1
|
Carrageta DF, Pereira SC, Ferreira R, Monteiro MP, Oliveira PF, Alves MG. Signatures of metabolic diseases on spermatogenesis and testicular metabolism. Nat Rev Urol 2024; 21:477-494. [PMID: 38528255 DOI: 10.1038/s41585-024-00866-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 03/27/2024]
Abstract
Diets leading to caloric overload are linked to metabolic disorders and reproductive function impairment. Metabolic and hormonal abnormalities stand out as defining features of metabolic disorders, and substantially affect the functionality of the testis. Metabolic disorders induce testicular metabolic dysfunction, chronic inflammation and oxidative stress. The disruption of gastrointestinal, pancreatic, adipose tissue and testicular hormonal regulation induced by metabolic disorders can also contribute to a state of compromised fertility. In this Review, we will delve into the effects of high-fat diets and metabolic disorders on testicular metabolism and spermatogenesis, which are crucial elements for male reproductive function. Moreover, metabolic disorders have been shown to influence the epigenome of male gametes and might have a potential role in transmitting phenotype traits across generations. However, the existing evidence strongly underscores the unmet need to understand the mechanisms responsible for transgenerational paternal inheritance of male reproductive function impairment related to metabolic disorders. This knowledge could be useful for developing targeted interventions to prevent, counteract, and most of all break the perpetuation chain of male reproductive dysfunction associated with metabolic disorders across generations.
Collapse
Affiliation(s)
- David F Carrageta
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
| | - Sara C Pereira
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Rita Ferreira
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Mariana P Monteiro
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
| | - Pedro F Oliveira
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Marco G Alves
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Campus de Santiago Agra do Crasto, Aveiro, Portugal.
| |
Collapse
|
2
|
Moss C, Vacca B, Arnold J, Hubens C, Lynch DM, Pegge J, Green MAR, Hosie CA, Smith TE, Green JBA. A double ovulation protocol for Xenopus laevis produces doubled fertilisation yield and moderately transiently elevated corticosterone levels without loss of egg quality. PLoS One 2024; 19:e0299179. [PMID: 39028705 PMCID: PMC11259257 DOI: 10.1371/journal.pone.0299179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/12/2024] [Indexed: 07/21/2024] Open
Abstract
The African claw-toed frog, Xenopus laevis, is a well-established laboratory model for the biology of vertebrate oogenesis, fertilisation, and development at embryonic, larval, and metamorphic stages. For ovulation, X. laevis females are usually injected with chorionic gonadotropin, whereupon they lay typically hundreds to thousands of eggs in a day. After being rested for a minimum of three months, animals are re-used. The literature suggests that adult females can lay much larger numbers of eggs in a short period. Here, we compared the standard "single ovulation" protocol with a "double ovulation" protocol, in which females were ovulated, then re-ovulated after seven days and then rested for three months before re-use. We quantified egg number, fertilisation rate (development to cleavage stage), and corticosterone secretion rate as a measure of stress response for the two protocol groups over seven 3-month cycles. We found no differences in egg number-per-ovulation or egg quality between the groups and no long-term changes in any measures over the 21-month trial period. Corticosterone secretion was elevated by ovulation, similarly for the single ovulation as for the first ovulation in the double-ovulation protocol, but more highly for the second ovulation (to a level comparable to that seen following shipment) in the latter. However, both groups exhibited the same baseline secretion rates by the time of the subsequent cycle. Double ovulation is thus transiently more stressful/demanding than single ovulation but within the levels routinely experienced by laboratory X. laevis. Noting that "stress hormone" corticosterone/cortisol secretion is linked to physiological processes, such as ovulation, that are not necessarily harmful to the individual, we suggest that the benefits of a doubling in egg yield-per-cycle per animal without loss of egg quality or signs of acute or long-term harm may outweigh the relatively modest and transient corticosterone elevation we observed. The double ovulation protocol therefore represents a potential new standard practice for promoting the "3Rs" (animal use reduction, refinement and replacement) mission for Xenopus research.
Collapse
Affiliation(s)
- Chloe Moss
- Centre for Craniofacial Regeneration and Biology, King’s College London, London, United Kingdom
| | - Barbara Vacca
- Centre for Craniofacial Regeneration and Biology, King’s College London, London, United Kingdom
| | - Jo Arnold
- Department of Biological Sciences, University of Chester, Chester, United Kingdom
| | - Chantal Hubens
- Centre for Craniofacial Regeneration and Biology, King’s College London, London, United Kingdom
| | - Dominic M. Lynch
- Centre for Craniofacial Regeneration and Biology, King’s College London, London, United Kingdom
| | - James Pegge
- Centre for Craniofacial Regeneration and Biology, King’s College London, London, United Kingdom
| | | | - Charlotte A. Hosie
- Department of Biological Sciences, University of Chester, Chester, United Kingdom
| | - Tessa E. Smith
- Department of Biological Sciences, University of Chester, Chester, United Kingdom
| | - Jeremy B. A. Green
- Centre for Craniofacial Regeneration and Biology, King’s College London, London, United Kingdom
| |
Collapse
|
3
|
Paine PT, Nguyen A, Ocampo A. Partial cellular reprogramming: A deep dive into an emerging rejuvenation technology. Aging Cell 2024; 23:e14039. [PMID: 38040663 PMCID: PMC10861195 DOI: 10.1111/acel.14039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 12/03/2023] Open
Abstract
Aging and age-associated disease are a major medical and societal burden in need of effective treatments. Cellular reprogramming is a biological process capable of modulating cell fate and cellular age. Harnessing the rejuvenating benefits without altering cell identity via partial cellular reprogramming has emerged as a novel translational strategy with therapeutic potential and strong commercial interests. Here, we explore the aging-related benefits of partial cellular reprogramming while examining limitations and future directions for the field.
Collapse
Affiliation(s)
- Patrick T. Paine
- Department of Biomedical Sciences, Faculty of Biology and MedicineUniversity of LausanneLausanneVaudSwitzerland
- Center for Virology and Vaccine ResearchHarvard Medical SchoolBostonMassachusettsUSA
- Present address:
McGovern Institute for Brain Research at MIT, Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | | | - Alejandro Ocampo
- Department of Biomedical Sciences, Faculty of Biology and MedicineUniversity of LausanneLausanneVaudSwitzerland
- EPITERNA SAEpalingesSwitzerland
| |
Collapse
|
4
|
Fatima N, Saif Ur Rahman M, Qasim M, Ali Ashfaq U, Ahmed U, Masoud MS. Transcriptional Factors Mediated Reprogramming to Pluripotency. Curr Stem Cell Res Ther 2024; 19:367-388. [PMID: 37073151 DOI: 10.2174/1574888x18666230417084518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 04/20/2023]
Abstract
A unique kind of pluripotent cell, i.e., Induced pluripotent stem cells (iPSCs), now being targeted for iPSC synthesis, are produced by reprogramming animal and human differentiated cells (with no change in genetic makeup for the sake of high efficacy iPSCs formation). The conversion of specific cells to iPSCs has revolutionized stem cell research by making pluripotent cells more controllable for regenerative therapy. For the past 15 years, somatic cell reprogramming to pluripotency with force expression of specified factors has been a fascinating field of biomedical study. For that technological primary viewpoint reprogramming method, a cocktail of four transcription factors (TF) has required: Kruppel-like factor 4 (KLF4), four-octamer binding protein 34 (OCT3/4), MYC and SOX2 (together referred to as OSKM) and host cells. IPS cells have great potential for future tissue replacement treatments because of their ability to self-renew and specialize in all adult cell types, although factor-mediated reprogramming mechanisms are still poorly understood medically. This technique has dramatically improved performance and efficiency, making it more useful in drug discovery, disease remodeling, and regenerative medicine. Moreover, in these four TF cocktails, more than 30 reprogramming combinations were proposed, but for reprogramming effectiveness, only a few numbers have been demonstrated for the somatic cells of humans and mice. Stoichiometry, a combination of reprogramming agents and chromatin remodeling compounds, impacts kinetics, quality, and efficiency in stem cell research.
Collapse
Affiliation(s)
- Nazira Fatima
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Muhammad Saif Ur Rahman
- Institute of Advanced Studies, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Uzair Ahmed
- EMBL Partnership Institute for Genome Editing Technologies, Vilnius University, Vilnius, 10257, Lithuania
| | - Muhammad Shareef Masoud
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| |
Collapse
|
5
|
Manikandan P, Sarmah S, Marrs JA. Ethanol Effects on Early Developmental Stages Studied Using the Zebrafish. Biomedicines 2022; 10:2555. [PMID: 36289818 PMCID: PMC9599251 DOI: 10.3390/biomedicines10102555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Fetal alcohol spectrum disorder (FASD) results from prenatal ethanol exposure. The zebrafish (Danio rerio) is an outstanding in vivo FASD model. Early development produced the three germ layers and embryonic axes patterning. A critical pluripotency transcriptional gene circuit of sox2, pou5f1 (oct4; recently renamed pou5f3), and nanog maintain potency and self-renewal. Ethanol affects sox2 expression, which functions with pou5f1 to control target gene transcription. Various genes, like elf3, may interact and regulate sox2, and elf3 knockdown affects early development. Downstream of the pluripotency transcriptional circuit, developmental signaling activities regulate morphogenetic cell movements and lineage specification. These activities are also affected by ethanol exposure. Hedgehog signaling is a critical developmental signaling pathway that controls numerous developmental events, including neural axis specification. Sonic hedgehog activities are affected by embryonic ethanol exposure. Activation of sonic hedgehog expression is controlled by TGF-ß family members, Nodal and Bmp, during dorsoventral (DV) embryonic axis establishment. Ethanol may perturb TGF-ß family receptors and signaling activities, including the sonic hedgehog pathway. Significantly, experiments show that activation of sonic hedgehog signaling rescues some embryonic ethanol exposure effects. More research is needed to understand how ethanol affects early developmental signaling and morphogenesis.
Collapse
Affiliation(s)
| | | | - James A. Marrs
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
6
|
Roy A, Padhi SS, Khyriem I, Nikose S, Sankar S. H H, Bharathavikru RS. Resetting the epigenome: Methylation dynamics in cancer stem cells. Front Cell Dev Biol 2022; 10:909424. [PMID: 36225315 PMCID: PMC9549938 DOI: 10.3389/fcell.2022.909424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/01/2022] [Indexed: 12/02/2022] Open
Abstract
The molecular mechanisms that regulate stem cell pluripotency and differentiation has shown the crucial role that methylation plays in this process. DNA methylation has been shown to be important in the context of developmental pathways, and the role of histone methylation in establishment of the bivalent state of genes is equally important. Recent studies have shed light on the role of RNA methylation changes in stem cell biology. The dynamicity of these methylation changes not only regulates the effective maintenance of pluripotency or differentiation, but also provides an amenable platform for perturbation by cellular stress pathways that are inherent in immune responses such as inflammation or oncogenic programs involving cancer stem cells. We summarize the recent research on the role of methylation dynamics and how it is reset during differentiation and de-differentiation.
Collapse
Affiliation(s)
- Aiendrila Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research, Berhampur, Transit campus (Govt. ITI Building), Berhampur, Odisha, India
- EMBL, Rome, Italy
| | - Swati Shree Padhi
- Department of Biological Sciences, Indian Institute of Science Education and Research, Berhampur, Transit campus (Govt. ITI Building), Berhampur, Odisha, India
| | - Ibakordor Khyriem
- Department of Biological Sciences, Indian Institute of Science Education and Research, Berhampur, Transit campus (Govt. ITI Building), Berhampur, Odisha, India
| | - Saket Nikose
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, India
| | - Harsha Sankar S. H
- Department of Biological Sciences, Indian Institute of Science Education and Research, Berhampur, Transit campus (Govt. ITI Building), Berhampur, Odisha, India
| | - Ruthrotha Selvi Bharathavikru
- Department of Biological Sciences, Indian Institute of Science Education and Research, Berhampur, Transit campus (Govt. ITI Building), Berhampur, Odisha, India
- *Correspondence: Ruthrotha Selvi Bharathavikru,
| |
Collapse
|
7
|
Li H, Xu W, Xiang S, Tao L, Fu W, Liu J, Liu W, Xiao Y, Peng L. Defining the Pluripotent Marker Genes for Identification of Teleost Fish Cell Pluripotency During Reprogramming. Front Genet 2022; 13:819682. [PMID: 35222539 PMCID: PMC8874021 DOI: 10.3389/fgene.2022.819682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Pluripotency is a transient state in early embryos, which is regulated by an interconnected network of pluripotency-related genes. The pluripotent state itself seems to be highly dynamic, which leads to significant differences in the description of induced pluripotent stem cells from different species at the molecular level. With the application of cell reprogramming technology in fish, the establishment of a set of molecular standards for defining pluripotency will be important for the research and potential application of induced pluripotent stem cells in fish. In this study, by BLAST search and expression pattern analysis, we screen out four pluripotent genes (Oct4, Nanog, Tdgf1, and Gdf3) in zebrafish (Danio rerio) and crucian carp (Carassius). These genes were highly expressed in the short period of early embryonic development, but significantly down-regulated after differentiation. Moreover, three genes (Oct4, Nanog and Tdgf1) have been verified that are suitable for identifying the pluripotency of induced pluripotent stem cells in zebrafish and crucian carp. Our study expands the understanding of the pluripotent markers of induced pluripotent stem cells in fish.
Collapse
Affiliation(s)
- Huajin Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- School of Life Sciences, Hunan Normal University, Changsha, China
| | - Wenting Xu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- School of Life Sciences, Hunan Normal University, Changsha, China
| | - Sijia Xiang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- School of Life Sciences, Hunan Normal University, Changsha, China
| | - Leiting Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- School of Life Sciences, Hunan Normal University, Changsha, China
| | - Wen Fu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- School of Life Sciences, Hunan Normal University, Changsha, China
| | - Jinhui Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- School of Life Sciences, Hunan Normal University, Changsha, China
| | - Wenbin Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- School of Life Sciences, Hunan Normal University, Changsha, China
| | - Yamei Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- School of Life Sciences, Hunan Normal University, Changsha, China
| | - Liangyue Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- School of Life Sciences, Hunan Normal University, Changsha, China
- *Correspondence: Liangyue Peng,
| |
Collapse
|
8
|
Hawdon A, Aberkane A, Zenker J. Microtubule-dependent subcellular organisation of pluripotent cells. Development 2021; 148:272646. [PMID: 34710215 DOI: 10.1242/dev.199909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
With the advancement of cutting-edge live imaging technologies, microtubule remodelling has evolved as an integral regulator for the establishment of distinct differentiated cells. However, despite their fundamental role in cell structure and function, microtubules have received less attention when unravelling the regulatory circuitry of pluripotency. Here, we summarise the role of microtubule organisation and microtubule-dependent events required for the formation of pluripotent cells in vivo by deciphering the process of early embryogenesis: from fertilisation to blastocyst. Furthermore, we highlight current advances in elucidating the significance of specific microtubule arrays in in vitro culture systems of pluripotent stem cells and how the microtubule cytoskeleton serves as a highway for the precise intracellular movement of organelles. This Review provides an informed understanding of the intrinsic role of subcellular architecture of pluripotent cells and accentuates their regenerative potential in combination with innovative light-inducible microtubule techniques.
Collapse
Affiliation(s)
- Azelle Hawdon
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Asma Aberkane
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Jennifer Zenker
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
9
|
Bright AR, van Genesen S, Li Q, Grasso A, Frölich S, van der Sande M, van Heeringen SJ, Veenstra GJC. Combinatorial transcription factor activities on open chromatin induce embryonic heterogeneity in vertebrates. EMBO J 2021; 40:e104913. [PMID: 33555045 PMCID: PMC8090851 DOI: 10.15252/embj.2020104913] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/15/2022] Open
Abstract
During vertebrate gastrulation, mesoderm is induced in pluripotent cells, concomitant with dorsal‐ventral patterning and establishing of the dorsal axis. We applied single‐cell chromatin accessibility and transcriptome analyses to explore the emergence of cellular heterogeneity during gastrulation in Xenopus tropicalis. Transcriptionally inactive lineage‐restricted genes exhibit relatively open chromatin in animal caps, whereas chromatin accessibility in dorsal marginal zone cells more closely reflects transcriptional activity. We characterized single‐cell trajectories and identified head and trunk organizer cell clusters in early gastrulae. By integrating chromatin accessibility and transcriptome data, we inferred the activity of transcription factors in single‐cell clusters and tested the activity of organizer‐expressed transcription factors in animal caps, alone or in combination. The expression profile induced by a combination of Foxb1 and Eomes most closely resembles that observed in the head organizer. Genes induced by Eomes, Otx2, or the Irx3‐Otx2 combination are enriched for maternally regulated H3K4me3 modifications, whereas Lhx8‐induced genes are marked more frequently by zygotically controlled H3K4me3. Taken together, our results show that transcription factors cooperate in a combinatorial fashion in generally open chromatin to orchestrate zygotic gene expression.
Collapse
Affiliation(s)
- Ann Rose Bright
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Siebe van Genesen
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Qingqing Li
- Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| | - Alexia Grasso
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Siebren Frölich
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Maarten van der Sande
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Simon J van Heeringen
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Gert Jan C Veenstra
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Yasuda T, Funayama T, Nagata K, Li D, Endo T, Jia Q, Suzuki M, Ishikawa Y, Mitani H, Oda S. Collimated Microbeam Reveals that the Proportion of Non-Damaged Cells in Irradiated Blastoderm Determines the Success of Development in Medaka ( Oryzias latipes) Embryos. BIOLOGY 2020; 9:E447. [PMID: 33291358 PMCID: PMC7762064 DOI: 10.3390/biology9120447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022]
Abstract
It has been widely accepted that prenatal exposure to ionizing radiation (IR) can affect embryonic and fetal development in mammals, depending on dose and gestational age of the exposure, however, the precise machinery underlying the IR-induced disturbance of embryonic development is still remained elusive. In this study, we examined the effects of gamma-ray irradiation on blastula embryos of medaka and found transient delay of brain development even when they hatched normally with low dose irradiation (2 and 5 Gy). In contrast, irradiation of higher dose of gamma-rays (10 Gy) killed the embryos with malformations before hatching. We then conducted targeted irradiation of blastoderm with a collimated carbon-ion microbeam. When a part (about 4, 10 and 25%) of blastoderm cells were injured by lethal dose (50 Gy) of carbon-ion microbeam irradiation, loss of about 10% or less of blastoderm cells induced only the transient delay of brain development and the embryos hatched normally, whereas embryos with about 25% of their blastoderm cells were irradiated stopped development at neurula stage and died. These findings strongly suggest that the developmental disturbance in the IR irradiated embryos is determined by the proportion of severely injured cells in the blastoderm.
Collapse
Affiliation(s)
- Takako Yasuda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan; (K.N.); (D.L.); (T.E.); (Q.J.); (H.M.); (S.O.)
| | - Tomoo Funayama
- Takasaki Advanced Radiation Research Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), Gunma 370-1292, Japan; (T.F.); (M.S.)
| | - Kento Nagata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan; (K.N.); (D.L.); (T.E.); (Q.J.); (H.M.); (S.O.)
| | - Duolin Li
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan; (K.N.); (D.L.); (T.E.); (Q.J.); (H.M.); (S.O.)
| | - Takuya Endo
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan; (K.N.); (D.L.); (T.E.); (Q.J.); (H.M.); (S.O.)
| | - Qihui Jia
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan; (K.N.); (D.L.); (T.E.); (Q.J.); (H.M.); (S.O.)
| | - Michiyo Suzuki
- Takasaki Advanced Radiation Research Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), Gunma 370-1292, Japan; (T.F.); (M.S.)
| | - Yuji Ishikawa
- National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba 263-8555, Japan;
| | - Hiroshi Mitani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan; (K.N.); (D.L.); (T.E.); (Q.J.); (H.M.); (S.O.)
| | - Shoji Oda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan; (K.N.); (D.L.); (T.E.); (Q.J.); (H.M.); (S.O.)
| |
Collapse
|
11
|
Pu L, Shahzad Q, Chen F, Yao S, Tang Y, Chen D, Yu K, Xie L, Xu H, Zhang M, Lu Y. Proteomic analysis demonstrates that parthenogenetically activated swamp buffalo embryos have dysregulated energy metabolism. Reprod Domest Anim 2020; 55:1764-1773. [PMID: 33031588 DOI: 10.1111/rda.13838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/02/2020] [Indexed: 01/06/2023]
Abstract
The comprehensive understanding of early embryo development is essential to optimize in vitro culture conditions. Protein expression landscape of parthenogenetically produced embryo remains unexplored. This study aimed to investigate the protein expression dynamics with a particular focus on energy metabolism throughout the early developmental stages of parthenogenetic buffalo embryos. For this purpose, we performed iTRAQ-based quantitative mass spectrometry and identified 280 proteins common in all stages. A total of 933 proteins were identified during the proteomics analysis. The data depicted that morula and blastocyst had distinct protein expression dynamics as compared to 2- to 16-cell-stage embryo. KEGG pathway analysis showed 23 proteins belonging to energy metabolism appeared in the data. Study of energy metabolism-related protein's expression pattern demonstrated that there was asynchrony in proteins related to glycolysis throughout the examined developmental stages. The expression pattern of pyruvate kinase mutase (PKM), an essential protein of glycolysis, indicated a slightly decreasing trend from 2-cell-stage embryo to blastocyst, and it was supported by expression of proteins involved in lactate production (LDHA and LDHB) suggesting the decreasing rate of aerobic glycolysis (Warburg Effect) at morula and blastocyst stage. The increased Warburg Effect is considered as the hallmark of proliferating cells or embryo at the blastocyst stage. Furthermore, the proteins involved in the citric acid cycle also showed down-regulation at the blastocyst stage, indicating a lesser role of oxidative phosphorylation at this stage. Therefore, it could be divulged from the study that there may be an irregular pattern of energy metabolism in early parthenogenetic embryos. Further studies are recommended to understand this phenomenon.
Collapse
Affiliation(s)
- Liping Pu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Qaisar Shahzad
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Fumen Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Shun Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Yuyan Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Dongrong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Kai Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Long Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Huiyan Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Ming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| |
Collapse
|
12
|
Muñoz-Galván S, Carnero A. Targeting Cancer Stem Cells to Overcome Therapy Resistance in Ovarian Cancer. Cells 2020; 9:cells9061402. [PMID: 32512891 PMCID: PMC7349391 DOI: 10.3390/cells9061402] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological malignancy due to its late detection and high recurrence rate. Resistance to conventional platinum-based therapies and metastasis are attributed to a population of cells within tumors called cancer stem cells, which possess stem-like features and are able to recapitulate new tumors. Recent studies have deepened the understanding of the biology of ovarian cancer stem cells and their special properties and have identified multiple markers and signaling pathways responsible for their self-renewal abilities. Targeting cancer stem cells represents the most promising strategy for overcoming therapy resistance and reducing mortality in ovarian cancer, but further efforts must be made to improve our understanding of the mechanisms involved in therapy resistance. In this review, we summarize our current knowledge about ovarian cancer stem cells, their involvement in metastasis and their interactions with the tumor microenvironment; we also discuss the therapeutic approaches that are being developed to target them to prevent tumor relapse.
Collapse
Affiliation(s)
- Sandra Muñoz-Galván
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, 41013 Seville, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (S.M.-G.); (A.C.); Tel.: +34-955-923-115 (S.M.-G); +34-955-923-110 (A.C.)
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, 41013 Seville, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (S.M.-G.); (A.C.); Tel.: +34-955-923-115 (S.M.-G); +34-955-923-110 (A.C.)
| |
Collapse
|
13
|
DNA methylation in the vertebrate germline: balancing memory and erasure. Essays Biochem 2020; 63:649-661. [PMID: 31755927 DOI: 10.1042/ebc20190038] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
Cytosine methylation is a DNA modification that is critical for vertebrate development and provides a plastic yet stable information module in addition to the DNA code. DNA methylation memory establishment, maintenance and erasure is carefully balanced by molecular machinery highly conserved among vertebrates. In mammals, extensive erasure of epigenetic marks, including 5-methylcytosine (5mC), is a hallmark of early embryo and germline development. Conversely, global cytosine methylation patterns are preserved in at least some non-mammalian vertebrates over comparable developmental windows. The evolutionary mechanisms which drove this divergence are unknown, nevertheless a direct consequence of retaining epigenetic memory in the form of 5mC is the enhanced potential for transgenerational epigenetic inheritance (TEI). Given that DNA methylation dynamics remains underexplored in most vertebrate lineages, the extent of information transferred to offspring by epigenetic modification might be underestimated.
Collapse
|
14
|
Salimi M, Shirazi A, Norouzian M, Mehrazar MM, Naderi MM, Shokrgozar MA, Omrani M, Hashemi SM. Histone Modifications of H3K4me3, H3K9me3 and Lineage Gene Expressions in Chimeric Mouse Embryo. CELL JOURNAL 2020; 22:96-105. [PMID: 31606973 PMCID: PMC6791070 DOI: 10.22074/cellj.2020.6443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/18/2019] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Chimeric animal exhibits less viability and more fetal and placental abnormalities than normal animal. This study was aimed to determine the impact of mouse embryonic stem cells (mESCs) injection into the mouse embryos on H3K9me3 and H3K4me3 and cell lineage gene expressions in chimeric blastocysts. MATERIALS AND METHODS In our experiment, at the first step, incorporation of the GFP positive mESCs (GFP-mESCs) 129/Sv into the inner cell mass (ICM) of pre-compacted and compacted morula stage embryos was compared. At the second and third steps, H3K4me3 and H3K9me3 status as well as the expression of Oct4, Nanog, Tead4, and Cdx2 genes were determined in the following groups: i. In vitro blastocyst derived from In vivo morula subjected to mESCs injection (blast/chimeric), ii. In vivo derived blastocyst (blast/In vivo), iii. In vitro blastocyst derived from culture of morula In vivo (blast/morula), and iv. In vitro blastocyst derived from morula In vivo subjected to sham injection (blast/sham). RESULTS Subzonal injection of GFP-mESCs at the pre-compacted embryos produced more chimeric blastocysts than compacted embryos (P<0.05). The number of trophectoderm (TE), ICM, ICM/TE and total cells in chimeric blastocysts were less than the corresponding numbers in blastocysts derived from other groups (P<0.05). In ICM and TE of chimeric blastocysts, the levels of H3K4me3 and H3K9me3 were respectively decreased and increased compared to the blastocysts of the other groups (P<0.05). Expressions of Oct4, Nanog and Tead4 were decreased in chimeric blastocysts compared to the blastocysts of the other groups (P<0.05), while this was not observed for Cdx2. CONCLUSION In the present study, embryo compaction significantly reduced the rate of incorporation of injected mESCs into the ICM. Moreover, in chimeric blastocysts, the levels of H3K9me3 and H3K4me3 were altered. In addition, the expressions of pluripotency and cell fate genes were decreased compared to blastocysts of the other groups.
Collapse
Affiliation(s)
- Maryam Salimi
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Shirazi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran. Electronic Address:
- Department of Gametes and Cloning, Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| | - Mohsen Norouzian
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.Electronic Address:
| | - Mohammad Mehdi Mehrazar
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad Mehdi Naderi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | | | - Mirdavood Omrani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Sarmah S, Srivastava R, McClintick JN, Janga SC, Edenberg HJ, Marrs JA. Embryonic ethanol exposure alters expression of sox2 and other early transcripts in zebrafish, producing gastrulation defects. Sci Rep 2020; 10:3951. [PMID: 32127575 PMCID: PMC7054311 DOI: 10.1038/s41598-020-59043-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/21/2020] [Indexed: 01/10/2023] Open
Abstract
Ethanol exposure during prenatal development causes fetal alcohol spectrum disorder (FASD), the most frequent preventable birth defect and neurodevelopmental disability syndrome. The molecular targets of ethanol toxicity during development are poorly understood. Developmental stages surrounding gastrulation are very sensitive to ethanol exposure. To understand the effects of ethanol on early transcripts during embryogenesis, we treated zebrafish embryos with ethanol during pre-gastrulation period and examined the transcripts by Affymetrix GeneChip microarray before gastrulation. We identified 521 significantly dysregulated genes, including 61 transcription factors in ethanol-exposed embryos. Sox2, the key regulator of pluripotency and early development was significantly reduced. Functional annotation analysis showed enrichment in transcription regulation, embryonic axes patterning, and signaling pathways, including Wnt, Notch and retinoic acid. We identified all potential genomic targets of 25 dysregulated transcription factors and compared their interactions with the ethanol-dysregulated genes. This analysis predicted that Sox2 targeted a large number of ethanol-dysregulated genes. A gene regulatory network analysis showed that many of the dysregulated genes are targeted by multiple transcription factors. Injection of sox2 mRNA partially rescued ethanol-induced gene expression, epiboly and gastrulation defects. Additional studies of this ethanol dysregulated network may identify therapeutic targets that coordinately regulate early development.
Collapse
Affiliation(s)
- Swapnalee Sarmah
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Rajneesh Srivastava
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Jeanette N McClintick
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sarath C Janga
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - James A Marrs
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA.
| |
Collapse
|
16
|
Llamas Luceño N, de Souza Ramos Angrimani D, de Cássia Bicudo L, Szymańska KJ, Van Poucke M, Demeyere K, Meyer E, Peelman L, Mullaart E, Broekhuijse MLWJ, Van Soom A. Exposing dairy bulls to high temperature-humidity index during spermatogenesis compromises subsequent embryo development in vitro. Theriogenology 2019; 141:16-25. [PMID: 31494458 DOI: 10.1016/j.theriogenology.2019.08.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/09/2019] [Accepted: 08/28/2019] [Indexed: 02/08/2023]
Abstract
The possible impact of natural heat stress on animal fertility is currently a major concern for breeding companies. Here, we aimed to address this concern by determining the effects of natural heat stress on the fertility of Holstein bulls located in the Netherlands. Semen samples were collected from six bulls at two locations in March 2016 (low temperature-humidity index (THI) group; maximum THI of 51.8 and 55 at their respective locations) or August (high THI group; maximum THI of 77.9 and 80.5 during meiotic and spermiogenic stages of spermatogenesis, 42 to 14 days prior to semen collection). The effect of heat stress on semen quality was assessed by sperm morphology, motility, reactive oxygen species production, lipid peroxidation, viability, and DNA fragmentation. Moreover, we evaluated the development of embryos generated in vitro by low and high THI semen, and determined inner cell mass/trophectoderm ratio, apoptotic cell ratio, and embryonic gene expression in day-8 blastocysts. An increase in cell death (propidium iodide-positive cells; P = 0.039) was observed in the high THI group (31.5%) compared to the low THI group (27.6%). Moreover, a decrease (P < 0.001) was observed in the total blastocyst rates at day 7 post-insemination (15.3 vs 20.9%) and day 8 (23.2 vs 29.6%) in the high THI compared to the low THI group, respectively. There were no differences in the relative abundance of candidate transcripts examined. In conclusion, sperm samples from dairy bulls obtained during a period with higher THI had reduced viability and led to a decrease in blastocyst development and delayed hatching, compared to semen collected during a period with low THI.
Collapse
Affiliation(s)
- Núria Llamas Luceño
- Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Daniel de Souza Ramos Angrimani
- Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium; Department of Animal Reproduction, College of Veterinary Medicine and Animal Science, University of São Paulo, Brazil
| | - Luana de Cássia Bicudo
- Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium; Department of Animal Reproduction, College of Veterinary Medicine and Animal Science, University of São Paulo, Brazil
| | - Katarzyna J Szymańska
- Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Mario Van Poucke
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Kristel Demeyere
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Evelyne Meyer
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Luc Peelman
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | | | - Ann Van Soom
- Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| |
Collapse
|
17
|
Honjo Y, Ichinohe T. Cellular responses to ionizing radiation change quickly over time during early development in zebrafish. Cell Biol Int 2019; 43:516-527. [PMID: 30791195 PMCID: PMC6850130 DOI: 10.1002/cbin.11117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 02/17/2019] [Indexed: 01/08/2023]
Abstract
Animal cells constantly receive information about and respond to environmental factors, including ionizing radiation. Although it is crucial for a cell to repair radiation-induced DNA damage to ensure survival, cellular responses to radiation exposure during early embryonic development remain unclear. In this study, we analyzed the effects of ionizing radiation in zebrafish embryos and found that radiation-induced γH2AX foci formation and cell cycle arrest did not occur until the gastrula stage, despite the presence of major DNA repair-related gene transcripts, passed on as maternal factors. Interestingly, P21/WAF1 accumulation began ∼6 h post-fertilization, although p21 mRNA was upregulated by irradiation at 2 or 4 h post-fertilization. These results suggest that the cellular responses of zebrafish embryos at 2 or 4 h post-fertilization to radiation failed to overcome P21 protein accumulation and further signaling. Regulation of P21/WAF1 protein stabilization appears to be a key factor in the response to genotoxins during early embryogenesis.
Collapse
Affiliation(s)
- Yasuko Honjo
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 754-8553, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 754-8553, Japan
| |
Collapse
|
18
|
Rodenfels J, Neugebauer KM, Howard J. Heat Oscillations Driven by the Embryonic Cell Cycle Reveal the Energetic Costs of Signaling. Dev Cell 2019; 48:646-658.e6. [PMID: 30713074 DOI: 10.1016/j.devcel.2018.12.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 10/31/2018] [Accepted: 12/28/2018] [Indexed: 12/18/2022]
Abstract
All living systems function out of equilibrium and exchange energy in the form of heat with their environment. Thus, heat flow can inform on the energetic costs of cellular processes, which are largely unknown. Here, we have repurposed an isothermal calorimeter to measure heat flow between developing zebrafish embryos and the surrounding medium. Heat flow increased over time with cell number. Unexpectedly, a prominent oscillatory component of the heat flow, with periods matching the synchronous early reductive cleavage divisions, persisted even when DNA synthesis and mitosis were blocked by inhibitors. Instead, the heat flow oscillations were driven by the phosphorylation and dephosphorylation reactions catalyzed by the cell-cycle oscillator, the biochemical network controlling mitotic entry and exit. We propose that the high energetic cost of cell-cycle signaling reflects the significant thermodynamic burden of imposing accurate and robust timing on cell proliferation during development.
Collapse
Affiliation(s)
- Jonathan Rodenfels
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| | - Jonathon Howard
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
19
|
Han JY, Lee HG, Park YH, Hwang YS, Kim SK, Rengaraj D, Cho BW, Lim JM. Acquisition of pluripotency in the chick embryo occurs during intrauterine embryonic development via a unique transcriptional network. J Anim Sci Biotechnol 2018; 9:31. [PMID: 29644074 PMCID: PMC5891889 DOI: 10.1186/s40104-018-0246-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 02/26/2018] [Indexed: 12/18/2022] Open
Abstract
Background Acquisition of pluripotency by transcriptional regulatory factors is an initial developmental event that is required for regulation of cell fate and lineage specification during early embryonic development. The evolutionarily conserved core transcriptional factors regulating the pluripotency network in fishes, amphibians, and mammals have been elucidated. There are also species-specific maternally inherited transcriptional factors and their intricate transcriptional networks important in the acquisition of pluripotency. In avian species, however, the core transcriptional network that governs the acquisition of pluripotency during early embryonic development is not well understood. Results We found that chicken NANOG (cNANOG) was expressed in the stages between the pre-ovulatory follicle and oocyte and was continuously detected in Eyal-Giladi and Kochav stage I (EGK.I) to X. However, cPOUV was not expressed during folliculogenesis, but began to be detectable between EGK.V and VI. Unexpectedly, cSOX2 could not be detected during folliculogenesis and intrauterine embryonic development. Instead of cSOX2, cSOX3 was maternally inherited and continuously expressed during chicken intrauterine development. In addition, we found that the pluripotency-related genes such as cENS-1, cKIT, cLIN28A, cMYC, cPRDM14, and cSALL4 began to be dramatically upregulated between EGK.VI and VIII. Conclusion These results suggest that chickens have a unique pluripotent circuitry since maternally inherited cNANOG and cSOX3 may play an important role in the initial acquisition of pluripotency. Moreover, the acquisition of pluripotency in chicken embryos occurs at around EGK.VI to VIII.
Collapse
Affiliation(s)
- Jae Yong Han
- 1Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Korea.,2Institute for Biomedical Sciences, Shinshu University, Minamiminowa, Nagano, 399-4598 Japan
| | - Hyo Gun Lee
- 1Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Korea
| | - Young Hyun Park
- 1Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Korea
| | - Young Sun Hwang
- 1Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Korea
| | - Sang Kyung Kim
- 1Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Korea
| | - Deivendran Rengaraj
- 3Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 17546 Korea
| | - Byung Wook Cho
- 4Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang, 50463 Korea
| | - Jeong Mook Lim
- 1Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Korea
| |
Collapse
|
20
|
Gagnon JA, Obbad K, Schier AF. The primary role of zebrafish nanog is in extra-embryonic tissue. Development 2018; 145:dev.147793. [PMID: 29180571 DOI: 10.1242/dev.147793] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 11/07/2017] [Indexed: 12/17/2022]
Abstract
The role of the zebrafish transcription factor Nanog has been controversial. It has been suggested that Nanog is primarily required for the proper formation of the extra-embryonic yolk syncytial layer (YSL) and only indirectly regulates gene expression in embryonic cells. In an alternative scenario, Nanog has been proposed to directly regulate transcription in embryonic cells during zygotic genome activation. To clarify the roles of Nanog, we performed a detailed analysis of zebrafish nanog mutants. Whereas zygotic nanog mutants survive to adulthood, maternal-zygotic (MZnanog) and maternal mutants exhibit developmental arrest at the blastula stage. In the absence of Nanog, YSL formation and epiboly are abnormal, embryonic tissue detaches from the yolk, and the expression of dozens of YSL and embryonic genes is reduced. Epiboly defects can be rescued by generating chimeric embryos of MZnanog embryonic tissue with wild-type vegetal tissue that includes the YSL and yolk cell. Notably, cells lacking Nanog readily respond to Nodal signals and when transplanted into wild-type hosts proliferate and contribute to embryonic tissues and adult organs from all germ layers. These results indicate that zebrafish Nanog is necessary for proper YSL development but is not directly required for embryonic cell differentiation.
Collapse
Affiliation(s)
- James A Gagnon
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kamal Obbad
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA .,Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.,The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.,FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
21
|
Xu Q, Xie W. Epigenome in Early Mammalian Development: Inheritance, Reprogramming and Establishment. Trends Cell Biol 2017; 28:237-253. [PMID: 29217127 DOI: 10.1016/j.tcb.2017.10.008] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 01/17/2023]
Abstract
Drastic epigenetic reprogramming takes place during preimplantation development, leading to the conversion of terminally differentiated gametes to a totipotent embryo. Deficiencies in remodeling of the epigenomes can cause severe developmental defects, including embryonic lethality. However, how chromatin modifications and chromatin organization are reprogrammed upon fertilization in mammals has long remained elusive. Here, we review recent progress in understanding how the epigenome is dynamically regulated during early mammalian development. The latest studies, including many from genome-wide perspectives, have revealed unusual principles of reprogramming for histone modifications, chromatin accessibility, and 3D chromatin architecture. These advances have shed light on the regulatory network controlling the earliest development and maternal-zygotic transition.
Collapse
Affiliation(s)
- Qianhua Xu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
22
|
Gao Y, Liu X, Tang B, Li C, Kou Z, Li L, Liu W, Wu Y, Kou X, Li J, Zhao Y, Yin J, Wang H, Chen S, Liao L, Gao S. Protein Expression Landscape of Mouse Embryos during Pre-implantation Development. Cell Rep 2017; 21:3957-3969. [DOI: 10.1016/j.celrep.2017.11.111] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/08/2017] [Accepted: 11/29/2017] [Indexed: 12/31/2022] Open
|
23
|
Bian SS, Zheng XL, Sun HQ, Chen JH, Lu YL, Liu YQ, Tao DC, Ma YX. Clock1a affects mesoderm development and primitive hematopoiesis by regulating Nodal-Smad3 signaling in the zebrafish embryo. J Biol Chem 2017; 292:14165-14175. [PMID: 28687631 DOI: 10.1074/jbc.m117.794289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/05/2017] [Indexed: 02/05/2023] Open
Abstract
Circadian clock and Smad2/3/4-mediated Nodal signaling regulate multiple physiological and pathological processes. However, it remains unknown whether Clock directly cross-talks with Nodal signaling and how this would regulate embryonic development. Here we show that Clock1a coordinated mesoderm development and primitive hematopoiesis in zebrafish embryos by directly up-regulating Nodal-Smad3 signaling. We found that Clock1a is expressed both maternally and zygotically throughout early zebrafish development. We also noted that Clock1a alterations produce embryonic defects with shortened body length, lack of the ventral tail fin, or partial defect of the eyes. Clock1a regulates the expression of the mesodermal markers ntl, gsc, and eve1 and of the hematopoietic markers scl, lmo2, and fli1a Biochemical analyses revealed that Clock1a stimulates Nodal signaling by increasing expression of Smad2/3/4. Mechanistically, Clock1a activates the smad3a promoter via its E-box1 element (CAGATG). Taken together, these findings provide mechanistic insight into the role of Clock1a in the regulation of mesoderm development and primitive hematopoiesis via modulation of Nodal-Smad3 signaling and indicate that Smad3a is directly controlled by the circadian clock in zebrafish.
Collapse
Affiliation(s)
- Sha-Sha Bian
- From the Laboratory of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center Chengdu 610041, China
| | - Xu-Lei Zheng
- From the Laboratory of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center Chengdu 610041, China
| | - Hua-Qin Sun
- SCU-CUHK Joint Laboratory for Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Jian-Hui Chen
- From the Laboratory of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center Chengdu 610041, China
| | - Yi-Lu Lu
- From the Laboratory of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center Chengdu 610041, China
| | - Yun-Qiang Liu
- From the Laboratory of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center Chengdu 610041, China
| | - Da-Chang Tao
- From the Laboratory of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center Chengdu 610041, China
| | - Yong-Xin Ma
- From the Laboratory of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center Chengdu 610041, China.
| |
Collapse
|
24
|
Abstract
DNA methylation is a major epigenetic modification of vertebrate genomes that is mostly associated with transcriptional repression. During embryogenesis, DNA methylation together with other epigenetic factors plays an essential role in selecting and maintaining cell identity. Recent technological advances are now allowing for the exploration of this mark at unprecedented resolution. This has resulted in a wealth of studies describing the developmental roles of DNA methylation in various vertebrate model systems. It is now evident that in certain contexts DNA methylation can act as a key regulator of cell identity establishment, whereas in many other cases the quantity of DNA methylation will merely reflect other upstream regulatory changes. For example, a number of studies have indicated that DNA methylation might be dispensable for pluripotency stages of embryonic development. Nevertheless, targeted deposition and removal of DNA methylation by DNMTs and TET proteins, respectively, appears to be required for vertebrate gastrulation. Here we review the roles of DNA methylation in the establishment and maintenance of cell identity during development, with a special emphasis on insights obtained from in vivo studies.
Collapse
|
25
|
Abstract
Chromatin structure is intimately connected with gene expression and cell identity. Here we review recent advances in the field and discuss how establishment of cell identity during development is accompanied by large-scale remodeling of the epigenetic landscape and how this remodeling drives and supports lineage specification and maintenance. We discuss maternal control of the early embryonic epigenetic landscape, selective usage of enhancer clusters via 3D chromatin contacts leading to activation of transcription factor networks, and conserved regulation of developmental pathways by specific DNA demethylation of key regulatory regions. Together, these processes establish an epigenetic framework regulating different phases of embryonic development.
Collapse
Affiliation(s)
- Matteo Perino
- Radboud University, Faculty of Science, Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands
| | - Gert Jan C Veenstra
- Radboud University, Faculty of Science, Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands.
| |
Collapse
|
26
|
Cell Fate Maintenance and Reprogramming During the Oocyte-to-Embryo Transition. Results Probl Cell Differ 2017; 59:269-286. [PMID: 28247053 DOI: 10.1007/978-3-319-44820-6_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
This chapter reviews our current understanding of the mechanisms that regulate reprogramming during the oocyte-to-embryo transition (OET). There are two major events reshaping the transcriptome during OET. One is the clearance of maternal transcripts in the early embryo, extensively reviewed by others. The other event, which is the focus of this chapter, is the embryonic (or zygotic) genome activation (EGA). The mechanisms controlling EGA can be broadly divided into transcriptional and posttranscriptional. The former includes the regulation of the basal transcription machinery, the regulation by specific transcription factors and chromatin modifications. The latter is performed mostly via specific RNA-binding proteins (RBPs). Different animal models have been used to decipher the regulation of EGA. These models are often biased for the specific type of regulation, which is why we discuss the models ranging from invertebrates to mammals. Whether these biases stem from incomplete understanding of EGA in these models, or reflect evolutionarily distinct solutions to EGA regulation, is a key unresolved problem in developmental biology. As the mechanisms controlling developmental reprogramming can, and in some cases have been shown to, function in differentiated cells subjected to induced reprogramming, our understanding of EGA regulation may have implications for the efficiency of induced reprogramming and, thus, for regenerative medicine.
Collapse
|
27
|
García-Fernández P, García-Souto D, Almansa E, Morán P, Gestal C. Epigenetic DNA Methylation Mediating Octopus vulgaris Early Development: Effect of Essential Fatty Acids Enriched Diet. Front Physiol 2017; 8:292. [PMID: 28559849 PMCID: PMC5432645 DOI: 10.3389/fphys.2017.00292] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/21/2017] [Indexed: 12/11/2022] Open
Abstract
The common octopus, Octopus vulgaris, is a good candidate for aquaculture but a sustainable production is still unviable due to an almost total mortality during the paralarvae stage. DNA methylation regulates gene expression in the eukaryotic genome, and has been shown to exhibit plasticity throughout O. vulgaris life cycle, changing profiles from paralarvae to adult stages. This pattern of methylation could be sensitive to small alterations in nutritional and environmental conditions during the species early development, thus impacting on its health, growth and survival. In this sense, a full understanding of the epigenetic mechanisms operating during O. vulgaris development would contribute to optimizing the culture conditions for this species. Paralarvae of O. vulgaris were cultured over 28 days post-hatching (dph) using two different Artemia sp. based diets: control and a long chain polyunsaturated fatty acids (LC-PUFA) enriched diet. The effect of the diets on the paralarvae DNA global methylation was analyzed by Methyl-Sensitive Amplification Polymorphism (MSAP) and global 5-methylcytosine enzyme-linked immunosorbent assay (ELISA) approaches. The analysis of different methylation states over the time revealed a global demethylation phenomena occurring along O. vulgaris early development being directly driven by the age of the paralarvae. A gradual decline in methylated loci (hemimethylated, internal cytosine methylated, and hypermethylated) parallel to a progressive gain in non-methylated (NMT) loci toward the later sampling points was verified regardless of the diet provided and demonstrate a pre-established and well-defined demethylation program during its early development, involving a 20% of the MSAP loci. In addition, a differential behavior between diets was also observed at 20 dph, with a LC-PUFA supplementation effect over the methylation profiles. The present results show significant differences on the paralarvae methylation profiles during its development and a diet effect on these changes. It is characterized by a process of demethylation of the genome at the paralarvae stage and the influence of diet to favor this methylation loss.
Collapse
Affiliation(s)
- Pablo García-Fernández
- Aquatic Molecular Pathobiology Group, Instituto de Investigaciones Marinas (Consejo Superior de Investigaciones Científicas)Vigo, Spain.,Departamento de Bioquímica, Xenética e Inmunoloxía, Facultade de Bioloxía, Universidade de VigoVigo, Spain
| | - Danie García-Souto
- Departamento de Bioquímica, Xenética e Inmunoloxía, Facultade de Bioloxía, Universidade de VigoVigo, Spain
| | - Eduardo Almansa
- Instituto Español de Oceanografía, Centro Oceanográfico de CanariasTenerife, Spain
| | - Paloma Morán
- Departamento de Bioquímica, Xenética e Inmunoloxía, Facultade de Bioloxía, Universidade de VigoVigo, Spain
| | - Camino Gestal
- Aquatic Molecular Pathobiology Group, Instituto de Investigaciones Marinas (Consejo Superior de Investigaciones Científicas)Vigo, Spain
| |
Collapse
|
28
|
Zhang M, Skirkanich J, Lampson MA, Klein PS. Cell Cycle Remodeling and Zygotic Gene Activation at the Midblastula Transition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:441-487. [DOI: 10.1007/978-3-319-46095-6_9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
A Structural Investigation into Oct4 Regulation by Orphan Nuclear Receptors, Germ Cell Nuclear Factor (GCNF), and Liver Receptor Homolog-1 (LRH-1). J Mol Biol 2016; 428:4981-4992. [PMID: 27984042 DOI: 10.1016/j.jmb.2016.10.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/24/2016] [Accepted: 10/24/2016] [Indexed: 01/07/2023]
Abstract
Oct4 is a transcription factor required for maintaining pluripotency and self-renewal in stem cells. Prior to differentiation, Oct4 must be silenced to allow for the development of the three germ layers in the developing embryo. This fine-tuning is controlled by the nuclear receptors (NRs), liver receptor homolog-1 (LRH-1) and germ cell nuclear factor (GCNF). Liver receptor homolog-1 is responsible for driving the expression of Oct4 where GCNF represses its expression upon differentiation. Both receptors bind to a DR0 motif located within the Oct4 promoter. Here, we present the first structure of mouse GCNF DNA-binding domain in complex with the Oct4 DR0. The overall structure revealed two molecules bound in a head-to-tail fashion on opposite sides of the DNA. Additionally, we solved the structure of the human LRH-1 DNA-binding domain bound to the same element. We explore the structural elements that govern Oct4 recognition by these two NRs.
Collapse
|
30
|
Tulay P, Doshi A, Serhal P, SenGupta SB. Differential expression of parental alleles of BRCA1 in human preimplantation embryos. Eur J Hum Genet 2016; 25:37-42. [PMID: 27677417 DOI: 10.1038/ejhg.2016.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 07/01/2016] [Accepted: 08/05/2016] [Indexed: 11/09/2022] Open
Abstract
Gene expression from both parental genomes is required for completion of embryogenesis. Differential methylation of each parental genome has been observed in mouse and human preimplantation embryos. It is possible that these differences in methylation affect the level of gene transcripts from each parental genome in early developing embryos. The aim of this study was to investigate if there is a parent-specific pattern of BRCA1 expression in human embryos and to examine if this affects embryo development when the embryo carries a BRCA1 or BRCA2 pathogenic mutation. Differential parental expression of ACTB, SNRPN, H19 and BRCA1 was semi-quantitatively analysed by minisequencing in 95 human preimplantation embryos obtained from 15 couples undergoing preimplantation genetic diagnosis. BRCA1 was shown to be differentially expressed favouring the paternal transcript in early developing embryos. Methylation-specific PCR showed a variable methylation profile of BRCA1 promoter region at different stages of embryonic development. Embryos carrying paternally inherited BRCA1 or 2 pathogenic variants were shown to develop more slowly compared with the embryos with maternally inherited BRCA1 or 2 pathogenic mutations. This study suggests that differential demethylation of the parental genomes can influence the early development of preimplantation embryos. Expression of maternal and paternal genes is required for the completion of embryogenesis.
Collapse
Affiliation(s)
- Pinar Tulay
- Department of Medical Genetics, Near East University, Faculty of Medicine, Yakin Dogu Bulvari, Nicosia, Cyprus. .,UCL Preimplantation Genetics Group, Institute for Women's Health, University College London, London, UK. .,4Current address: Near East University, Faculty of Medicine, Department of Medical Genetics, Yakin Dogu Bulvari, Nicosia, Cyprus., .
| | - Alpesh Doshi
- The Centre for Reproductive and Genetic Health, The New Wing Eastman Dental Hospital, London, UK
| | - Paul Serhal
- The Centre for Reproductive and Genetic Health, The New Wing Eastman Dental Hospital, London, UK
| | - Sioban B SenGupta
- Department of Medical Genetics, Near East University, Faculty of Medicine, Yakin Dogu Bulvari, Nicosia, Cyprus.,UCL Preimplantation Genetics Group, Institute for Women's Health, University College London, London, UK
| |
Collapse
|
31
|
Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos. Nature 2016; 537:558-562. [DOI: 10.1038/nature19362] [Citation(s) in RCA: 410] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 08/17/2016] [Indexed: 12/31/2022]
|
32
|
Félix LM, Serafim C, Valentim AM, Antunes LM, Campos S, Matos M, Coimbra AM. Embryonic Stage-Dependent Teratogenicity of Ketamine in Zebrafish (Danio rerio). Chem Res Toxicol 2016; 29:1298-309. [DOI: 10.1021/acs.chemrestox.6b00122] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Luís M. Félix
- Centre
for the Research and Technology of Agro-Environmental and Biological
Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Laboratory
Animal Science (LAS), Institute for Molecular and Cell Biology (IBMC), University of Porto (UP), Porto, Portugal
- Institute
for Research and Innovation in Health (i3S), University of Porto (UP), Porto, Portugal
| | - Cindy Serafim
- Life
Sciences and Environment School (ECVA), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana M. Valentim
- Centre
for the Research and Technology of Agro-Environmental and Biological
Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Laboratory
Animal Science (LAS), Institute for Molecular and Cell Biology (IBMC), University of Porto (UP), Porto, Portugal
- Institute
for Research and Innovation in Health (i3S), University of Porto (UP), Porto, Portugal
| | - Luís M. Antunes
- Centre
for the Research and Technology of Agro-Environmental and Biological
Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Laboratory
Animal Science (LAS), Institute for Molecular and Cell Biology (IBMC), University of Porto (UP), Porto, Portugal
- Institute
for Research and Innovation in Health (i3S), University of Porto (UP), Porto, Portugal
- School
of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Sónia Campos
- Centre
for the Research and Technology of Agro-Environmental and Biological
Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Laboratory
Animal Science (LAS), Institute for Molecular and Cell Biology (IBMC), University of Porto (UP), Porto, Portugal
- Institute
for Research and Innovation in Health (i3S), University of Porto (UP), Porto, Portugal
| | - Manuela Matos
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
- Department
of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana M. Coimbra
- Centre
for the Research and Technology of Agro-Environmental and Biological
Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
33
|
Timoshevskiy VA, Herdy JR, Keinath MC, Smith JJ. Cellular and Molecular Features of Developmentally Programmed Genome Rearrangement in a Vertebrate (Sea Lamprey: Petromyzon marinus). PLoS Genet 2016; 12:e1006103. [PMID: 27341395 PMCID: PMC4920378 DOI: 10.1371/journal.pgen.1006103] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/13/2016] [Indexed: 11/21/2022] Open
Abstract
The sea lamprey (Petromyzon marinus) represents one of the few vertebrate species known to undergo large-scale programmatic elimination of genomic DNA over the course of its normal development. Programmed genome rearrangements (PGRs) result in the reproducible loss of ~20% of the genome from somatic cell lineages during early embryogenesis. Studies of PGR hold the potential to provide novel insights related to the maintenance of genome stability during the cell cycle and coordination between mechanisms responsible for the accurate distribution of chromosomes into daughter cells, yet little is known regarding the mechanistic basis or cellular context of PGR in this or any other vertebrate lineage. Here we identify epigenetic silencing events that are associated with the programmed elimination of DNA and describe the spatiotemporal dynamics of PGR during lamprey embryogenesis. In situ analyses reveal that the earliest DNA methylation (and to some extent H3K9 trimethylation) events are limited to specific extranuclear structures (micronuclei) containing eliminated DNA. During early embryogenesis a majority of micronuclei (~60%) show strong enrichment for repressive chromatin modifications (H3K9me3 and 5meC). These analyses also led to the discovery that eliminated DNA is packaged into chromatin that does not migrate with somatically retained chromosomes during anaphase, a condition that is superficially similar to lagging chromosomes observed in some cancer subtypes. Closer examination of “lagging” chromatin revealed distributions of repetitive elements, cytoskeletal contacts and chromatin contacts that provide new insights into the cellular mechanisms underlying the programmed loss of these segments. Our analyses provide additional perspective on the cellular and molecular context of PGR, identify new structures associated with elimination of DNA and reveal that PGR is completed over the course of several successive cell divisions. Lampreys possess a fascinating genome biology wherein large portions of the genome, including large numbers of genes, are programmatically deleted during development. The lamprey therefore represents a uniquely informative system with respect to several broad areas of biology, including genome stability/rearrangement, epigenetic silencing, and the establishment and maintenance of pluripotency. However, little is known regarding the cellular context or mechanism of deletion, partly due to the challenges of observing rearrangements in situ. Here we present analyses and new techniques that significantly advance our understanding of the subcellular context of programmed rearrangements and interactions between programmed deletion and canonical DNA silencing mechanisms. These analyses demonstrate that DNA elimination occurs earlier in embryogenesis than was previously recognized and reveal several new cellular and molecular aspects of programmed DNA loss. Specifically we show that eliminated DNA exhibits a unique migration pattern during cell division, is packaged into discreet subcellular structures later in the cell cycle, and undergoes epigenetic silencing through DNA and histone methylation. These observations provide new insight into the mechanisms underlying programmed DNA loss and suggest a functional link between programmed DNA loss and other, more conserved gene silencing pathways.
Collapse
Affiliation(s)
| | - Joseph R. Herdy
- Department of Biology, University of Kentucky, Lexington, Kentucky, United States of America
- Laboratory of Genetics, The Salk Institute, La Jolla, California, United States of America
| | - Melissa C. Keinath
- Department of Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Jeramiah J. Smith
- Department of Biology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
34
|
Kress C, Montillet G, Jean C, Fuet A, Pain B. Chicken embryonic stem cells and primordial germ cells display different heterochromatic histone marks than their mammalian counterparts. Epigenetics Chromatin 2016; 9:5. [PMID: 26865862 PMCID: PMC4748481 DOI: 10.1186/s13072-016-0056-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/27/2016] [Indexed: 12/17/2022] Open
Abstract
Background Chromatin epigenetics participate in control of gene expression during metazoan development. DNA methylation and post-translational modifications (PTMs) of histones have been extensively characterised in cell types present in, or derived from, mouse embryos. In embryonic stem cells (ESCs) derived from blastocysts, factors involved in deposition of epigenetic marks regulate properties related to self-renewal and pluripotency. In the germ lineage, changes in histone PTMs and DNA demethylation occur during formation of the primordial germ cells (PGCs) to reset the epigenome of the future gametes. Trimethylation of histone H3 on lysine 27 (H3K27me3) by Polycomb group proteins is involved in several epigenome-remodelling steps, but it remains unclear whether these epigenetic features are conserved in non-mammalian vertebrates. To investigate this question, we compared the abundance and nuclear distribution of the main histone PTMs, 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) in chicken ESCs, PGCs and blastodermal cells (BCs) with differentiated chicken ESCs and embryonic fibroblasts. In addition, we analysed the expression of chromatin modifier genes to better understand the establishment and dynamics of chromatin epigenetic profiles. Results The nuclear distributions of most PTMs and 5hmC in chicken stem cells were similar to what has been described for mammalian cells. However, unlike mouse pericentric heterochromatin (PCH), chicken ESC PCH contained high levels of trimethylated histone H3 on lysine 27 (H3K27me3). In differentiated chicken cells, PCH was less enriched in H3K27me3 relative to chromatin overall. In PGCs, the H3K27me3 global level was greatly reduced, whereas the H3K9me3 level was elevated. Most chromatin modifier genes known in mammals were expressed in chicken ESCs, PGCs and BCs. Genes presumably involved in de novo DNA methylation were very highly expressed. DNMT3B and HELLS/SMARCA6 were highly expressed in chicken ESCs, PGCs and BCs compared to differentiated chicken ESCs and embryonic fibroblasts, and DNMT3A was strongly expressed in ESCs, differentiated ESCs and BCs. Conclusions Chicken ESCs and PGCs differ from their mammalian counterparts with respect to H3K27 methylation. High enrichment of H3K27me3 at PCH is specific to pluripotent cells in chicken. Our results demonstrate that the dynamics in chromatin constitution described during mouse development is not universal to all vertebrate species. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0056-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Clémence Kress
- Inserm, U1208, INRA, USC1361, Stem Cell and Brain Research Institute, 18 avenue du Doyen Lépine, 69500 Bron, France ; Université de Lyon, Université Lyon 1, Lyon, France
| | - Guillaume Montillet
- Inserm, U1208, INRA, USC1361, Stem Cell and Brain Research Institute, 18 avenue du Doyen Lépine, 69500 Bron, France ; Université de Lyon, Université Lyon 1, Lyon, France
| | - Christian Jean
- Inserm, U1208, INRA, USC1361, Stem Cell and Brain Research Institute, 18 avenue du Doyen Lépine, 69500 Bron, France ; Université de Lyon, Université Lyon 1, Lyon, France
| | - Aurélie Fuet
- Inserm, U1208, INRA, USC1361, Stem Cell and Brain Research Institute, 18 avenue du Doyen Lépine, 69500 Bron, France ; Université de Lyon, Université Lyon 1, Lyon, France
| | - Bertrand Pain
- Inserm, U1208, INRA, USC1361, Stem Cell and Brain Research Institute, 18 avenue du Doyen Lépine, 69500 Bron, France ; Université de Lyon, Université Lyon 1, Lyon, France
| |
Collapse
|
35
|
Embryonic transcription is controlled by maternally defined chromatin state. Nat Commun 2015; 6:10148. [PMID: 26679111 PMCID: PMC4703837 DOI: 10.1038/ncomms10148] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 11/10/2015] [Indexed: 12/02/2022] Open
Abstract
Histone-modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origins of the epigenome during embryonic development. Here we generate a comprehensive set of epigenome reference maps, which we use to determine the extent to which maternal factors shape chromatin state in Xenopus embryos. Using α-amanitin to inhibit zygotic transcription, we find that the majority of H3K4me3- and H3K27me3-enriched regions form a maternally defined epigenetic regulatory space with an underlying logic of hypomethylated islands. This maternal regulatory space extends to a substantial proportion of neurula stage-activated promoters. In contrast, p300 recruitment to distal regulatory regions requires embryonic transcription at most loci. The results show that H3K4me3 and H3K27me3 are part of a regulatory space that exerts an extended maternal control well into post-gastrulation development, and highlight the combinatorial action of maternal and zygotic factors through proximal and distal regulatory sequences. Histone modifying enzymes are required for cell differentiation and lineage commitment during embryonic development. By a comprehensive set of epigenome reference maps of Xenopus embryos, the authors show that H3K4me3 and H3K27me3 exert an extended maternal control well into post-gastrulation development.
Collapse
|
36
|
Exposure to 3,3',5-triiodothyronine affects histone and RNA polymerase II modifications, but not DNA methylation status, in the regulatory region of the Xenopus laevis thyroid hormone receptor βΑ gene. Biochem Biophys Res Commun 2015; 467:33-8. [PMID: 26417689 DOI: 10.1016/j.bbrc.2015.09.132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 09/23/2015] [Indexed: 12/11/2022]
Abstract
Thyroid hormones (THs) play a critical role in amphibian metamorphosis, during which the TH receptor (TR) gene, thrb, is upregulated in a tissue-specific manner. The Xenopus laevis thrb gene has 3 TH response elements (TREs) in the 5' flanking regulatory region and 1 TRE in the exon b region, around which CpG sites are highly distributed. To clarify whether exposure to 3,3',5-triiodothyronine (T3) affects histone and RNA polymerase II (RNAPII) modifications and the level of DNA methylation in the 5' regulatory region, we conducted reverse transcription-quantitative polymerase chain reaction, bisulfite sequencing and chromatin immunoprecipitation assay using X. laevis cultured cells and premetamorphic tadpoles treated with or without 2 nM T3. Exposure to T3 increased the amount of the thrb transcript, in parallel with enhanced histone H4 acetylation and RNAPII recruitment, and probably phosphorylation of RNAPII at serine 5, in the 5' regulatory and exon b regions. However, the 5' regulatory region remained hypermethylated even with exposure to T3, and there was no significant difference in the methylation status between DNAs from T3-untreated and -treated cultured cells or tadpole tissues. Our results demonstrate that exposure to T3 induced euchromatin-associated epigenetic marks by enhancing histone acetylation and RNAPII recruitment, but not by decreasing the level of DNA methylation, in the 5' regulatory region of the X. laevis thrb gene.
Collapse
|