Lanzhou, China
| | - Jun Mi
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China.,Key Laboratory of Gansu Province for Urological Diseases, Lanzhou, China.,Clinical Center of Gansu Province for Nephron-Urology, Lanzhou, China
| | - Yunxin Zhang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China.,Key Laboratory of Gansu Province for Urological Diseases, Lanzhou, China.,Clinical Center of Gansu Province for Nephron-Urology, Lanzhou, China
| | - Juan Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Hanzhang Wang
- Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Ronald Rodriguez
- Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Junqiang Tian
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China.,Key Laboratory of Gansu Province for Urological Diseases, Lanzhou, China.,Clinical Center of Gansu Province for Nephron-Urology, Lanzhou, China
| | - Zhiping Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China.,Key Laboratory of Gansu Province for Urological Diseases, Lanzhou, China.,Clinical Center of Gansu Province for Nephron-Urology, Lanzhou, China
| |
Collapse
|
22
|
Rad54 and Rdh54 prevent Srs2-mediated disruption of Rad51 presynaptic filaments. Proc Natl Acad Sci U S A 2022; 119:2113871119. [PMID: 35042797 PMCID: PMC8795549 DOI: 10.1073/pnas.2113871119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2021] [Indexed: 11/18/2022] Open
Abstract
Homologous DNA recombination is an essential pathway necessary for the repair of double-stranded DNA breaks. Defects in this pathway are associated with hereditary breast cancer, ovarian cancer, and cancer-prone syndromes. Although essential, too much recombination is also bad and can lead to genetic mutations. Thus, cells have evolved “antirecombinase” enzymes that can actively dismantle recombination intermediates to prevent excessive recombination. However, our current understanding of how antirecombinases are themselves regulated remains very limited. Here, we study the antirecombinase Srs2 and its regulation by the recombination accessory factors Rad54 and Rdh54. Our data suggest that Rad54 and Rdh54 act synergistically to function as key regulators of Srs2, thus serving as “licensing factors” that enable timely progression of DNA repair. Srs2 is a superfamily 1 (SF1) helicase that participates in several pathways necessary for the repair of damaged DNA. Srs2 regulates formation of early homologous recombination (HR) intermediates by actively removing the recombinase Rad51 from single-stranded DNA (ssDNA). It is not known whether and how Srs2 itself is down-regulated to allow for timely HR progression. Rad54 and Rdh54 are two closely related superfamily 2 (SF2) motor proteins that promote the formation of Rad51-dependent recombination intermediates. Rad54 and Rdh54 bind tightly to Rad51-ssDNA and act downstream of Srs2, suggesting that they may affect the ability of Srs2 to dismantle Rad51 filaments. Here, we used DNA curtains to determine whether Rad54 and Rdh54 alter the ability of Srs2 to disrupt Rad51 filaments. We show that Rad54 and Rdh54 act synergistically to greatly restrict the antirecombinase activity of Srs2. Our findings suggest that Srs2 may be accorded only a limited time window to act and that Rad54 and Rdh54 fulfill a role of prorecombinogenic licensing factors.
Collapse
|
23
|
Yao S, Feng Y, Zhang Y, Feng J. DNA damage checkpoint and repair: From the budding yeast Saccharomyces cerevisiae to the pathogenic fungus Candida albicans. Comput Struct Biotechnol J 2021; 19:6343-6354. [PMID: 34938410 PMCID: PMC8645783 DOI: 10.1016/j.csbj.2021.11.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/16/2021] [Accepted: 11/20/2021] [Indexed: 01/09/2023] Open
Abstract
Cells are constantly challenged by internal or external genotoxic assaults, which may induce a high frequency of DNA lesions, leading to genome instability. Accumulation of damaged DNA is severe or even lethal to cells and can result in abnormal proliferation that can cause cancer in multicellular organisms, aging or cell death. Eukaryotic cells have evolved a comprehensive defence system termed the DNA damage response (DDR) to monitor and remove lesions in their DNA. The DDR has been extensively studied in the budding yeast Saccharomyces cerevisiae. Emerging evidence indicates that DDR genes in the pathogenic fungus Candida albicans show functional consistency with their orthologs in S. cerevisiae, but may act through distinct mechanisms. In particular, the DDR in C. albicans appears critical for resisting DNA damage stress induced by reactive oxygen species (ROS) produced from immune cells, and this plays a vital role in pathogenicity. Therefore, DDR genes could be considered as potential targets for clinical therapies. This review summarizes the identified DNA damage checkpoint and repair genes in C. albicans based on their orthologs in S. cerevisiae, and discusses their contribution to pathogenicity in C. albicans.
Collapse
Affiliation(s)
- Shuangyan Yao
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, Jiangsu, China
- Nantong Health College of Jiangsu Province, Nantong 226016, Jiangsu, China
| | - Yuting Feng
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, Jiangsu, China
| | - Yan Zhang
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, Jiangsu, China
| | - Jinrong Feng
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, Jiangsu, China
| |
Collapse
|
24
|
Kong M, Greene EC. Mechanistic Insights From Single-Molecule Studies of Repair of Double Strand Breaks. Front Cell Dev Biol 2021; 9:745311. [PMID: 34869333 PMCID: PMC8636147 DOI: 10.3389/fcell.2021.745311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/28/2021] [Indexed: 01/01/2023] Open
Abstract
DNA double strand breaks (DSBs) are among some of the most deleterious forms of DNA damage. Left unrepaired, they are detrimental to genome stability, leading to high risk of cancer. Two major mechanisms are responsible for the repair of DSBs, homologous recombination (HR) and nonhomologous end joining (NHEJ). The complex nature of both pathways, involving a myriad of protein factors functioning in a highly coordinated manner at distinct stages of repair, lend themselves to detailed mechanistic studies using the latest single-molecule techniques. In avoiding ensemble averaging effects inherent to traditional biochemical or genetic methods, single-molecule studies have painted an increasingly detailed picture for every step of the DSB repair processes.
Collapse
Affiliation(s)
| | - Eric C. Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
25
|
Nickoloff JA, Sharma N, Allen CP, Taylor L, Allen SJ, Jaiswal AS, Hromas R. Roles of homologous recombination in response to ionizing radiation-induced DNA damage. Int J Radiat Biol 2021; 99:903-914. [PMID: 34283012 PMCID: PMC9629169 DOI: 10.1080/09553002.2021.1956001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/04/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE Ionizing radiation induces a vast array of DNA lesions including base damage, and single- and double-strand breaks (SSB, DSB). DSBs are among the most cytotoxic lesions, and mis-repair causes small- and large-scale genome alterations that can contribute to carcinogenesis. Indeed, ionizing radiation is a 'complete' carcinogen. DSBs arise immediately after irradiation, termed 'frank DSBs,' as well as several hours later in a replication-dependent manner, termed 'secondary' or 'replication-dependent DSBs. DSBs resulting from replication fork collapse are single-ended and thus pose a distinct problem from two-ended, frank DSBs. DSBs are repaired by error-prone nonhomologous end-joining (NHEJ), or generally error-free homologous recombination (HR), each with sub-pathways. Clarifying how these pathways operate in normal and tumor cells is critical to increasing tumor control and minimizing side effects during radiotherapy. CONCLUSIONS The choice between NHEJ and HR is regulated during the cell cycle and by other factors. DSB repair pathways are major contributors to cell survival after ionizing radiation, including tumor-resistance to radiotherapy. Several nucleases are important for HR-mediated repair of replication-dependent DSBs and thus replication fork restart. These include three structure-specific nucleases, the 3' MUS81 nuclease, and two 5' nucleases, EEPD1 and Metnase, as well as three end-resection nucleases, MRE11, EXO1, and DNA2. The three structure-specific nucleases evolved at very different times, suggesting incremental acceleration of replication fork restart to limit toxic HR intermediates and genome instability as genomes increased in size during evolution, including the gain of large numbers of HR-prone repetitive elements. Ionizing radiation also induces delayed effects, observed days to weeks after exposure, including delayed cell death and delayed HR. In this review we highlight the roles of HR in cellular responses to ionizing radiation, and discuss the importance of HR as an exploitable target for cancer radiotherapy.
Collapse
Affiliation(s)
- Jac A. Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Christopher P. Allen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Microbiology, Immunology and Pathology, Flow Cytometry and Cell Sorting Facility, Colorado State University, Fort Collins, CO, USA
| | - Lynn Taylor
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Sage J. Allen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Aruna S. Jaiswal
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA
| | - Robert Hromas
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
26
|
Crickard JB. Discrete roles for Rad54 and Rdh54 during homologous recombination. Curr Opin Genet Dev 2021; 71:48-54. [PMID: 34293661 DOI: 10.1016/j.gde.2021.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/25/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022]
Abstract
Rad54 and Rdh54 are Snf2 DNA motor proteins that function during maintenance of genomic integrity. Though highly related, Rad54 and Rdh54 have different biochemical and genetic functions during maintenance of genomic integrity. Rad54 functions primarily during the homology search and strand invasion steps of homologous recombination, while Rdh54 appears to play a minor role in these processes. More recently it has been shown that Rdh54 functions as a pathway branch point at HR intermediates, and as has a role in cell cycle recovery. Here we will explore recent advances that have improved our understanding of the role these two DNA motor proteins play during DNA repair.
Collapse
Affiliation(s)
- John Brooks Crickard
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
27
|
Hernandez Sanchez-Rebato M, Bouatta AM, Gallego ME, White CI, Da Ines O. RAD54 is essential for RAD51-mediated repair of meiotic DSB in Arabidopsis. PLoS Genet 2021; 17:e1008919. [PMID: 34003859 PMCID: PMC8162660 DOI: 10.1371/journal.pgen.1008919] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 05/28/2021] [Accepted: 05/03/2021] [Indexed: 12/17/2022] Open
Abstract
An essential component of the homologous recombination machinery in eukaryotes, the RAD54 protein is a member of the SWI2/SNF2 family of helicases with dsDNA-dependent ATPase, DNA translocase, DNA supercoiling and chromatin remodelling activities. It is a motor protein that translocates along dsDNA and performs multiple functions in homologous recombination. In particular, RAD54 is an essential cofactor for regulating RAD51 activity. It stabilizes the RAD51 nucleofilament, remodels nucleosomes, and stimulates the homology search and strand invasion activities of RAD51. Accordingly, deletion of RAD54 has dramatic consequences on DNA damage repair in mitotic cells. In contrast, its role in meiotic recombination is less clear. RAD54 is essential for meiotic recombination in Drosophila and C. elegans, but plays minor roles in yeast and mammals. We present here characterization of the roles of RAD54 in meiotic recombination in the model plant Arabidopsis thaliana. Absence of RAD54 has no detectable effect on meiotic recombination in otherwise wild-type plants but RAD54 becomes essential for meiotic DSB repair in absence of DMC1. In Arabidopsis, dmc1 mutants have an achiasmate meiosis, in which RAD51 repairs meiotic DSBs. Lack of RAD54 leads to meiotic chromosomal fragmentation in absence of DMC1. The action of RAD54 in meiotic RAD51 activity is thus mainly downstream of the role of RAD51 in supporting the activity of DMC1. Equivalent analyses show no effect on meiosis of combining dmc1 with the mutants of the RAD51-mediators RAD51B, RAD51D and XRCC2. RAD54 is thus required for repair of meiotic DSBs by RAD51 and the absence of meiotic phenotype in rad54 plants is a consequence of RAD51 playing a RAD54-independent supporting role to DMC1 in meiotic recombination. Homologous recombination is a universal pathway which repairs broken DNA molecules through the use of homologous DNA templates. It is both essential for maintenance of genome stability and for the generation of genetic diversity through sexual reproduction. A central step of the homologous recombination process is the search for and invasion of a homologous, intact DNA sequence that will be used as template. This key step is catalysed by the RAD51 recombinase in somatic cells and RAD51 and DMC1 in meiotic cells, assisted by a number of associated factors. Among these, the chromatin-remodelling protein RAD54 is a required cofactor for RAD51 in mitotic cells. Understanding of its role during meiotic recombination however remains elusive. We show here that RAD54 is required for repair of meiotic double strand breaks by RAD51 in the plant Arabidopsis thaliana, and this function is downstream of the meiotic role of RAD51 in supporting the activity of DMC1. These results provide new insights into the regulation of the central step of homologous recombination in plants and very probably also other multicellular eukaryotes.
Collapse
Affiliation(s)
- Miguel Hernandez Sanchez-Rebato
- Institut Génétique Reproduction et Développement (iGReD), Université Clermont Auvergne, UMR 6293 CNRS, U1103 INSERM, Clermont-Ferrand, France
| | - Alida M Bouatta
- Institut Génétique Reproduction et Développement (iGReD), Université Clermont Auvergne, UMR 6293 CNRS, U1103 INSERM, Clermont-Ferrand, France
| | - Maria E Gallego
- Institut Génétique Reproduction et Développement (iGReD), Université Clermont Auvergne, UMR 6293 CNRS, U1103 INSERM, Clermont-Ferrand, France
| | - Charles I White
- Institut Génétique Reproduction et Développement (iGReD), Université Clermont Auvergne, UMR 6293 CNRS, U1103 INSERM, Clermont-Ferrand, France
| | - Olivier Da Ines
- Institut Génétique Reproduction et Développement (iGReD), Université Clermont Auvergne, UMR 6293 CNRS, U1103 INSERM, Clermont-Ferrand, France
| |
Collapse
|
28
|
Maranon DG, Sharma N, Huang Y, Selemenakis P, Wang M, Altina N, Zhao W, Wiese C. NUCKS1 promotes RAD54 activity in homologous recombination DNA repair. J Cell Biol 2021; 219:152064. [PMID: 32876692 PMCID: PMC7659731 DOI: 10.1083/jcb.201911049] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/04/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
NUCKS1 (nuclear ubiquitous casein kinase and cyclin-dependent kinase substrate 1) is a chromatin-associated, vertebrate-specific, and multifunctional protein with a role in DNA damage signaling and repair. Previously, we have shown that NUCKS1 helps maintain homologous recombination (HR) DNA repair in human cells and functions as a tumor suppressor in mice. However, the mechanisms by which NUCKS1 positively impacts these processes had remained unclear. Here, we show that NUCKS1 physically and functionally interacts with the DNA motor protein RAD54. Upon exposure of human cells to DNA-damaging agents, NUCKS1 controls the resolution of RAD54 foci. In unperturbed cells, NUCKS1 prevents RAD54's inappropriate engagement with RAD51AP1. In vitro, NUCKS1 stimulates the ATPase activity of RAD54 and the RAD51-RAD54-mediated strand invasion step during displacement loop formation. Taken together, our data demonstrate that the NUCKS1 protein is an important new regulator of the spatiotemporal events in HR.
Collapse
Affiliation(s)
- David G Maranon
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO
| | - Neelam Sharma
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO
| | - Yuxin Huang
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX
| | - Platon Selemenakis
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO.,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO
| | - Meiling Wang
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX
| | - Noelia Altina
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO.,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO
| | - Weixing Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX
| | - Claudia Wiese
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO.,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO
| |
Collapse
|
29
|
Zheng S, Yao L, Li F, Huang L, Yu Y, Lin Z, Li H, Xia J, Lanuti M, Zhou H. Homologous recombination repair rathway and RAD54L in early-stage lung adenocarcinoma. PeerJ 2021; 9:e10680. [PMID: 33628633 PMCID: PMC7894105 DOI: 10.7717/peerj.10680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/09/2020] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE The current study aims to identify the dysregulated pathway involved in carcinogenesis and the essential survival-related dysregulated genes among this pathway in the early stage of lung adenocarcinoma (LUAD). PATIENTS AND METHODS Data from The Cancer Genome Atlas (TCGA) including 526 tumor tissues of LUAD and 59 healthy lung tissues were analyzed to gain differentially expressed genes (DEGs). Gene ontology (GO) analysis was conducted with DAVID, while the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of DEGs was performed, followed by gene set enrichment analysis (GSEA) methods. Survival analysis was implemented in TCGA dataset and validated in Gene Expression Omnibus (GEO) cohort GSE50081, which includes 127 patients with stage I LUAD. RESULTS GSEA enrichment analysis suggested that homologous recombination repair (HRR) pathway was significantly enriched. Subsequent KEGG pathway enrichment analysis indicated the significant up-regulation of HRR pathway in patients with T1 stage LUAD. Retrieved in Gene database, RAD54L is involved in HRR pathway and were recognized to be significantly differentially expressed in T1 stage LUAD in our study. The survival analysis indicated that high expression of RAD54L was significantly related to worse overall survival in patients with T1 stage LUAD (TCGA cohort: HR=2.10, 95% CI [1.47-2.98], P = 0.001; GSE50081 validation cohort: HR = 2.61, 95% CI [1.51-4.52], P = 0.002). Multivariate cox regression analysis indicated that RAD54L is an independent prognostic factor in the early-stage LUAD. CONCLUSION HRR pathway is up-regulated in LUAD, among which the expression of RAD54L was found to be significantly differentially expressed in T1 stage tumor tissue. Patients with high expression of RAD54L were associated with worse overall survival in the TCGA cohort and validation cohort. This study suggests a potential mechanism of lung cancer progression and provide a budding prognostic factor and treatment target in early-stage LUAD.
Collapse
Affiliation(s)
- Shaopeng Zheng
- Department of Thoracic Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, P.R. China
- Shantou University Medical College, Shantou, P.R. China
| | - Lintong Yao
- Division of Thoracic Surgery, Guangdong Provincial People’s Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, P.R. China
- Shantou University Medical College, Shantou, P.R. China
| | - Fasheng Li
- Division of Thoracic Surgery, Guangdong Provincial People’s Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, P.R. China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, P.R. China
| | - Luyu Huang
- Division of Thoracic Surgery, Guangdong Provincial People’s Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, P.R. China
- Shantou University Medical College, Shantou, P.R. China
| | - Yunfang Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Zenan Lin
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Hao Li
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Jin Xia
- Division of Thoracic Surgery, Guangdong Provincial People’s Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Michael Lanuti
- Department of Surgery, Division of Thoracic Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Haiyu Zhou
- Division of Thoracic Surgery, Guangdong Provincial People’s Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, P.R. China
- Shantou University Medical College, Shantou, P.R. China
| |
Collapse
|
30
|
Machín F. Implications of Metastable Nicks and Nicked Holliday Junctions in Processing Joint Molecules in Mitosis and Meiosis. Genes (Basel) 2020; 11:genes11121498. [PMID: 33322845 PMCID: PMC7763299 DOI: 10.3390/genes11121498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/25/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022] Open
Abstract
Joint molecules (JMs) are intermediates of homologous recombination (HR). JMs rejoin sister or homolog chromosomes and must be removed timely to allow segregation in anaphase. Current models pinpoint Holliday junctions (HJs) as a central JM. The canonical HJ (cHJ) is a four-way DNA that needs specialized nucleases, a.k.a. resolvases, to resolve into two DNA molecules. Alternatively, a helicase–topoisomerase complex can deal with pairs of cHJs in the dissolution pathway. Aside from cHJs, HJs with a nick at the junction (nicked HJ; nHJ) can be found in vivo and are extremely good substrates for resolvases in vitro. Despite these findings, nHJs have been neglected as intermediates in HR models. Here, I present a conceptual study on the implications of nicks and nHJs in the final steps of HR. I address this from a biophysical, biochemical, topological, and genetic point of view. My conclusion is that they ease the elimination of JMs while giving genetic directionality to the final products. Additionally, I present an alternative view of the dissolution pathway since the nHJ that results from the second end capture predicts a cross-join isomerization. Finally, I propose that this isomerization nicely explains the strict crossover preference observed in synaptonemal-stabilized JMs in meiosis.
Collapse
Affiliation(s)
- Félix Machín
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain;
- Instituto de Tecnologías Biomédicas, Universidad de la Laguna, 38200 Tenerife, Spain
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, 35450 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
31
|
E2F1 Promotes Progression of Bladder Cancer by Modulating RAD54L Involved in Homologous Recombination Repair. Int J Mol Sci 2020; 21:ijms21239025. [PMID: 33261027 PMCID: PMC7730422 DOI: 10.3390/ijms21239025] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 12/12/2022] Open
Abstract
DNA repair defects are important factors in cancer development. High DNA repair activity can affect cancer progression and chemoresistance. DNA double-strand breaks in cancer cells caused by anticancer agents can be restored by non-homologous end joining (NHEJ) and homologous recombination repair (HRR). Our previous study has identified E2F1 as a key gene in bladder cancer progression. In this study, DNA repair genes related to E2F1 were analyzed, and RAD54L involved in HRR was identified. In gene expression analysis of bladder cancer patients, the survival of patients with high RAD54L expression was shorter with cancer progression than in patients with low RAD54L expression. This study also revealed that E2F1 directly binds to the promoter region of RAD54L and regulates the transcription of RAD54L related to the HRR pathway. This study also confirmed that DNA breaks are repaired by RAD54L induced by E2F1 in bladder cancer cells treated with MMC. In summary, RAD54L was identified as a new target directly regulated by E2F1. Our results suggest that, E2F1 and RAD54L could be used as diagnostic markers for bladder cancer progression and represent potential therapeutic targets.
Collapse
|
32
|
Gong Y, Tian C, Lu S, Gao Y, Wen L, Chen B, Gao H, Zhang H, Zhao J, Wang J. Harmine Combined with Rad54 Knockdown Inhibits the Viability of Echinococcus granulosus by Enhancing DNA Damage. DNA Cell Biol 2020; 40:1-9. [PMID: 33170025 DOI: 10.1089/dna.2020.5779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study aimed at exploring the role of EgRad54 and the effect of harmine (HM) or HM derivatives (HMDs) on DNA damage in Echinococcus granulosus. DNA damage in E. granulosus protoscoleces (PSCs) was assessed by using a comet assay, after treatment with HM or HMDs. Efficiency of electroporation-based transfection of PSCs and subsequent EgRad54 knockdown was evaluated by using real-time quantitative polymerase chain reaction (RT-qPCR) and fluorescence intensity. Viability of PSCs was determined via eosin exclusion test, and expression of related genes was analyzed via RT-qPCR. HM and HMDs significantly (p < 0.05) increased DNA damage in E. granulosus, and upregulated EgRad54 expression. Compared with HM and HMD-only treatment groups, EgRad54 knockdown combined with HM and HMD treatment further reduced E. granulosus viability. This combined approach resulted in significant (p < 0.05) downregulation of Rad54 and Topo2a expression, and upregulation of ATM expression, whereas H2A and P53 expression was significantly higher compared with control groups. These data show that EgRad54 knockdown, combined with HM or HMD treatment, enhances DNA damage in E. granulosus via upregulation of ATM and H2A, and downregulation of Rad54 and Topo2a, thereby inhibiting E. granulosus growth, and suggest that EgRad54 is a potential therapeutic target for cystic echinococcosis treatment.
Collapse
Affiliation(s)
- Yuehong Gong
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Chunyan Tian
- College of Pharmaceutical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Shuai Lu
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yi Gao
- College of Pharmaceutical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Limei Wen
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Bei Chen
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Huijing Gao
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Haibo Zhang
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jun Zhao
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jianhua Wang
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
33
|
Ensminger M, Löbrich M. One end to rule them all: Non-homologous end-joining and homologous recombination at DNA double-strand breaks. Br J Radiol 2020; 93:20191054. [PMID: 32105514 PMCID: PMC8519636 DOI: 10.1259/bjr.20191054] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Double-strand breaks (DSBs) represent the most severe type of DNA damage since they can lead to genomic rearrangements, events that can initiate and promote tumorigenic processes. DSBs arise from various exogenous agents that induce two single-strand breaks at opposite locations in the DNA double helix. Such two-ended DSBs are repaired in mammalian cells by one of two conceptually different processes, non-homologous end-joining (NHEJ) and homologous recombination (HR). NHEJ has the potential to form rearrangements while HR is believed to be error-free since it uses a homologous template for repair. DSBs can also arise from single-stranded DNA lesions if they lead to replication fork collapse. Such DSBs, however, have only one end and are repaired by HR and not by NHEJ. In fact, the majority of spontaneously arising DSBs are one-ended and HR has likely evolved to repair one-ended DSBs. HR of such DSBs demands the engagement of a second break end that is generated by an approaching replication fork. This HR process can cause rearrangements if a homologous template other than the sister chromatid is used. Thus, both NHEJ and HR have the potential to form rearrangements and the proper choice between them is governed by various factors, including cell cycle phase and genomic location of the lesion. We propose that the specific requirements for repairing one-ended DSBs have shaped HR in a way which makes NHEJ the better choice for the repair of some but not all two-ended DSBs.
Collapse
Affiliation(s)
- Michael Ensminger
- Radiation Biology and DNA Repair, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Markus Löbrich
- Radiation Biology and DNA Repair, Technical University of Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
34
|
Crickard JB, Kwon Y, Sung P, Greene EC. Rad54 and Rdh54 occupy spatially and functionally distinct sites within the Rad51-ssDNA presynaptic complex. EMBO J 2020; 39:e105705. [PMID: 32790929 PMCID: PMC7560196 DOI: 10.15252/embj.2020105705] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/13/2020] [Accepted: 07/29/2020] [Indexed: 12/21/2022] Open
Abstract
Rad54 and Rdh54 are closely related ATP-dependent motor proteins that participate in homologous recombination (HR). During HR, these enzymes functionally interact with the Rad51 presynaptic complex (PSC). Despite their importance, we know little about how they are organized within the PSC, or how their organization affects PSC function. Here, we use single-molecule optical microscopy and genetic analysis of chimeric protein constructs to evaluate the binding distributions of Rad54 and Rdh54 within the PSC. We find that Rad54 and Rdh54 have distinct binding sites within the PSC, which allow these proteins to act cooperatively as DNA sequences are aligned during homology search. Our data also reveal that Rad54 must bind to a specific location within the PSC, whereas Rdh54 retains its function in the repair of MMS-induced DNA damage even when recruited to the incorrect location. These findings support a model in which the relative binding sites of Rad54 and Rdh54 help to define their functions during mitotic HR.
Collapse
Affiliation(s)
- J Brooks Crickard
- Department of Biochemistry & Molecular BiophysicsColumbia UniversityNew YorkNYUSA
| | - Youngho Kwon
- Department of Biochemistry and Structural BiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTXUSA
| | - Patrick Sung
- Department of Biochemistry and Structural BiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTXUSA
| | - Eric C Greene
- Department of Biochemistry & Molecular BiophysicsColumbia UniversityNew YorkNYUSA
| |
Collapse
|
35
|
Zohud BA, Wang M, Cai X. Germline RAD54L with somatic POLE defect implicated in Hypermutation phenotype: case report. BMC Gastroenterol 2020; 20:255. [PMID: 32758138 PMCID: PMC7409428 DOI: 10.1186/s12876-020-01403-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 07/28/2020] [Indexed: 11/10/2022] Open
Abstract
Background Colorectal cancer is one of the most frequent causes of death among cancer patients. Hypermutated CRC is an extraordinary case of cancer, but curable if detected at early stages. However, the mechanism for developing a hypermutated CRC remains unclear. An association between RAD54L germline mutation and POLE exonuclease domain hypermutated cancer has not been reported before. Case presentation We present a rare case of a 41-year-old Chinese female with a right-sided colon adenocarcinoma who harboured a (p.P286R) POLE somatic mutation. Genomic analysis was performed using the Illumina HiSeq Sequencing platform, which, identified MSS tumour with a (c.1093_1169 + 15dup) germline mutation in RAD54L gene and tumour mutation burden of 377.0 Muts/Mb. Based on our report a new mechanism for developing hypermutated colon cancer has been conjectured through a novel RAD54L_POLE DSBR pathway. Conclusion This report highlights the clinical importance of next-generation sequencing technology in diagnosing rare tumours and investigating novel mechanisms for developing exceptional genetic diseases.
Collapse
Affiliation(s)
- Bisan Abdalfatah Zohud
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, China
| | - Meiling Wang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, China
| | - Xin Cai
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, China.
| |
Collapse
|
36
|
Crickard JB, Moevus CJ, Kwon Y, Sung P, Greene EC. Rad54 Drives ATP Hydrolysis-Dependent DNA Sequence Alignment during Homologous Recombination. Cell 2020; 181:1380-1394.e18. [PMID: 32502392 DOI: 10.1016/j.cell.2020.04.056] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/07/2020] [Accepted: 04/29/2020] [Indexed: 12/30/2022]
Abstract
Homologous recombination (HR) helps maintain genome integrity, and HR defects give rise to disease, especially cancer. During HR, damaged DNA must be aligned with an undamaged template through a process referred to as the homology search. Despite decades of study, key aspects of this search remain undefined. Here, we use single-molecule imaging to demonstrate that Rad54, a conserved Snf2-like protein found in all eukaryotes, switches the search from the diffusion-based pathways characteristic of the basal HR machinery to an active process in which DNA sequences are aligned via an ATP-dependent molecular motor-driven mechanism. We further demonstrate that Rad54 disrupts the donor template strands, enabling the search to take place within a migrating DNA bubble-like structure that is bound by replication protein A (RPA). Our results reveal that Rad54, working together with RPA, fundamentally alters how DNA sequences are aligned during HR.
Collapse
Affiliation(s)
- J Brooks Crickard
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Corentin J Moevus
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Eric C Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
37
|
Thompson MG, Moore WM, Hummel NFC, Pearson AN, Barnum CR, Scheller HV, Shih PM. Agrobacterium tumefaciens: A Bacterium Primed for Synthetic Biology. BIODESIGN RESEARCH 2020; 2020:8189219. [PMID: 37849895 PMCID: PMC10530663 DOI: 10.34133/2020/8189219] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 04/26/2020] [Indexed: 10/19/2023] Open
Abstract
Agrobacterium tumefaciens is an important tool in plant biotechnology due to its natural ability to transfer DNA into the genomes of host plants. Genetic manipulations of A. tumefaciens have yielded considerable advances in increasing transformational efficiency in a number of plant species and cultivars. Moreover, there is overwhelming evidence that modulating the expression of various mediators of A. tumefaciens virulence can lead to more successful plant transformation; thus, the application of synthetic biology to enable targeted engineering of the bacterium may enable new opportunities for advancing plant biotechnology. In this review, we highlight engineering targets in both A. tumefaciens and plant hosts that could be exploited more effectively through precision genetic control to generate high-quality transformation events in a wider range of host plants. We then further discuss the current state of A. tumefaciens and plant engineering with regard to plant transformation and describe how future work may incorporate a rigorous synthetic biology approach to tailor strains of A. tumefaciens used in plant transformation.
Collapse
Affiliation(s)
- Mitchell G. Thompson
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant Biology, University of California-Davis, Davis, CA, USA
| | - William M. Moore
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Niklas F. C. Hummel
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant Biology, University of California-Davis, Davis, CA, USA
| | - Allison N. Pearson
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Collin R. Barnum
- Department of Plant Biology, University of California-Davis, Davis, CA, USA
| | - Henrik V. Scheller
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Patrick M. Shih
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant Biology, University of California-Davis, Davis, CA, USA
- Genome Center, University of California-Davis, Davis, CA, USA
| |
Collapse
|
38
|
Mason-Osann E, Terranova K, Lupo N, Lock YJ, Carson LM, Flynn RL. RAD54 promotes alternative lengthening of telomeres by mediating branch migration. EMBO Rep 2020; 21:e49495. [PMID: 32337843 PMCID: PMC7271314 DOI: 10.15252/embr.201949495] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/19/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022] Open
Abstract
Cancer cells can activate the alternative lengthening of telomeres (ALT) pathway to promote replicative immortality. The ALT pathway promotes telomere elongation through a homologous recombination pathway known as break‐induced replication (BIR), which is often engaged to repair single‐ended double‐stranded breaks (DSBs). Single‐ended DSBs are resected to promote strand invasion and facilitate the formation of a local displacement loop (D‐loop), which can trigger DNA synthesis, and ultimately promote telomere elongation. However, the exact proteins involved in the maturation, migration, and resolution of D‐loops at ALT telomeres are unclear. In vitro, the DNA translocase RAD54 both binds D‐loops and promotes branch migration suggesting that RAD54 may function to promote ALT activity. Here, we demonstrate that RAD54 is enriched at ALT telomeres and promotes telomeric DNA synthesis through its ATPase‐dependent branch migration activity. Loss of RAD54 leads to the formation of unresolved recombination intermediates at telomeres that form ultra‐fine anaphase bridges in mitosis. These data demonstrate an important role for RAD54 in promoting ALT‐mediated telomere synthesis.
Collapse
Affiliation(s)
- Emily Mason-Osann
- Departments of Pharmacology & Experimental Therapeutics, Medicine Cancer Center, Boston University School of Medicine, Boston, MA, USA
| | - Katherine Terranova
- Departments of Pharmacology & Experimental Therapeutics, Medicine Cancer Center, Boston University School of Medicine, Boston, MA, USA
| | - Nicholas Lupo
- Departments of Pharmacology & Experimental Therapeutics, Medicine Cancer Center, Boston University School of Medicine, Boston, MA, USA
| | - Ying Jie Lock
- Departments of Pharmacology & Experimental Therapeutics, Medicine Cancer Center, Boston University School of Medicine, Boston, MA, USA
| | - Lisa M Carson
- Departments of Pharmacology & Experimental Therapeutics, Medicine Cancer Center, Boston University School of Medicine, Boston, MA, USA
| | - Rachel Litman Flynn
- Departments of Pharmacology & Experimental Therapeutics, Medicine Cancer Center, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
39
|
Wong RP, García-Rodríguez N, Zilio N, Hanulová M, Ulrich HD. Processing of DNA Polymerase-Blocking Lesions during Genome Replication Is Spatially and Temporally Segregated from Replication Forks. Mol Cell 2019; 77:3-16.e4. [PMID: 31607544 DOI: 10.1016/j.molcel.2019.09.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/23/2019] [Accepted: 09/10/2019] [Indexed: 11/25/2022]
Abstract
Tracing DNA repair factors by fluorescence microscopy provides valuable information about how DNA damage processing is orchestrated within cells. Most repair pathways involve single-stranded DNA (ssDNA), making replication protein A (RPA) a hallmark of DNA damage and replication stress. RPA foci emerging during S phase in response to tolerable loads of polymerase-blocking lesions are generally thought to indicate stalled replication intermediates. We now report that in budding yeast they predominantly form far away from sites of ongoing replication, and they do not overlap with any of the repair centers associated with collapsed replication forks or double-strand breaks. Instead, they represent sites of postreplicative DNA damage bypass involving translesion synthesis and homologous recombination. We propose that most RPA and recombination foci induced by polymerase-blocking lesions in the replication template are clusters of repair tracts arising from replication centers by polymerase re-priming and subsequent expansion of daughter-strand gaps over the course of S phase.
Collapse
Affiliation(s)
- Ronald P Wong
- Institute of Molecular Biology, 55128 Mainz, Germany
| | | | - Nicola Zilio
- Institute of Molecular Biology, 55128 Mainz, Germany
| | | | | |
Collapse
|
40
|
Hirakawa T, Kuwata K, Gallego ME, White CI, Nomoto M, Tada Y, Matsunaga S. LSD1-LIKE1-Mediated H3K4me2 Demethylation Is Required for Homologous Recombination Repair. PLANT PHYSIOLOGY 2019; 181:499-509. [PMID: 31366719 PMCID: PMC6776857 DOI: 10.1104/pp.19.00530] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/22/2019] [Indexed: 05/18/2023]
Abstract
Homologous recombination is a key process for maintaining genome integrity and diversity. In eukaryotes, the nucleosome structure of chromatin inhibits the progression of homologous recombination. The DNA repair and recombination protein RAD54 alters the chromatin structure via nucleosome sliding to enable homology searches. For homologous recombination to progress, appropriate recruitment and dissociation of RAD54 is required at the site of homologous recombination; however, little is known about the mechanism regulating RAD54 dynamics in chromatin. Here, we reveal that the histone demethylase LYSINE-SPECIFIC DEMETHYLASE1-LIKE 1 (LDL1) regulates the dissociation of RAD54 at damaged sites during homologous recombination repair in the somatic cells of Arabidopsis (Arabidopsis thaliana). Depletion of LDL1 leads to an overaccumulation of RAD54 at damaged sites with DNA double-strand breaks. Moreover, RAD54 accumulates at damaged sites by recognizing histone H3 Lys 4 di-methylation (H3K4me2); the frequency of the interaction between RAD54 and H3K4me2 increased in the ldl1 mutant with DNA double-strand breaks. We propose that LDL1 removes RAD54 at damaged sites by demethylating H3K4me2 during homologous recombination repair and thereby maintains genome stability in Arabidopsis.
Collapse
Affiliation(s)
- Takeshi Hirakawa
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan
| | - Maria E Gallego
- Génétique, Reproduction et Développement, Unité de Mixte de Recherche, Centre National de la Recherche Scientifique 6293, Clermont Université, Institut National de la Santé et de la Recherche Médicale U1103, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Charles I White
- Génétique, Reproduction et Développement, Unité de Mixte de Recherche, Centre National de la Recherche Scientifique 6293, Clermont Université, Institut National de la Santé et de la Recherche Médicale U1103, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Mika Nomoto
- Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| | - Yasuomi Tada
- Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| | - Sachihiro Matsunaga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
41
|
Tavares EM, Wright WD, Heyer WD, Le Cam E, Dupaigne P. In vitro role of Rad54 in Rad51-ssDNA filament-dependent homology search and synaptic complexes formation. Nat Commun 2019; 10:4058. [PMID: 31492866 PMCID: PMC6731316 DOI: 10.1038/s41467-019-12082-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 08/12/2019] [Indexed: 11/28/2022] Open
Abstract
Homologous recombination (HR) uses a homologous template to accurately repair DNA double-strand breaks and stalled replication forks to maintain genome stability. During homology search, Rad51 nucleoprotein filaments probe and interact with dsDNA, forming the synaptic complex that is stabilized on a homologous sequence. Strand intertwining leads to the formation of a displacement-loop (D-loop). In yeast, Rad54 is essential for HR in vivo and required for D-loop formation in vitro, but its exact role remains to be fully elucidated. Using electron microscopy to visualize the DNA-protein complexes, here we find that Rad54 is crucial for Rad51-mediated synaptic complex formation and homology search. The Rad54−K341R ATPase-deficient mutant protein promotes formation of synaptic complexes but not D-loops and leads to the accumulation of stable heterologous associations, suggesting that the Rad54 ATPase is involved in preventing non-productive intermediates. We propose that Rad51/Rad54 form a functional unit operating in homology search, synaptic complex and D-loop formation. Homologous recombination uses a template to accurately repair DNA double-strand breaks and stalled replication forks to maintain genome stability. Here authors use electron microscopy to investigate the role of Rad54 in homology search and synaptic complex formation.
Collapse
Affiliation(s)
- Eliana Moreira Tavares
- Genome Maintenance and Molecular Microscopy UMR8126 CNRS, Université Paris-Sud, Université Paris-Saclay, Gustave Roussy, F-94805, Villejuif Cedex, France
| | - William Douglass Wright
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616-8665, USA
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616-8665, USA
| | - Eric Le Cam
- Genome Maintenance and Molecular Microscopy UMR8126 CNRS, Université Paris-Sud, Université Paris-Saclay, Gustave Roussy, F-94805, Villejuif Cedex, France
| | - Pauline Dupaigne
- Genome Maintenance and Molecular Microscopy UMR8126 CNRS, Université Paris-Sud, Université Paris-Saclay, Gustave Roussy, F-94805, Villejuif Cedex, France.
| |
Collapse
|
42
|
Haas KT, Lee M, Esposito A, Venkitaraman AR. Single-molecule localization microscopy reveals molecular transactions during RAD51 filament assembly at cellular DNA damage sites. Nucleic Acids Res 2019; 46:2398-2416. [PMID: 29309696 PMCID: PMC5861458 DOI: 10.1093/nar/gkx1303] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/19/2017] [Indexed: 11/14/2022] Open
Abstract
RAD51 recombinase assembles on single-stranded (ss)DNA substrates exposed by DNA end-resection to initiate homologous recombination (HR), a process fundamental to genome integrity. RAD51 assembly has been characterized using purified proteins, but its ultrastructural topography in the cell nucleus is unexplored. Here, we combine cell genetics with single-molecule localization microscopy and a palette of bespoke analytical tools, to visualize molecular transactions during RAD51 assembly in the cellular milieu at resolutions approaching 30-40 nm. In several human cell types, RAD51 focalizes in clusters that progressively extend into long filaments, which abut-but do not overlap-with globular bundles of replication protein A (RPA). Extended filaments alter topographically over time, suggestive of succeeding steps in HR. In cells depleted of the tumor suppressor protein BRCA2, or overexpressing its RAD51-binding BRC repeats, RAD51 fails to assemble at damage sites, although RPA accumulates unhindered. By contrast, in cells lacking a BRCA2 carboxyl (C)-terminal region targeted by cancer-causing mutations, damage-induced RAD51 assemblies initiate but do not extend into filaments. We suggest a model wherein RAD51 assembly proceeds concurrently with end-resection at adjacent sites, via an initiation step dependent on the BRC repeats, followed by filament extension through the C-terminal region of BRCA2.
Collapse
Affiliation(s)
- Kalina T Haas
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - MiYoung Lee
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - Alessandro Esposito
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - Ashok R Venkitaraman
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| |
Collapse
|
43
|
Guo P, Driver D, Zhao Z, Zheng Z, Chan C, Cheng X. Controlling the Revolving and Rotating Motion Direction of Asymmetric Hexameric Nanomotor by Arginine Finger and Channel Chirality. ACS NANO 2019; 13:6207-6223. [PMID: 31067030 PMCID: PMC6595433 DOI: 10.1021/acsnano.8b08849] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Nanomotors in nanotechnology are as important as engines in daily life. Many ATPases are nanoscale biomotors classified into three categories based on the motion mechanisms in transporting substrates: linear, rotating, and the recently discovered revolving motion. Most biomotors adopt a multisubunit ring-shaped structure that hydrolyzes ATP to generate force. How these biomotors control the motion direction and regulate the sequential action of their multiple subunits is intriguing. Many ATPases are hexameric with each monomer containing a conserved arginine finger. This review focuses on recent findings on how the arginine finger controls motion direction and coordinates adjacent subunit interactions in both revolving and rotating biomotors. Mechanisms of intersubunit interactions and sequential movements of individual subunits are evidenced by the asymmetrical appearance of one dimer and four monomers in high-resolution structural complexes. The arginine finger is situated at the interface of two subunits and extends into the ATP binding pocket of the downstream subunit. An arginine finger mutation results in deficiency in ATP binding/hydrolysis, substrate binding, and transport, highlighting the importance of the arginine finger in regulating energy transduction and motor function. Additionally, the roles of channel chirality and channel size are discussed as related to controlling one-way trafficking and differentiating the revolving and rotating mechanisms. Finally, the review concludes by discussing the conformational changes and entropy conversion triggered by ATP binding/hydrolysis, offering a view different from the traditional concept of ATP-mediated mechanochemical energy coupling. The elucidation of the motion mechanism and direction control in ATPases could facilitate nanomotor fabrication in nanotechnology.
Collapse
Affiliation(s)
- Peixuan Guo
- Center
for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy
and College of Medicine, Dorothy M. Davis Heart and Lung Research
Institute, Comprehensive Cancer Center and College of Pharmacy, Biophysics
Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United
States
- E-mail:
| | - Dana Driver
- Center
for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy
and College of Medicine, Dorothy M. Davis Heart and Lung Research
Institute, Comprehensive Cancer Center and College of Pharmacy, Biophysics
Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Zhengyi Zhao
- Center
for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy
and College of Medicine, Dorothy M. Davis Heart and Lung Research
Institute, Comprehensive Cancer Center and College of Pharmacy, Biophysics
Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Zhen Zheng
- Center
for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy
and College of Medicine, Dorothy M. Davis Heart and Lung Research
Institute, Comprehensive Cancer Center and College of Pharmacy, Biophysics
Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Chun Chan
- Center
for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy
and College of Medicine, Dorothy M. Davis Heart and Lung Research
Institute, Comprehensive Cancer Center and College of Pharmacy, Biophysics
Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Xiaolin Cheng
- Center
for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy
and College of Medicine, Dorothy M. Davis Heart and Lung Research
Institute, Comprehensive Cancer Center and College of Pharmacy, Biophysics
Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United
States
| |
Collapse
|
44
|
Crickard JB, Greene EC. Helicase Mechanisms During Homologous Recombination in Saccharomyces cerevisiae. Annu Rev Biophys 2019; 48:255-273. [PMID: 30857400 DOI: 10.1146/annurev-biophys-052118-115418] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Helicases are enzymes that move, manage, and manipulate nucleic acids. They can be subdivided into six super families and are required for all aspects of nucleic acid metabolism. In general, all helicases function by converting the chemical energy stored in the bond between the gamma and beta phosphates of adenosine triphosphate into mechanical work, which results in the unidirectional movement of the helicase protein along one strand of a nucleic acid. The results of this translocation activity can range from separation of strands within duplex nucleic acids to the physical remodeling or removal of nucleoprotein complexes. In this review, we focus on describing key helicases from the model organism Saccharomyces cerevisiae that contribute to the regulation of homologous recombination, which is an essential DNA repair pathway for fixing damaged chromosomes.
Collapse
Affiliation(s)
- J Brooks Crickard
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; ,
| | - Eric C Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; ,
| |
Collapse
|
45
|
Bae W, Hong S, Park MS, Jeong HK, Lee MH, Koo HS. Single-strand annealing mediates the conservative repair of double-strand DNA breaks in homologous recombination-defective germ cells of Caenorhabditis elegans. DNA Repair (Amst) 2019; 75:18-28. [PMID: 30710866 DOI: 10.1016/j.dnarep.2019.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 11/25/2022]
Abstract
A missense mutation in C. elegans RAD-54, a homolog of RAD54 that operates in the homologous recombination (HR) pathway, was found to decrease ATPase activity in vitro. The hypomorphic mutation caused hypersensitivity of C. elegans germ cells to double-strand DNA breaks (DSBs). Although the formation of RAD-51 foci at DSBs was normal in both the mutant and knockdown worms, their subsequent dissipation was slow. The rad-54-deficient phenotypes were greatly aggravated when combined with an xpf-1 mutation, suggesting a conservative role of single-strand annealing (SSA) for DSB repair in HR-defective worms. The phenotypes of doubly-deficient rad-54;xpf-1 worms were partially suppressed by a mutation of lig-4, a nonhomologous end-joining (NHEJ) factor. In summary, RAD-54 is required for the dissociation of RAD-51 from DSB sites in C. elegans germ cells. Also, NHEJ and SSA exert negative and positive effects, respectively, on genome stability when HR is defective.
Collapse
Affiliation(s)
- Woori Bae
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, 03772, Seoul, Republic of Korea
| | - Seokbong Hong
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, 03772, Seoul, Republic of Korea
| | - Mi So Park
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, 03772, Seoul, Republic of Korea
| | - Ha-Kyeong Jeong
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, 03772, Seoul, Republic of Korea
| | - Myon-Hee Lee
- Department of Medicine, Hematology/Oncology Division, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, United States
| | - Hyeon-Sook Koo
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, 03772, Seoul, Republic of Korea.
| |
Collapse
|
46
|
Russo A, Cordelli E, Salvitti T, Palumbo E, Pacchierotti F. Rad54/Rad54B deficiency is associated to increased chromosome breakage in mouse spermatocytes. Mutagenesis 2018; 33:323-332. [DOI: 10.1093/mutage/gey027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/17/2018] [Indexed: 01/15/2023] Open
Affiliation(s)
- Antonella Russo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Eugenia Cordelli
- Laboratory of Biosafety and Risk Assessment, ENEA CR Casaccia, Rome, Italy
| | - Tullia Salvitti
- Laboratory of Biosafety and Risk Assessment, ENEA CR Casaccia, Rome, Italy
| | - Elisa Palumbo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | |
Collapse
|
47
|
Abstract
Homologous recombination (HR) is a universally conserved mechanism used to maintain genomic integrity. In eukaryotes, HR is used to repair the spontaneous double strand breaks (DSBs) that arise during mitotic growth, and the programmed DSBs that form during meiosis. The mechanisms that govern mitotic and meiotic HR share many similarities, however, there are also several key differences, which reflect the unique attributes of each process. For instance, even though many of the proteins involved in mitotic and meiotic HR are the same, DNA target specificity is not: mitotic DSBs are repaired primarily using the sister chromatid as a template, whereas meiotic DBSs are repaired primarily through targeting of the homologous chromosome. These changes in template specificity are induced by expression of meiosis-specific HR proteins, down-regulation of mitotic HR proteins, and the formation of meiosis-specific chromosomal structures. Here, we compare and contrast the biochemical properties of key recombination intermediates formed during the pre-synapsis phase of mitotic and meiotic HR. Throughout, we try to highlight unanswered questions that will shape our understanding of how homologous recombination contributes to human cancer biology and sexual reproduction.
Collapse
|
48
|
The Main Role of Srs2 in DNA Repair Depends on Its Helicase Activity, Rather than on Its Interactions with PCNA or Rad51. mBio 2018; 9:mBio.01192-18. [PMID: 30018112 PMCID: PMC6050964 DOI: 10.1128/mbio.01192-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Homologous recombination (HR) is a mechanism that repairs a variety of DNA lesions. Under certain circumstances, however, HR can generate intermediates that can interfere with other cellular processes such as DNA transcription or replication. Cells have therefore developed pathways that abolish undesirable HR intermediates. The Saccharomyces cerevisiae yeast Srs2 helicase has a major role in one of these pathways. Srs2 also works during DNA replication and interacts with the clamp PCNA. The relative importance of Srs2’s helicase activity, Rad51 removal function, and PCNA interaction in genome stability remains unclear. We created a new SRS2 allele [srs2(1-850)] that lacks the whole C terminus, containing the interaction site for Rad51 and PCNA and interactions with many other proteins. Thus, the new allele encodes an Srs2 protein bearing only the activity of the DNA helicase. We find that the interactions of Srs2 with Rad51 and PCNA are dispensable for the main role of Srs2 in the repair of DNA damage in vegetative cells and for proper completion of meiosis. On the other hand, it has been shown that in cells impaired for the DNA damage tolerance (DDT) pathways, Srs2 generates toxic intermediates that lead to DNA damage sensitivity; we show that this negative Srs2 activity requires the C terminus of Srs2. Dissection of the genetic interactions of the srs2(1-850) allele suggest a role for Srs2’s helicase activity in sister chromatid cohesion. Our results also indicate that Srs2’s function becomes more central in diploid cells. Homologous recombination (HR) is a key mechanism that repairs damaged DNA. However, this process has to be tightly regulated; failure to regulate it can lead to genome instability. The Srs2 helicase is considered a regulator of HR; it was shown to be able to evict the recombinase Rad51 from DNA. Cells lacking Srs2 exhibit sensitivity to DNA-damaging agents, and in some cases, they display defects in DNA replication. The relative roles of the helicase and Rad51 removal activities of Srs2 in genome stability remain unclear. To address this question, we created a new Srs2 mutant which has only the DNA helicase domain. Our study shows that only the DNA helicase domain is needed to deal with DNA damage and assist in DNA replication during vegetative growth and in meiosis. Thus, our findings shift the view on the role of Srs2 in the maintenance of genome integrity.
Collapse
|
49
|
Ma E, Dupaigne P, Maloisel L, Guerois R, Le Cam E, Coïc E. Rad52-Rad51 association is essential to protect Rad51 filaments against Srs2, but facultative for filament formation. eLife 2018; 7:32744. [PMID: 29985128 PMCID: PMC6056232 DOI: 10.7554/elife.32744] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 06/30/2018] [Indexed: 12/24/2022] Open
Abstract
Homology search and strand exchange mediated by Rad51 nucleoprotein filaments are key steps of the homologous recombination process. In budding yeast, Rad52 is the main mediator of Rad51 filament formation, thereby playing an essential role. The current model assumes that Rad51 filament formation requires the interaction between Rad52 and Rad51. However, we report here that Rad52 mutations that disrupt this interaction do not affect γ-ray- or HO endonuclease-induced gene conversion frequencies. In vivo and in vitro studies confirmed that Rad51 filaments formation is not affected by these mutations. Instead, we found that Rad52-Rad51 association makes Rad51 filaments toxic in Srs2-deficient cells after exposure to DNA damaging agents, independently of Rad52 role in Rad51 filament assembly. Importantly, we also demonstrated that Rad52 is essential for protecting Rad51 filaments against dissociation by the Srs2 DNA translocase. Our findings open new perspectives in the understanding of the role of Rad52 in eukaryotes.
Collapse
Affiliation(s)
- Emilie Ma
- DRF, IBFJ, iRCM, CEA, Fontenay-aux-Roses, France.,Université Paris-Saclay, Paris, France
| | - Pauline Dupaigne
- Université Paris-Saclay, Paris, France.,Signalisation, Noyaux et Innovation en Cancérologie, Institut Gustave Roussy, CNRS UMR 8126, Villejuif, France.,Université Paris-Sud, Orsay, France
| | - Laurent Maloisel
- DRF, IBFJ, iRCM, CEA, Fontenay-aux-Roses, France.,Université Paris-Saclay, Paris, France
| | - Raphaël Guerois
- Université Paris-Saclay, Paris, France.,Université Paris-Sud, Orsay, France.,DRF, i2BC, LBSR, CEA, Gif-sur-Yvette, France
| | - Eric Le Cam
- Université Paris-Saclay, Paris, France.,Signalisation, Noyaux et Innovation en Cancérologie, Institut Gustave Roussy, CNRS UMR 8126, Villejuif, France.,Université Paris-Sud, Orsay, France
| | - Eric Coïc
- DRF, IBFJ, iRCM, CEA, Fontenay-aux-Roses, France.,Université Paris-Saclay, Paris, France
| |
Collapse
|
50
|
Vodicka P, Musak L, Vodickova L, Vodenkova S, Catalano C, Kroupa M, Naccarati A, Polivkova Z, Vymetalkova V, Försti A, Hemminki K. Genetic variation of acquired structural chromosomal aberrations. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 836:13-21. [PMID: 30389156 DOI: 10.1016/j.mrgentox.2018.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/24/2018] [Accepted: 05/10/2018] [Indexed: 12/21/2022]
Abstract
Human malignancies are often hallmarked with genomic instability, which itself is also considered a causative event in malignant transformation. Genomic instability may manifest itself as genetic changes in the nucleotide sequence of DNA, or as structural or numerical changes of chromosomes. Unrepaired or insufficiently repaired DNA double-strand breaks, as well as telomere shortening, are important contributors in the formation of structural chromosomal aberrations (CAs). In the present review, we discuss potential mechanisms behind the formation of CAs and their relation to cancer. Based on our own studies, we also illustrate how inherited genetic variation may modify the frequency and types of CAs occurring in humans. Recently, we published a series of studies on variations in genes relevant to maintaining genomic integrity, such as those encoding xenobiotic-metabolising enzymes, DNA repair, the tumour suppressor TP53, the spindle assembly checkpoint, and cyclin D1 (CCND1). While individually genetic variation in these genes exerted small modulating effects, in interactions they were associated with CA frequencies in peripheral blood lymphocytes of healthy volunteers. Moreover, we observed opposite associations between the CCND1 splice site polymorphism rs9344 G870A and the frequency of CAs compared to their association with translocation t(11,14). We discuss the functional consequences of the CCND1 gene in interplay with DNA damage response and DNA repair during malignant transformation. Our review summarizes existing evidence that gene variations in relevant cellular pathways modulate the frequency of CAs, predominantly in a complex interaction. More functional/mechanistic studies elucidating these observations are required. Several questions emerge, such as the role of CAs in malignancies with respect to a particular phenotype and heterogeneity, the formation of CAs during the process of malignant transformation, and the formation of CAs in individual types of lymphocytes in relation to the immune response.
Collapse
Affiliation(s)
- Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 14220, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, 12800, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, 30605, Czech Republic.
| | - Ludovit Musak
- Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, 03601, Slovakia
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 14220, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, 12800, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, 30605, Czech Republic
| | - Sona Vodenkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 14220, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, 12800, Czech Republic; Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, 10000, Czech Republic
| | - Calogerina Catalano
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, D69120, Germany
| | - Michal Kroupa
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 14220, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, 30605, Czech Republic
| | - Alessio Naccarati
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 14220, Czech Republic; Italian Institute for Genomic Medicine (IIGM), Torino, 10126, Italy
| | - Zdena Polivkova
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, 10000, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 14220, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, 12800, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, 30605, Czech Republic
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, D69120, Germany; Center for Primary Health Care Research, Lund University, Malmö, 214 28, Sweden
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, D69120, Germany; Center for Primary Health Care Research, Lund University, Malmö, 214 28, Sweden
| |
Collapse
|