1
|
Martinić Cezar T, Marđetko N, Trontel A, Paić A, Slavica A, Teparić R, Žunar B. Engineering Saccharomyces cerevisiae for the production of natural osmolyte glucosyl glycerol from sucrose and glycerol through Ccw12-based surface display of sucrose phosphorylase. J Biol Eng 2024; 18:69. [PMID: 39578895 PMCID: PMC11583750 DOI: 10.1186/s13036-024-00468-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Yeast Saccharomyces cerevisiae is widely recognised as a versatile chassis for constructing microbial cell factories. However, producing chemicals from toxic, highly concentrated, or cell-impermeable substrates, or chemicals dependent on enzymatic reactions incompatible with the yeast's intracellular environment, remains challenging. One such chemical is 2-O-(α-D-glucopyranosyl)-sn-glycerol (glucosyl glycerol, αGG), a natural osmolyte used in the cosmetics and healthcare industries. This compound can be synthesised in a one-enzyme reaction from sucrose and glycerol by Leuconostoc mesenteroides sucrose phosphorylase (SucP), an enzyme which, in a low-water, glycerol-rich, phosphate-free environment, transfers the glucosyl moiety from sucrose to glycerol. RESULTS In this study, we engineered a yeast microbial cell factory for αGG production. For this purpose, we first focused on the abundant yeast GPI-anchored cell wall protein Ccw12 and used our insights to develop a miniature Ccw12-tag, which adds only 1.1 kDa to the enzyme of interest while enabling its covalent attachment to the cell wall. Next, we Ccw12-tagged SucP and expressed it in an invertase-negative strain of yeast S. cerevisiae from the PHO5 promoter, i.e., promoter strongly induced under phosphate-free conditions. Such SucP isoform, covalently C-terminally anchored to the outer cell surface, produced extracellularly 37.3 g l- 1 (146 mM) of αGG in five days, while the underlying chassis metabolised reaction by-products, thereby simplifying downstream processing. CONCLUSIONS The here-described S. cerevisiae strain, displaying C-terminally anchored sucrose phosphorylase on its cell surface, is the first eukaryotic microbial cell factory capable of a one-step αGG production from the readily available substrates sucrose and glycerol.
Collapse
Affiliation(s)
- Tea Martinić Cezar
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, Zagreb, 10000, Croatia
| | - Nenad Marđetko
- Laboratory for Biochemical Engineering, Industrial Microbiology and Malting and Brewing Technology, Department of Biochemical Engineering, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, Zagreb, 10000, Croatia
| | - Antonija Trontel
- Laboratory for Biochemical Engineering, Industrial Microbiology and Malting and Brewing Technology, Department of Biochemical Engineering, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, Zagreb, 10000, Croatia
| | - Antonia Paić
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, Zagreb, 10000, Croatia
| | - Anita Slavica
- Laboratory for Biochemical Engineering, Industrial Microbiology and Malting and Brewing Technology, Department of Biochemical Engineering, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, Zagreb, 10000, Croatia
| | - Renata Teparić
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, Zagreb, 10000, Croatia
| | - Bojan Žunar
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, Zagreb, 10000, Croatia.
| |
Collapse
|
2
|
Eliseeva IA, Ryazanova L, Ledova L, Zvonarev A, Valiakhmetov A, Suntsova M, Modestov A, Buzdin A, Lyabin DN, Kulakovskiy IV, Kulakovskaya T. Ppn2 Polyphosphatase Improves the Ability of S. cerevisiae to Grow in Mild Alkaline Medium. J Fungi (Basel) 2024; 10:797. [PMID: 39590716 PMCID: PMC11595888 DOI: 10.3390/jof10110797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Inorganic polyphosphates and respective metabolic pathways and enzymes are important factors for yeast active growth in unfavorable conditions. However, particular proteins of polyphosphate metabolism remain poorly explored in this context. Here we report biochemical and transcriptomic characterization of the CRN/PPN2 yeast strain (derived from Ppn1-lacking CRN strain) overexpressing poorly studied Ppn2 polyphosphatase. We showed that Ppn2 overexpression significantly reduced lag phase in the alkaline medium presumably due to the ability of Ppn2 to efficiently hydrolyze inorganic polyphosphates and thus neutralize hydroxide ions in the cell. With RNA-Seq, we compared the molecular phenotypes of CRN/PPN2 and its parent CRN strain grown in YPD or alkaline medium and detected transcriptomic changes induced by Ppn2 overexpression and reflecting the adaptation to alkaline conditions. The core set of upregulated genes included several genes with a previously unknown function. Respective knockout strains (∆ecm8, ∆yol160w, ∆cpp3, ∆ycr099c) exhibited defects of growth or cell morphology in the alkaline medium, proving the functional involvement of the respective proteins in sustaining growth in alkaline conditions.
Collapse
Affiliation(s)
- Irina A. Eliseeva
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya 4, Pushchino 142290, Russia
| | - Lubov Ryazanova
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Skryabin Institute of Biochemistry and Physiology of Microorganisms, pr. Nauki 5, Pushchino 142290, Russia
| | - Larisa Ledova
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Skryabin Institute of Biochemistry and Physiology of Microorganisms, pr. Nauki 5, Pushchino 142290, Russia
| | - Anton Zvonarev
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Skryabin Institute of Biochemistry and Physiology of Microorganisms, pr. Nauki 5, Pushchino 142290, Russia
| | - Airat Valiakhmetov
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Skryabin Institute of Biochemistry and Physiology of Microorganisms, pr. Nauki 5, Pushchino 142290, Russia
| | - Maria Suntsova
- Endocrinology Research Center, Dmitriya Ulyanova 11, Moscow 117036, Russia
| | | | - Anton Buzdin
- Endocrinology Research Center, Dmitriya Ulyanova 11, Moscow 117036, Russia
- Institute of Personalized Oncology, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya 2 bld. 4, Moscow 119991, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Dmitry N. Lyabin
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya 4, Pushchino 142290, Russia
| | - Ivan V. Kulakovskiy
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya 4, Pushchino 142290, Russia
| | - Tatiana Kulakovskaya
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Skryabin Institute of Biochemistry and Physiology of Microorganisms, pr. Nauki 5, Pushchino 142290, Russia
| |
Collapse
|
3
|
Pulido V, Rodríguez-Peña JM, Alonso G, Sanz AB, Arroyo J, García R. mRNA Decapping Activator Pat1 Is Required for Efficient Yeast Adaptive Transcriptional Responses via the Cell Wall Integrity MAPK Pathway. J Mol Biol 2024; 436:168570. [PMID: 38604529 DOI: 10.1016/j.jmb.2024.168570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
Cellular mRNA levels, particularly under stress conditions, can be finely regulated by the coordinated action of transcription and degradation processes. Elements of the 5'-3' mRNA degradation pathway, functionally associated with the exonuclease Xrn1, can bind to nuclear chromatin and modulate gene transcription. Within this group are the so-called decapping activators, including Pat1, Dhh1, and Lsm1. In this work, we have investigated the role of Pat1 in the yeast adaptive transcriptional response to cell wall stress. Thus, we demonstrated that in the absence of Pat1, the transcriptional induction of genes regulated by the Cell Wall Integrity MAPK pathway was significantly affected, with no effect on the stability of these transcripts. Furthermore, under cell wall stress conditions, Pat1 is recruited to Cell Wall Integrity-responsive genes in parallel with the RNA Pol II complex, participating both in pre-initiation complex assembly and transcriptional elongation. Indeed, strains lacking Pat1 showed lower recruitment of the transcription factor Rlm1, less histone H3 displacement at Cell Wall Integrity gene promoters, and impaired recruitment and progression of RNA Pol II. Moreover, Pat1 and the MAPK Slt2 occupied the coding regions interdependently. Our results support the idea that Pat1 and presumably other decay factors behave as transcriptional regulators of Cell Wall Integrity-responsive genes under cell wall stress conditions.
Collapse
Affiliation(s)
- Verónica Pulido
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28040 Madrid, Spain
| | - Jose M Rodríguez-Peña
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28040 Madrid, Spain
| | - Graciela Alonso
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28040 Madrid, Spain
| | - Ana Belén Sanz
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28040 Madrid, Spain
| | - Javier Arroyo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28040 Madrid, Spain.
| | - Raúl García
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28040 Madrid, Spain.
| |
Collapse
|
4
|
Barros GC, Guerrero S, Silva GM. The central role of translation elongation in response to stress. Biochem Soc Trans 2023; 51:959-969. [PMID: 37318088 PMCID: PMC11160351 DOI: 10.1042/bst20220584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
Protein synthesis is essential to support homeostasis, and thus, must be highly regulated during cellular response to harmful environments. All stages of translation are susceptible to regulation under stress, however, the mechanisms involved in translation regulation beyond initiation have only begun to be elucidated. Methodological advances enabled critical discoveries on the control of translation elongation, highlighting its important role in translation repression and the synthesis of stress-response proteins. In this article, we discuss recent findings on mechanisms of elongation control mediated by ribosome pausing and collisions and the availability of tRNAs and elongation factors. We also discuss how elongation intersects with distinct modes of translation control, further supporting cellular viability and gene expression reprogramming. Finally, we highlight how several of these pathways are reversibly regulated, emphasizing the dynamics of translation control during stress-response progression. A comprehensive understanding of translation regulation under stress will produce fundamental knowledge of protein dynamics while opening new avenues and strategies to overcome dysregulated protein production and cellular sensitivity to stress.
Collapse
Affiliation(s)
| | | | - Gustavo M. Silva
- Department of Biology, Duke University, Durham, NC, USA
- Lead contact
| |
Collapse
|
5
|
Zekhnini A, Albacar M, Casamayor A, Ariño J. The ENA1 Na +-ATPase Gene Is Regulated by the SPS Sensing Pathway and the Stp1/Stp2 Transcription Factors. Int J Mol Sci 2023; 24:5548. [PMID: 36982620 PMCID: PMC10055992 DOI: 10.3390/ijms24065548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/16/2023] Open
Abstract
The Saccharomyces cerevisiae ENA1 gene, encoding a Na+-ATPase, responds transcriptionally to the alkalinization of the medium by means of a network of signals that involves the Rim101, the Snf1 and PKA kinases, and the calcineurin/Crz1 pathways. We show here that the ENA1 promoter also contains a consensus sequence, located at nt -553/-544, for the Stp1/2 transcription factors, the downstream components of the amino acid sensing SPS pathway. Mutation of this sequence or deletion of either STP1 or STP2 decreases the activity of a reporter containing this region in response to alkalinization as well as to changes in the amino acid composition in the medium. Expression driven from the entire ENA1 promoter was affected with similar potency by the deletion of PTR3, SSY5, or simultaneous deletion of STP1 and STP2 when cells were exposed to alkaline pH or moderate salt stress. However, it was not altered by the deletion of SSY1, encoding the amino acid sensor. In fact, functional mapping of the ENA1 promoter reveals a region spanning from nt -742 to -577 that enhances transcription, specifically in the absence of Ssy1. We also found that the basal and alkaline pH-induced expression from the HXT2, TRX2, and, particularly, SIT1 promoters was notably decreased in an stp1 stp2 deletion mutant, whereas the PHO84 and PHO89 gene reporters were unaffected. Our findings add a further layer of complexity to the regulation of ENA1 and suggest that the SPS pathway might participate in the regulation of a subset of alkali-inducible genes.
Collapse
Affiliation(s)
| | | | | | - Joaquín Ariño
- Institut de Biotecnologia i Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (A.Z.); (M.A.); (A.C.)
| |
Collapse
|
6
|
RNA-controlled nucleocytoplasmic shuttling of mRNA decay factors regulates mRNA synthesis and a novel mRNA decay pathway. Nat Commun 2022; 13:7184. [PMID: 36418294 PMCID: PMC9684461 DOI: 10.1038/s41467-022-34417-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 10/25/2022] [Indexed: 11/27/2022] Open
Abstract
mRNA level is controlled by factors that mediate both mRNA synthesis and decay, including the 5' to 3' exonuclease Xrn1. Here we show that nucleocytoplasmic shuttling of several yeast mRNA decay factors plays a key role in determining both mRNA synthesis and decay. Shuttling is regulated by RNA-controlled binding of the karyopherin Kap120 to two nuclear localization sequences (NLSs) in Xrn1, location of one of which is conserved from yeast to human. The decaying RNA binds and masks NLS1, establishing a link between mRNA decay and Xrn1 shuttling. Preventing Xrn1 import, either by deleting KAP120 or mutating the two Xrn1 NLSs, compromises transcription and, unexpectedly, also cytoplasmic decay, uncovering a cytoplasmic decay pathway that initiates in the nucleus. Most mRNAs are degraded by both pathways - the ratio between them represents a full spectrum. Importantly, Xrn1 shuttling is required for proper responses to environmental changes, e.g., fluctuating temperatures, involving proper changes in mRNA abundance and in cell proliferation rate.
Collapse
|
7
|
Alkalbani NS, Osaili TM, Al-Nabulsi AA, Olaimat AN, Liu SQ, Shah NP, Apostolopoulos V, Ayyash MM. Assessment of Yeasts as Potential Probiotics: A Review of Gastrointestinal Tract Conditions and Investigation Methods. J Fungi (Basel) 2022; 8:jof8040365. [PMID: 35448596 PMCID: PMC9027893 DOI: 10.3390/jof8040365] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 12/22/2022] Open
Abstract
Probiotics are microorganisms (including bacteria, yeasts and moulds) that confer various health benefits to the host, when consumed in sufficient amounts. Food products containing probiotics, called functional foods, have several health-promoting and therapeutic benefits. The significant role of yeasts in producing functional foods with promoted health benefits is well documented. Hence, there is considerable interest in isolating new yeasts as potential probiotics. Survival in the gastrointestinal tract (GIT), salt tolerance and adherence to epithelial cells are preconditions to classify such microorganisms as probiotics. Clear understanding of how yeasts can overcome GIT and salt stresses and the conditions that support yeasts to grow under such conditions is paramount for identifying, characterising and selecting probiotic yeast strains. This study elaborated the adaptations and mechanisms underlying the survival of probiotic yeasts under GIT and salt stresses. This study also discussed the capability of yeasts to adhere to epithelial cells (hydrophobicity and autoaggregation) and shed light on in vitro methods used to assess the probiotic characteristics of newly isolated yeasts.
Collapse
Affiliation(s)
- Nadia S. Alkalbani
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Tareq M. Osaili
- Department Clinical Nutrition and Dietetics, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Anas A. Al-Nabulsi
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P. O. Box 330127, Zarqa 13133, Jordan;
| | - Shao-Quan Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, S14 Level 5, Science Drive 2, Singapore 117542, Singapore;
| | - Nagendra P. Shah
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong 999077, China;
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia;
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Mutamed M. Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Correspondence:
| |
Collapse
|
8
|
Romero AM, García-Martínez J, Pérez-Ortín JE, Martínez-Pastor MT, Puig S. Changes in mRNA stability play an important role in the adaptation of yeast cells to iron deprivation. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194800. [PMID: 35218933 DOI: 10.1016/j.bbagrm.2022.194800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Eukaryotic cells rely on iron as an indispensable cofactor for multiple biological functions including mitochondrial respiration and protein synthesis. The budding yeast Saccharomyces cerevisiae utilizes both transcriptional and posttranscriptional mechanisms to couple mRNA levels to the requirements of iron deprivation. Thus, in response to iron deficiency, transcription factors Aft1 and Aft2 activate the expression of genes implicated in iron acquisition and mobilization, whereas two mRNA-binding proteins, Cth1 and Cth2, posttranscriptionally control iron metabolism. By using a genome-wide approach, we describe here a global stabilization of mRNAs, including transcripts encoding ribosomal proteins (RPs), when iron bioavailability diminishes. mRNA decay assays indicate that the mRNA-binding protein Pub1 contributes to RP transcript stabilization during adaptation to iron limitation. In fact, Pub1 becomes critical for growth and translational repression in low-iron conditions. Remarkably, we observe that pub1Δ cells also exhibit an increase in the transcription of RP genes that evidences the crosstalk between transcription and degradation mechanisms to maintain the appropriate mRNA balance under iron deficiency conditions.
Collapse
Affiliation(s)
- Antonia María Romero
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Agustín Escardino 7, E-46980 Paterna, Valencia, Spain.
| | - José García-Martínez
- Departamento de Genética, Universitat de València, Ave. Doctor Moliner 50, E-46100 Burjassot, Valencia, Spain; Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Ave. Doctor Moliner 50, E-46100 Burjassot, Valencia, Spain
| | - José Enrique Pérez-Ortín
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Ave. Doctor Moliner 50, E-46100 Burjassot, Valencia, Spain; Departamento de Bioquímica y Biología Molecular, Universitat de València, Ave. Doctor Moliner 50, E-46100 Burjassot, Valencia, Spain
| | - María Teresa Martínez-Pastor
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Ave. Doctor Moliner 50, E-46100 Burjassot, Valencia, Spain
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Agustín Escardino 7, E-46980 Paterna, Valencia, Spain.
| |
Collapse
|
9
|
Blancett LT, Runge KA, Reyes GM, Kennedy LA, Jackson SC, Scheuermann SE, Harmon MB, Williams JC, Shearer G. Deletion of the Stress Response Gene DDR48 from Histoplasma capsulatum Increases Sensitivity to Oxidative Stress, Increases Susceptibility to Antifungals, and Decreases Fitness in Macrophages. J Fungi (Basel) 2021; 7:981. [PMID: 34829268 PMCID: PMC8617954 DOI: 10.3390/jof7110981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/21/2022] Open
Abstract
The stress response gene DDR48 has been characterized in Saccharomyces cerevisiae and Candida albicans to be involved in combating various cellular stressors, from oxidative agents to antifungal compounds. Surprisingly, the biological function of DDR48 has yet to be identified, though it is likely an important part of the stress response. To gain insight into its function, we characterized DDR48 in the dimorphic fungal pathogen Histoplasma capsulatum. Transcriptional analyses showed preferential expression of DDR48 in the mycelial phase. Induction of DDR48 in Histoplasma yeasts developed after treatment with various cellular stress compounds. We generated a ddr48∆ deletion mutant to further characterize DDR48 function. Loss of DDR48 alters the transcriptional profile of the oxidative stress response and membrane synthesis pathways. Treatment with ROS or antifungal compounds reduced survival of ddr48∆ yeasts compared to controls, consistent with an aberrant cellular stress response. In addition, we infected RAW 264.7 macrophages with DDR48-expressing and ddr48∆ yeasts and observed a 50% decrease in recovery of ddr48∆ yeasts compared to wild-type yeasts. Loss of DDR48 function results in numerous negative effects in Histoplasma yeasts, highlighting its role as a key player in the global sensing and response to cellular stress by fungi.
Collapse
Affiliation(s)
- Logan T. Blancett
- Center for Molecular and Cellular Biology, The University of Southern Mississippi, Hattiesburg, MS 39406, USA; (K.A.R.); (G.M.R.); (L.A.K.); (S.C.J.); (S.E.S.); (M.B.H.); (J.C.W.); (G.S.J.)
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Kauri A. Runge
- Center for Molecular and Cellular Biology, The University of Southern Mississippi, Hattiesburg, MS 39406, USA; (K.A.R.); (G.M.R.); (L.A.K.); (S.C.J.); (S.E.S.); (M.B.H.); (J.C.W.); (G.S.J.)
- ThruPore Technologies, Inc., New Castle, DE 19720, USA
| | - Gabriella M. Reyes
- Center for Molecular and Cellular Biology, The University of Southern Mississippi, Hattiesburg, MS 39406, USA; (K.A.R.); (G.M.R.); (L.A.K.); (S.C.J.); (S.E.S.); (M.B.H.); (J.C.W.); (G.S.J.)
| | - Lauren A. Kennedy
- Center for Molecular and Cellular Biology, The University of Southern Mississippi, Hattiesburg, MS 39406, USA; (K.A.R.); (G.M.R.); (L.A.K.); (S.C.J.); (S.E.S.); (M.B.H.); (J.C.W.); (G.S.J.)
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Sydney C. Jackson
- Center for Molecular and Cellular Biology, The University of Southern Mississippi, Hattiesburg, MS 39406, USA; (K.A.R.); (G.M.R.); (L.A.K.); (S.C.J.); (S.E.S.); (M.B.H.); (J.C.W.); (G.S.J.)
| | - Sarah E. Scheuermann
- Center for Molecular and Cellular Biology, The University of Southern Mississippi, Hattiesburg, MS 39406, USA; (K.A.R.); (G.M.R.); (L.A.K.); (S.C.J.); (S.E.S.); (M.B.H.); (J.C.W.); (G.S.J.)
- Mississippi INBRE Research Scholars Program, Mississippi INBRE, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
- High Containment Research Performance Core, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Mallory B. Harmon
- Center for Molecular and Cellular Biology, The University of Southern Mississippi, Hattiesburg, MS 39406, USA; (K.A.R.); (G.M.R.); (L.A.K.); (S.C.J.); (S.E.S.); (M.B.H.); (J.C.W.); (G.S.J.)
- Mississippi INBRE Research Scholars Program, Mississippi INBRE, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Jamease C. Williams
- Center for Molecular and Cellular Biology, The University of Southern Mississippi, Hattiesburg, MS 39406, USA; (K.A.R.); (G.M.R.); (L.A.K.); (S.C.J.); (S.E.S.); (M.B.H.); (J.C.W.); (G.S.J.)
- Mississippi INBRE Research Scholars Program, Mississippi INBRE, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Glenmore Shearer
- Center for Molecular and Cellular Biology, The University of Southern Mississippi, Hattiesburg, MS 39406, USA; (K.A.R.); (G.M.R.); (L.A.K.); (S.C.J.); (S.E.S.); (M.B.H.); (J.C.W.); (G.S.J.)
| |
Collapse
|
10
|
Shi K, Liu T, Fu H, Li W, Zheng X. Genome-wide analysis of lncRNA stability in human. PLoS Comput Biol 2021; 17:e1008918. [PMID: 33861746 PMCID: PMC8081339 DOI: 10.1371/journal.pcbi.1008918] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 04/28/2021] [Accepted: 03/26/2021] [Indexed: 12/18/2022] Open
Abstract
Transcript stability is associated with many biological processes, and the factors affecting mRNA stability have been extensively studied. However, little is known about the features related to human long noncoding RNA (lncRNA) stability. By inhibiting transcription and collecting samples in 10 time points, genome-wide RNA-seq studies was performed in human lung adenocarcinoma cells (A549) and RNA half-life datasets were constructed. The following observations were obtained. First, the half-life distributions of both lncRNAs and messanger RNAs (mRNAs) with one exon (lnc-human1 and m-human1) were significantly different from those of both lncRNAs and mRNAs with more than one exon (lnc-human2 and m-human2). Furthermore, some factors such as full-length transcript secondary structures played a contrary role in lnc-human1 and m-human2. Second, through the half-life comparisons of nucleus- and cytoplasm-specific and common lncRNAs and mRNAs, lncRNAs (mRNAs) in the nucleus were found to be less stable than those in the cytoplasm, which was derived from transcripts themselves rather than cellular location. Third, kmers-based protein−RNA or RNA−RNA interactions promoted lncRNA stability from lnc-human1 and decreased mRNA stability from m-human2 with high probability. Finally, through applying deep learning−based regression, a non-linear relationship was found to exist between the half-lives of lncRNAs (mRNAs) and related factors. The present study established lncRNA and mRNA half-life regulation networks in the A549 cell line and shed new light on the degradation behaviors of both lncRNAs and mRNAs. Transcript stability is important for many biological processes. However, little is known about the features related to human lncRNA stability. Through quantitative analysis between the half-lives of lncRNAs (mRNAs) and various factors, we found a nonlinear relationship between the half-lives of lncRNAs (mRNAs) and the related factors and their combinations. Our research provided a comprehensive understanding of lncRNA stability. Further efforts are needed to develop an accurate quantitative prediction model for the half-lives of lncRNA (mRNA).
Collapse
Affiliation(s)
- Kaiwen Shi
- Institute of Military Cognition and Brain Sciences, Academy of Military Medicine, Beijing, China
| | - Tao Liu
- Institute of Military Cognition and Brain Sciences, Academy of Military Medicine, Beijing, China
| | - Hanjiang Fu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Wuju Li
- Institute of Military Cognition and Brain Sciences, Academy of Military Medicine, Beijing, China
- * E-mail: (WL); (XZ)
| | - Xiaofei Zheng
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
- * E-mail: (WL); (XZ)
| |
Collapse
|
11
|
Tsai HH, Schmidt W. The enigma of environmental pH sensing in plants. NATURE PLANTS 2021; 7:106-115. [PMID: 33558755 DOI: 10.1038/s41477-020-00831-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Environmental pH is a critical parameter for innumerable chemical reactions, myriad biological processes and all forms of life. The mechanisms that underlie the perception of external pH (pHe) have been elucidated in detail for bacteria, fungi and mammalian cells; however, little information is available on whether and, if so, how pHe is perceived by plants. This is particularly surprising since hydrogen ion activity of the substrate is of paramount significance for plants, governing the availability of mineral nutrients, the structure of the soil microbiome and the composition of natural plant communities. Rapid changes in soil pH require constant readjustment of nutrient acquisition strategies, which is associated with dynamic alterations in gene expression. Referring to observations made in diverse experimental set-ups that unambiguously show that pHe per se affects gene expression, we hypothesize that sensing of pHe in plants is mandatory to prioritize responses to various simultaneously received environmental cues.
Collapse
Affiliation(s)
- Huei-Hsuan Tsai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan.
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
12
|
García-Martínez J, Pérez-Martínez ME, Pérez-Ortín JE, Alepuz P. Recruitment of Xrn1 to stress-induced genes allows efficient transcription by controlling RNA polymerase II backtracking. RNA Biol 2020; 18:1458-1474. [PMID: 33258404 DOI: 10.1080/15476286.2020.1857521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A new paradigm has emerged proposing that the crosstalk between nuclear transcription and cytoplasmic mRNA stability keeps robust mRNA levels in cells under steady-state conditions. A key piece in this crosstalk is the highly conserved 5'-3' RNA exonuclease Xrn1, which degrades most cytoplasmic mRNAs but also associates with nuclear chromatin to activate transcription by not well-understood mechanisms. Here, we investigated the role of Xrn1 in the transcriptional response of Saccharomyces cerevisiae cells to osmotic stress. We show that a lack of Xrn1 results in much lower transcriptional induction of the upregulated genes but in similar high levels of their transcripts because of parallel mRNA stabilization. Unexpectedly, lower transcription in xrn1 occurs with a higher accumulation of RNA polymerase II (RNAPII) at stress-inducible genes, suggesting that this polymerase remains inactive backtracked. Xrn1 seems to be directly implicated in the formation of a competent elongation complex because Xrn1 is recruited to the osmotic stress-upregulated genes in parallel with the RNAPII complex, and both are dependent on the mitogen-activated protein kinase Hog1. Our findings extend the role of Xrn1 in preventing the accumulation of inactive RNAPII at highly induced genes to other situations of rapid and strong transcriptional upregulation.
Collapse
Affiliation(s)
- José García-Martínez
- ERI Biotecmed, Facultad De Ciencias Biológicas, Universitat De València, Burjassot, Spain.,Departamento De Genética, Facultad De Ciencias Biológicas, Universitat De València, Burjassot, Spain
| | - María E Pérez-Martínez
- ERI Biotecmed, Facultad De Ciencias Biológicas, Universitat De València, Burjassot, Spain.,Departamento De Bioquímica Y Biología Molecular, Facultad De Ciencias Biológicas, Universitat De València, Burjassot, Spain
| | - José E Pérez-Ortín
- ERI Biotecmed, Facultad De Ciencias Biológicas, Universitat De València, Burjassot, Spain.,Departamento De Bioquímica Y Biología Molecular, Facultad De Ciencias Biológicas, Universitat De València, Burjassot, Spain
| | - Paula Alepuz
- ERI Biotecmed, Facultad De Ciencias Biológicas, Universitat De València, Burjassot, Spain.,Departamento De Bioquímica Y Biología Molecular, Facultad De Ciencias Biológicas, Universitat De València, Burjassot, Spain
| |
Collapse
|
13
|
Abstract
Bioethanol is the largest biotechnology product and the most dominant biofuel globally. Saccharomyces cerevisiae is the most favored microorganism employed for its industrial production. However, obtaining maximum yields from an ethanol fermentation remains a technical challenge, since cellular stresses detrimentally impact on the efficiency of yeast cell growth and metabolism. Ethanol fermentation stresses potentially include osmotic, chaotropic, oxidative, and heat stress, as well as shifts in pH. Well-developed stress responses and tolerance mechanisms make S. cerevisiae industrious, with bioprocessing techniques also being deployed at industrial scale for the optimization of fermentation parameters and the effective management of inhibition issues. Overlap exists between yeast responses to different forms of stress. This review outlines yeast fermentation stresses and known mechanisms conferring stress tolerance, with their further elucidation and improvement possessing the potential to improve fermentation efficiency.
Collapse
|
14
|
Velázquez D, Albacar M, Zhang C, Calafí C, López-Malo M, Torres-Torronteras J, Martí R, Kovalchuk SI, Pinson B, Jensen ON, Daignan-Fornier B, Casamayor A, Ariño J. Yeast Ppz1 protein phosphatase toxicity involves the alteration of multiple cellular targets. Sci Rep 2020; 10:15613. [PMID: 32973189 PMCID: PMC7519054 DOI: 10.1038/s41598-020-72391-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
Control of the protein phosphorylation status is a major mechanism for regulation of cellular processes, and its alteration often lead to functional disorders. Ppz1, a protein phosphatase only found in fungi, is the most toxic protein when overexpressed in Saccharomyces cerevisiae. To investigate the molecular basis of this phenomenon, we carried out combined genome-wide transcriptomic and phosphoproteomic analyses. We have found that Ppz1 overexpression causes major changes in gene expression, affecting ~ 20% of the genome, together with oxidative stress and increase in total adenylate pools. Concurrently, we observe changes in the phosphorylation pattern of near 400 proteins (mainly dephosphorylated), including many proteins involved in mitotic cell cycle and bud emergence, rapid dephosphorylation of Snf1 and its downstream transcription factor Mig1, and phosphorylation of Hog1 and its downstream transcription factor Sko1. Deletion of HOG1 attenuates the growth defect of Ppz1-overexpressing cells, while that of SKO1 aggravates it. Our results demonstrate that Ppz1 overexpression has a widespread impact in the yeast cells and reveals new aspects of the regulation of the cell cycle.
Collapse
Affiliation(s)
- Diego Velázquez
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Marcel Albacar
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Chunyi Zhang
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Carlos Calafí
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - María López-Malo
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Institute of Bioengineering, School of Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Javier Torres-Torronteras
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Ramón Martí
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Sergey I Kovalchuk
- Department of Biochemistry & Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
- Laboratory of Bioinformatic Approaches in Combinatorial Chemistry and Biology, Department of Functioning of Living Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Benoit Pinson
- Bordeaux University, IBGC CNRS UMR 5095, Bordeaux, France
- Service Analyses Metaboliques TBMcore CNRS UMS3427/INSERM US05, Université de Bordeaux, Bordeaux, France
| | - Ole N Jensen
- Department of Biochemistry & Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | | | - Antonio Casamayor
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Joaquín Ariño
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| |
Collapse
|
15
|
Wu L, Wang W, Wu Z, Pan D, Zeng X, Guo Y, Lian L. Effect of acid and alkali stress on extracellular metabolite profile of Lactobacillus plantarum ATCC 14917. J Basic Microbiol 2020; 60:722-729. [PMID: 32452552 DOI: 10.1002/jobm.202000203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/19/2020] [Accepted: 05/06/2020] [Indexed: 11/10/2022]
Abstract
As a multifunctional lactic acid bacterium, Lactobacillus plantarum has been proved to survive in the human gastrointestinal tract, and it can also colonize this tract. In this study, the effects of L. plantarum ATCC 14917 metabolic profile caused by initial acid-base (pH 5.5 and 8.5) stress were investigated using 1 H nuclear magnetic resonance spectroscopy and multivariate data analysis. The results showed that the metabolome mainly consisted of 14 metabolites, including the components like amino acids, sugars, organic acids, and alkaloids. According to the nontargeted principal component analysis, there was a decrease in most of the metabolites in the alkali-treated group (mainly change in PC1) except acetate, whereas the production of lactate and glycine was increased in the acid-treated group (mainly change in PC2). Furthermore, the initial alkali stress inhibits the secretion of lactic acid, as a decrease was observed in the activity of lactate dehydrogenase and acetic dehydrogenase of L. plantarum ATCC 14917 in the alkali group. All these findings revealed that alkali stress could limit the acid environment formation of L. plantarum 14917 in the fermentation process; however, low acid pH is more suitable for the growth of L. plantarum.
Collapse
Affiliation(s)
- Lingyi Wu
- State Key Laboratory for Quality and Safety of Agro-products and Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Wenwen Wang
- State Key Laboratory for Quality and Safety of Agro-products and Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Zhen Wu
- State Key Laboratory for Quality and Safety of Agro-products and Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Daodong Pan
- State Key Laboratory for Quality and Safety of Agro-products and Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China.,School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Xiaoqun Zeng
- State Key Laboratory for Quality and Safety of Agro-products and Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Yuxing Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Liwei Lian
- Ningbo Dairy Group, Ningbo, Zhejiang, China
| |
Collapse
|
16
|
Lang AS, Austin SH, Harris RM, Calisi RM, MacManes MD. Stress-mediated convergence of splicing landscapes in male and female rock doves. BMC Genomics 2020; 21:251. [PMID: 32293250 PMCID: PMC7092514 DOI: 10.1186/s12864-020-6600-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/20/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The process of alternative splicing provides a unique mechanism by which eukaryotes are able to produce numerous protein products from the same gene. Heightened variability in the proteome has been thought to potentiate increased behavioral complexity and response flexibility to environmental stimuli, thus contributing to more refined traits on which natural and sexual selection can act. While it has been long known that various forms of environmental stress can negatively affect sexual behavior and reproduction, we know little of how stress can affect the alternative splicing associated with these events, and less still about how splicing may differ between sexes. Using the model of the rock dove (Columba livia), our team previously uncovered sexual dimorphism in the basal and stress-responsive gene transcription of a biological system necessary for facilitating sexual behavior and reproduction, the hypothalamic-pituitary-gonadal (HPG) axis. In this study, we delve further into understanding the mechanistic underpinnings of how changes in the environment can affect reproduction by testing the alternative splicing response of the HPG axis to an external stressor in both sexes. RESULTS This study reveals dramatic baseline differences in HPG alternative splicing between males and females. However, after subjecting subjects to a restraint stress paradigm, we found a significant reduction in these differences between the sexes. In both stress and control treatments, we identified a higher incidence of splicing activity in the pituitary in both sexes as compared to other tissues. Of these splicing events, the core exon event is the most abundant form of splicing and more frequently occurs in the coding regions of the gene. Overall, we observed less splicing activity in the 3'UTR (untranslated region) end of transcripts than the 5'UTR or coding regions. CONCLUSIONS Our results provide vital new insight into sex-specific aspects of the stress response on the HPG axis at an unprecedented proximate level. Males and females uniquely respond to stress, yet exhibit splicing patterns suggesting a convergent, optimal splicing landscape for stress response. This information has the potential to inform evolutionary theory as well as the development of highly-specific drug targets for stress-induced reproductive dysfunction.
Collapse
Affiliation(s)
- Andrew S Lang
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, USA.
| | - Suzanne H Austin
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, USA
| | - Rayna M Harris
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, USA
| | - Rebecca M Calisi
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, USA
| | - Matthew D MacManes
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, USA
| |
Collapse
|
17
|
Pérez-Martínez ME, Benet M, Alepuz P, Tordera V. Nut1/Hos1 and Sas2/Rpd3 control the H3 acetylation of two different sets of osmotic stress-induced genes. Epigenetics 2019; 15:251-271. [PMID: 31512982 DOI: 10.1080/15592294.2019.1664229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Epigenetic information is able to interact with the cellular environment and could be especially useful for reprograming gene expression in response to a physiological perturbation. In fact the genes induced or repressed by osmotic stress undergo significant changes in terms of the levels of various histone modifications, especially in the acetylation levels of histone H3. Exposing yeast to high osmolarity results in the activation of stress-activated protein kinase Hog1, which plays a central role in gene expression control. We evaluated the connection between the presence of Hog1 and changes in histone H3 acetylation in stress-regulated genes. We found a parallel increase in the acetylation of lysines 9 and 14 of H3 in induced genes during stress, which was largely dependent on Hog1 at the genome-wide level. Conversely, we observed that acetylation decreased in repressed genes and was not dependent on Hog1. However, lack of Hog1 sometimes produced different, and even opposite, effects on the induction and acetylation of H3 of each gene. We also found that the acetylation state of lysine 9 of H3 was altered in the strains deficient in Nut1 HAT and Hos1 HDAC in the genes up-regulated during osmotic stress in an Msn2/Msn4-independent manner, while lysine 9 acetylation of H3 varied in the strains deficient in Sas2 HAT and Rpd3 HDAC for the Msn2/Msn4-dependent induced genes. The results presented here show new, unexpected participants in gene regulation processes in response to environmental perturbations.
Collapse
Affiliation(s)
- María E Pérez-Martínez
- Departament de Bioquímica i Biologia Molecular and ERI Biotecmed, Universitat de València, Burjassot, Spain
| | - Marta Benet
- Departament de Bioquímica i Biologia Molecular and ERI Biotecmed, Universitat de València, Burjassot, Spain
| | - Paula Alepuz
- Departament de Bioquímica i Biologia Molecular and ERI Biotecmed, Universitat de València, Burjassot, Spain
| | - Vicente Tordera
- Departament de Bioquímica i Biologia Molecular and ERI Biotecmed, Universitat de València, Burjassot, Spain
| |
Collapse
|
18
|
Romero AM, Ramos-Alonso L, Montellá-Manuel S, García-Martínez J, de la Torre-Ruiz MÁ, Pérez-Ortín JE, Martínez-Pastor MT, Puig S. A genome-wide transcriptional study reveals that iron deficiency inhibits the yeast TORC1 pathway. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194414. [PMID: 31394264 DOI: 10.1016/j.bbagrm.2019.194414] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022]
Abstract
Iron is an essential micronutrient that participates as a cofactor in a broad range of metabolic processes including mitochondrial respiration, DNA replication, protein translation and lipid biosynthesis. Adaptation to iron deficiency requires the global reorganization of cellular metabolism directed to optimize iron utilization. The budding yeast Saccharomyces cerevisiae has been widely used to characterize the responses of eukaryotic microorganisms to iron depletion. In this report, we used a genomic approach to investigate the contribution of transcription rates to the modulation of mRNA levels during adaptation of yeast cells to iron starvation. We reveal that a decrease in the activity of all RNA polymerases contributes to the down-regulation of many mRNAs, tRNAs and rRNAs. Opposite to the general expression pattern, many genes including components of the iron deficiency response, the mitochondrial retrograde pathway and the general stress response display a remarkable increase in both transcription rates and mRNA levels upon iron limitation, whereas genes encoding ribosomal proteins or implicated in ribosome biogenesis exhibit a pronounced fall. This expression profile is consistent with an activation of the environmental stress response. The phosphorylation stage of multiple regulatory factors strongly suggests that the conserved nutrient signaling pathway TORC1 is inhibited during the progress of iron deficiency. These results suggest an intricate crosstalk between iron metabolism and the TORC1 pathway that should be considered in many disorders.
Collapse
Affiliation(s)
- Antonia María Romero
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), E-46980 Paterna, Valencia, Spain
| | - Lucía Ramos-Alonso
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), E-46980 Paterna, Valencia, Spain
| | - Sandra Montellá-Manuel
- Department of Basic Medical Sciences, IRB-Lleida, University of Lleida, E-25198 Lleida, Spain
| | - José García-Martínez
- Departamento de Genética, Universitat de València, E-46100 Burjassot, Valencia, Spain; ERI Biotecmed, Universitat de València, E-46100 Burjassot, Valencia, Spain
| | | | - José Enrique Pérez-Ortín
- Departamento de Bioquímica y Biología Molecular, Universitat de València, E-46100 Burjassot, Valencia, Spain; ERI Biotecmed, Universitat de València, E-46100 Burjassot, Valencia, Spain
| | | | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), E-46980 Paterna, Valencia, Spain.
| |
Collapse
|
19
|
Tominaga A, Higuchi Y, Mori H, Akai M, Suyama A, Yamada N, Takegawa K. Catechol O-methyltransferase homologs in Schizosaccharomyces pombe are response factors to alkaline and salt stress. Appl Microbiol Biotechnol 2019; 103:4881-4887. [PMID: 31053915 DOI: 10.1007/s00253-019-09858-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/28/2019] [Accepted: 04/17/2019] [Indexed: 11/28/2022]
Abstract
How cells of the fission yeast Schizosaccharomyces pombe respond to alkaline stress is not well understood. Here, to elucidate the molecular mechanism underlying the alkaline stress response in S. pombe, we performed DNA microarray analysis. We found that a homolog of human catechol O-methyltransferase 2 (COMT2) is highly upregulated in S. pombe cells exposed to alkaline conditions. We designated the S. pombe homolog as cmt2+ and also identified its paralog, cmt1+, in the S. pombe genome. Reverse transcription PCR confirmed that both cmt1+ and cmt2+ are upregulated within 1 h of exposure to alkaline stress and downregulated within 30 min of returning to an acidic environment. Moreover, we verified that recombinant Cmt proteins exhibit catechol O-methyltransferase activity. To further characterize the expression of cmt1+ and cmt2+, we carried out an EGFP reporter assay using their promoter sequences, which showed that both genes respond not only to alkaline but also to salt stress. Collectively, our findings indicate that the cmt promoter might be an advantageous expression system for use in S. pombe under alkaline culture conditions.
Collapse
Affiliation(s)
- Akihiro Tominaga
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yujiro Higuchi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hikari Mori
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Makoto Akai
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Akiko Suyama
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Naotaka Yamada
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kaoru Takegawa
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
20
|
The exonuclease Xrn1 activates transcription and translation of mRNAs encoding membrane proteins. Nat Commun 2019; 10:1298. [PMID: 30899024 PMCID: PMC6428865 DOI: 10.1038/s41467-019-09199-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 02/26/2019] [Indexed: 12/11/2022] Open
Abstract
The highly conserved 5’–3’ exonuclease Xrn1 regulates gene expression in eukaryotes by coupling nuclear DNA transcription to cytosolic mRNA decay. By integrating transcriptome-wide analyses of translation with biochemical and functional studies, we demonstrate an unanticipated regulatory role of Xrn1 in protein synthesis. Xrn1 promotes translation of a specific group of transcripts encoding membrane proteins. Xrn1-dependence for translation is linked to poor structural RNA contexts for translation initiation, is mediated by interactions with components of the translation initiation machinery and correlates with an Xrn1-dependence for mRNA localization at the endoplasmic reticulum, the translation compartment of membrane proteins. Importantly, for this group of mRNAs, Xrn1 stimulates transcription, mRNA translation and decay. Our results uncover a crosstalk between the three major stages of gene expression coordinated by Xrn1 to maintain appropriate levels of membrane proteins. The exonuclease Xrn1 mediates crosstalk between transcription and mRNA decay in yeast. Here the authors demonstrate that Xrn1 promotes translation of mRNAs encoding membrane proteins, coupling transcription, translation, and mRNA decay.
Collapse
|
21
|
Challenges and Adaptations of Life in Alkaline Habitats. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 172:85-133. [DOI: 10.1007/10_2019_97] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Oliete-Calvo P, Serrano-Quílez J, Nuño-Cabanes C, Pérez-Martínez ME, Soares LM, Dichtl B, Buratowski S, Pérez-Ortín JE, Rodríguez-Navarro S. A role for Mog1 in H2Bub1 and H3K4me3 regulation affecting RNAPII transcription and mRNA export. EMBO Rep 2018; 19:embr.201845992. [PMID: 30249596 DOI: 10.15252/embr.201845992] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/28/2018] [Accepted: 08/31/2018] [Indexed: 12/11/2022] Open
Abstract
Monoubiquitination of histone H2B (to H2Bub1) is required for downstream events including histone H3 methylation, transcription, and mRNA export. The mechanisms and players regulating these events have not yet been completely delineated. Here, we show that the conserved Ran-binding protein Mog1 is required to sustain normal levels of H2Bub1 and H3K4me3 in Saccharomyces cerevisiae Mog1 is needed for gene body recruitment of Rad6, Bre1, and Rtf1 that are involved in H2B ubiquitination and genetically interacts with these factors. We provide evidence that the absence of MOG1 impacts on cellular processes such as transcription, DNA replication, and mRNA export, which are linked to H2Bub1. Importantly, the mRNA export defect in mog1Δ strains is exacerbated by the absence of factors that decrease H2Bub1 levels. Consistent with a role in sustaining H2Bub and H3K4me3 levels, Mog1 co-precipitates with components that participate in these modifications such as Bre1, Rtf1, and the COMPASS-associated factors Shg1 and Sdc1. These results reveal a novel role for Mog1 in H2B ubiquitination, transcription, and mRNA biogenesis.
Collapse
Affiliation(s)
- Paula Oliete-Calvo
- Gene expression and mRNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Joan Serrano-Quílez
- Gene expression and mRNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Gene expression and mRNA Metabolism Laboratory, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Carme Nuño-Cabanes
- Gene expression and mRNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Gene expression and mRNA Metabolism Laboratory, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - María E Pérez-Martínez
- Departamento de Bioquímica y Biología Molecular and E.R.I. Biotecmed, Facultad de Biología, Universitat de València, Burjassot, Spain
| | - Luis M Soares
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Bernhard Dichtl
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Centre for Cellular and Molecular Biology, Deakin University, Geelong, Vic., Australia
| | - Stephen Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - José E Pérez-Ortín
- Departamento de Bioquímica y Biología Molecular and E.R.I. Biotecmed, Facultad de Biología, Universitat de València, Burjassot, Spain
| | - Susana Rodríguez-Navarro
- Gene expression and mRNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain .,Gene expression and mRNA Metabolism Laboratory, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| |
Collapse
|
23
|
Bzducha-Wróbel A, Błażejak S, Kieliszek M, Pobiega K, Falana K, Janowicz M. Modification of the cell wall structure of Saccharomyces cerevisiae strains during cultivation on waste potato juice water and glycerol towards biosynthesis of functional polysaccharides. J Biotechnol 2018; 281:1-10. [PMID: 29885339 DOI: 10.1016/j.jbiotec.2018.06.305] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/07/2018] [Accepted: 06/05/2018] [Indexed: 10/14/2022]
Abstract
Changes in cell wall structure of four strains of Sacccharomyces cerevisiae species (brewer's, baker's and probiotic yeast) after culturing on deproteinated potato juice water (DPJW) with diverse addition of glycerol and different pH were investigated. It allowed to select conditions intensifying biosynthesis of β(1,3)/(1,6)-glucan and mannoproteins of cell walls of tested strains. Yeast cell wall structural polysaccharides show biological activity and technological usability in food industry but also decide about therapeutic properties of yeast biomass. The highest increase in the thickness of walls (by about 100%) and β-glucan layer (by about 120%) was stated after cultivation of S. cerevisiae R9 brewer's yeast in DPJW supplemented with 5 and 10% (w/v) of glycerol and pH 7.0 while S. cerevisiae var. boulardi PAN yeast synthesized by ab. 70% thicker β-glucan layer when the pH of growth medium was equal to 5.0. The cells of brewer's yeast (S. cerevisiae R9), probiotic (S. cerevisiae CNCM 1-745) and baker's (S. cerevisiae 102) intensified the ratio of mannoproteins in the structure of cell walls cultivated in mediums supplemented with above 15% of glycerol what point out the protective action of glycoprotein's under osmotic stress conditions. The study confirms at the first time the possibility of using agro-industrial waste in biosynthesis of functional polysaccharides of S. cerevisiae cell wall. It could be an new advantage in production of yeast biomass with therapeutic properties or β-glucan preparation as a novel food ingredient.
Collapse
Affiliation(s)
- Anna Bzducha-Wróbel
- Faculty of Food Science, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776 Warszawa, Poland.
| | - Stanisław Błażejak
- Faculty of Food Science, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776 Warszawa, Poland
| | - Marek Kieliszek
- Faculty of Food Science, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776 Warszawa, Poland
| | - Katarzyna Pobiega
- Faculty of Food Science, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776 Warszawa, Poland
| | - Katarzyna Falana
- Faculty of Food Science, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776 Warszawa, Poland
| | - Monika Janowicz
- Faculty of Food Science, Department of Food Engineering and Process Management, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776 Warszawa, Poland
| |
Collapse
|
24
|
Talavera D, Kershaw CJ, Costello JL, Castelli LM, Rowe W, Sims PFG, Ashe MP, Grant CM, Pavitt GD, Hubbard SJ. Archetypal transcriptional blocks underpin yeast gene regulation in response to changes in growth conditions. Sci Rep 2018; 8:7949. [PMID: 29785040 PMCID: PMC5962585 DOI: 10.1038/s41598-018-26170-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 05/01/2018] [Indexed: 01/30/2023] Open
Abstract
The transcriptional responses of yeast cells to diverse stresses typically include gene activation and repression. Specific stress defense, citric acid cycle and oxidative phosphorylation genes are activated, whereas protein synthesis genes are coordinately repressed. This view was achieved from comparative transcriptomic experiments delineating sets of genes whose expression greatly changed with specific stresses. Less attention has been paid to the biological significance of 1) consistent, albeit modest, changes in RNA levels across multiple conditions, and 2) the global gene expression correlations observed when comparing numerous genome-wide studies. To address this, we performed a meta-analysis of 1379 microarray-based experiments in yeast, and identified 1388 blocks of RNAs whose expression changes correlate across multiple and diverse conditions. Many of these blocks represent sets of functionally-related RNAs that act in a coordinated fashion under normal and stress conditions, and map to global cell defense and growth responses. Subsequently, we used the blocks to analyze novel RNA-seq experiments, demonstrating their utility and confirming the conclusions drawn from the meta-analysis. Our results provide a new framework for understanding the biological significance of changes in gene expression: 'archetypal' transcriptional blocks that are regulated in a concerted fashion in response to external stimuli.
Collapse
Affiliation(s)
- David Talavera
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom.
| | - Christopher J Kershaw
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Joseph L Costello
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom.,Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Lydia M Castelli
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom.,Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield, United Kingdom
| | - William Rowe
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom.,Department of Chemistry, Loughborough University, Loughborough, United Kingdom
| | - Paul F G Sims
- Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester, United Kingdom
| | - Mark P Ashe
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Chris M Grant
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Graham D Pavitt
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom.
| | - Simon J Hubbard
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
25
|
Miller D, Brandt N, Gresham D. Systematic identification of factors mediating accelerated mRNA degradation in response to changes in environmental nitrogen. PLoS Genet 2018; 14:e1007406. [PMID: 29782489 PMCID: PMC5983874 DOI: 10.1371/journal.pgen.1007406] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/01/2018] [Accepted: 05/09/2018] [Indexed: 01/20/2023] Open
Abstract
Cellular responses to changing environments frequently involve rapid reprogramming of the transcriptome. Regulated changes in mRNA degradation rates can accelerate reprogramming by clearing or stabilizing extant transcripts. Here, we measured mRNA stability using 4-thiouracil labeling in the budding yeast Saccharomyces cerevisiae during a nitrogen upshift and found that 78 mRNAs are subject to destabilization. These transcripts include Nitrogen Catabolite Repression (NCR) and carbon metabolism mRNAs, suggesting that mRNA destabilization is a mechanism for targeted reprogramming of the transcriptome. To explore the molecular basis of destabilization we implemented a SortSeq approach to screen the pooled deletion collection library for trans factors that mediate rapid GAP1 mRNA repression. We combined low-input multiplexed Barcode sequencing with branched-DNA single-molecule mRNA FISH and Fluorescence-activated cell sorting (BFF) to identify the Lsm1-7p/Pat1p complex and general mRNA decay machinery as important for GAP1 mRNA clearance. We also find that the decapping modulators EDC3 and SCD6, translation factor eIF4G2, and the 5' UTR of GAP1 are factors that mediate rapid repression of GAP1 mRNA, suggesting that translational control may impact the post-transcriptional fate of mRNAs in response to environmental changes.
Collapse
Affiliation(s)
- Darach Miller
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| | - Nathan Brandt
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| | - David Gresham
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
26
|
Gutiérrez G, Millán-Zambrano G, Medina DA, Jordán-Pla A, Pérez-Ortín JE, Peñate X, Chávez S. Subtracting the sequence bias from partially digested MNase-seq data reveals a general contribution of TFIIS to nucleosome positioning. Epigenetics Chromatin 2017; 10:58. [PMID: 29212533 PMCID: PMC5719526 DOI: 10.1186/s13072-017-0165-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/29/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND TFIIS stimulates RNA cleavage by RNA polymerase II and promotes the resolution of backtracking events. TFIIS acts in the chromatin context, but its contribution to the chromatin landscape has not yet been investigated. Co-transcriptional chromatin alterations include subtle changes in nucleosome positioning, like those expected to be elicited by TFIIS, which are elusive to detect. The most popular method to map nucleosomes involves intensive chromatin digestion by micrococcal nuclease (MNase). Maps based on these exhaustively digested samples miss any MNase-sensitive nucleosomes caused by transcription. In contrast, partial digestion approaches preserve such nucleosomes, but introduce noise due to MNase sequence preferences. A systematic way of correcting this bias for massively parallel sequencing experiments is still missing. RESULTS To investigate the contribution of TFIIS to the chromatin landscape, we developed a refined nucleosome-mapping method in Saccharomyces cerevisiae. Based on partial MNase digestion and a sequence-bias correction derived from naked DNA cleavage, the refined method efficiently mapped nucleosomes in promoter regions rich in MNase-sensitive structures. The naked DNA correction was also important for mapping gene body nucleosomes, particularly in those genes whose core promoters contain a canonical TATA element. With this improved method, we analyzed the global nucleosomal changes caused by lack of TFIIS. We detected a general increase in nucleosomal fuzziness and more restricted changes in nucleosome occupancy, which concentrated in some gene categories. The TATA-containing genes were preferentially associated with decreased occupancy in gene bodies, whereas the TATA-like genes did so with increased fuzziness. The detected chromatin alterations correlated with functional defects in nascent transcription, as revealed by genomic run-on experiments. CONCLUSIONS The combination of partial MNase digestion and naked DNA correction of the sequence bias is a precise nucleosomal mapping method that does not exclude MNase-sensitive nucleosomes. This method is useful for detecting subtle alterations in nucleosome positioning produced by lack of TFIIS. Their analysis revealed that TFIIS generally contributed to nucleosome positioning in both gene promoters and bodies. The independent effect of lack of TFIIS on nucleosome occupancy and fuzziness supports the existence of alternative chromatin dynamics during transcription elongation.
Collapse
Affiliation(s)
| | - Gonzalo Millán-Zambrano
- Departamento de Genética, Universidad de Sevilla, Seville, Spain.,Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville, Spain.,The Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Daniel A Medina
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Burjassot, Valencia, Spain.,Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Antonio Jordán-Pla
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Burjassot, Valencia, Spain.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - José E Pérez-Ortín
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Burjassot, Valencia, Spain
| | - Xenia Peñate
- Departamento de Genética, Universidad de Sevilla, Seville, Spain. .,Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville, Spain.
| | - Sebastián Chávez
- Departamento de Genética, Universidad de Sevilla, Seville, Spain. .,Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville, Spain.
| |
Collapse
|
27
|
Virgilio S, Bertolini MC. Functional diversity in the pH signaling pathway: an overview of the pathway regulation in Neurospora crassa. Curr Genet 2017; 64:529-534. [DOI: 10.1007/s00294-017-0772-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 10/20/2017] [Accepted: 10/25/2017] [Indexed: 10/18/2022]
|
28
|
Malik I, Qiu C, Snavely T, Kaplan CD. Wide-ranging and unexpected consequences of altered Pol II catalytic activity in vivo. Nucleic Acids Res 2017; 45:4431-4451. [PMID: 28119420 PMCID: PMC5416818 DOI: 10.1093/nar/gkx037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/13/2017] [Indexed: 01/28/2023] Open
Abstract
Here we employ a set of RNA Polymerase II (Pol II) activity mutants to determine the consequences of increased or decreased Pol II catalysis on gene expression in Saccharomyces cerevisiae. We find that alteration of Pol II catalytic rate, either fast or slow, leads to decreased Pol II occupancy and apparent reduction in elongation rate in vivo. However, we also find that determination of elongation rate in vivo by chromatin immunoprecipitation can be confounded by the kinetics and conditions of transcriptional shutoff in the assay. We identify promoter and template-specific effects on severity of gene expression defects for both fast and slow Pol II mutants. We show that mRNA half-lives for a reporter gene are increased in both fast and slow Pol II mutant strains and the magnitude of half-life changes correlate both with mutants' growth and reporter expression defects. Finally, we tested a model that altered Pol II activity sensitizes cells to nucleotide depletion. In contrast to model predictions, mutated Pol II retains normal sensitivity to altered nucleotide levels. Our experiments establish a framework for understanding the diversity of transcription defects derived from altered Pol II activity mutants, essential for their use as probes of transcription mechanisms.
Collapse
Affiliation(s)
- Indranil Malik
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Chenxi Qiu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Thomas Snavely
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Craig D Kaplan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
29
|
Virgilio S, Cupertino FB, Ambrosio DL, Bertolini MC. Regulation of the reserve carbohydrate metabolism by alkaline pH and calcium in Neurospora crassa reveals a possible cross-regulation of both signaling pathways. BMC Genomics 2017; 18:457. [PMID: 28599643 PMCID: PMC5466789 DOI: 10.1186/s12864-017-3832-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/31/2017] [Indexed: 11/28/2022] Open
Abstract
Background Glycogen and trehalose are storage carbohydrates and their levels in microorganisms vary according to environmental conditions. In Neurospora crassa, alkaline pH stress highly influences glycogen levels, and in Saccharomyces cerevisiae, the response to pH stress also involves the calcineurin signaling pathway mediated by the Crz1 transcription factor. Recently, in yeast, pH stress response genes were identified as targets of Crz1 including genes involved in glycogen and trehalose metabolism. In this work, we present evidence that in N. crassa the glycogen and trehalose metabolism is modulated by alkaline pH and calcium stresses. Results We demonstrated that the pH signaling pathway in N. crassa controls the accumulation of the reserve carbohydrates glycogen and trehalose via the PAC-3 transcription factor, which is the central regulator of the signaling pathway. The protein binds to the promoters of most of the genes encoding enzymes of glycogen and trehalose metabolism and regulates their expression. We also demonstrated that the reserve carbohydrate levels and gene expression are both modulated under calcium stress and that the response to calcium stress may involve the concerted action of PAC-3. Calcium activates growth of the Δpac-3 strain and influences its glycogen and trehalose accumulation. In addition, calcium stress differently regulates glycogen and trehalose metabolism in the mutant strain compared to the wild-type strain. While glycogen levels are decreased in both strains, the trehalose levels are significantly increased in the wild-type strain and not affected by calcium in the mutant strain when compared to mycelium not exposed to calcium. Conclusions We previously reported the role of PAC-3 as a transcription factor involved in glycogen metabolism regulation by controlling the expression of the gsn gene, which encodes an enzyme of glycogen synthesis. In this work, we extended the investigation by studying in greater detail the effects of pH on the metabolism of the reserve carbohydrate glycogen and trehalose. We also demonstrated that calcium stress affects the reserve carbohydrate levels and the response to calcium stress may require PAC-3. Considering that the reserve carbohydrate metabolism may be subjected to different signaling pathways control, our data contribute to the understanding of the N. crassa responses under pH and calcium stresses. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3832-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stela Virgilio
- Universidade Estadual Paulista (UNESP), Instituto de Química, Departamento de Bioquímica e Tecnologia Química, Araraquara, SP, 14800-060, Brazil
| | - Fernanda Barbosa Cupertino
- Universidade Estadual Paulista (UNESP), Instituto de Química, Departamento de Bioquímica e Tecnologia Química, Araraquara, SP, 14800-060, Brazil
| | - Daniela Luz Ambrosio
- Universidade Estadual Paulista (UNESP), Instituto de Química, Departamento de Bioquímica e Tecnologia Química, Araraquara, SP, 14800-060, Brazil
| | - Maria Célia Bertolini
- Universidade Estadual Paulista (UNESP), Instituto de Química, Departamento de Bioquímica e Tecnologia Química, Araraquara, SP, 14800-060, Brazil.
| |
Collapse
|
30
|
Machado CM, De-Souza EA, De-Queiroz ALFV, Pimentel FSA, Silva GFS, Gomes FM, Montero-Lomelí M, Masuda CA. The galactose-induced decrease in phosphate levels leads to toxicity in yeast models of galactosemia. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1403-1409. [PMID: 28213126 DOI: 10.1016/j.bbadis.2017.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/05/2017] [Accepted: 02/13/2017] [Indexed: 10/20/2022]
Abstract
Classic galactosemia is an inborn error of metabolism caused by deleterious mutations in the GALT gene. A number of evidences indicate that the galactose-1-phosphate accumulation observed in patient cells is a cause of toxicity in this disease. Nevertheless, the consequent molecular events caused by the galactose-1-phosphate accumulation remain elusive. Here we show that intracellular inorganic phosphate levels decreased when yeast models of classic galactosemia were exposed to galactose. The decrease in phosphate levels is probably due to the trapping of phosphate in the accumulated galactose-1-phosphate since the deletion of the galactokinase encoding gene GAL1 suppressed this phenotype. Galactose-induced phosphate depletion caused an increase in glycogen content, an expected result since glycogen breakdown by the enzyme glycogen phosphorylase is dependent on inorganic phosphate. Accordingly, an increase in intracellular phosphate levels suppressed the galactose effect on glycogen content and conferred galactose tolerance to yeast models of galactosemia. These results support the hypothesis that the galactose-induced decrease in phosphate levels leads to toxicity in galactosemia and opens new possibilities for the development of better treatments for this disease.
Collapse
Affiliation(s)
- Caio M Machado
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Evandro A De-Souza
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ana Luiza F V De-Queiroz
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Felipe S A Pimentel
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Guilherme F S Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Fabio M Gomes
- Laboratório de Entomologia Médica, Programa de Biologia Celular e Parasitologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Mónica Montero-Lomelí
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Claudio A Masuda
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.
| |
Collapse
|
31
|
García-Martínez J, Troulé K, Chávez S, Pérez-Ortín JE. Growth rate controls mRNA turnover in steady and non-steady states. RNA Biol 2016; 13:1175-1181. [PMID: 27648972 DOI: 10.1080/15476286.2016.1236171] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Gene expression has been investigated in relation with growth rate in the yeast Saccharomyces cerevisiae, following different experimental strategies. The expression of some specific gene functional categories increases or decreases with growth rate. Our recently published results have unveiled that these changes in mRNA concentration with growth depend on the relative alteration of mRNA synthesis and decay, and that, in addition to this gene-specific transcriptomic signature of growth, global mRNA turnover increases with growth rate. We discuss here these results in relation with other previous and concurrent publications, and we add new evidence which indicates that growth rate controls mRNA turnover even under non-steady-state conditions.
Collapse
Affiliation(s)
- José García-Martínez
- a Departamento de Genética and E.R.I. Biotecmed , Universitat de València , Burjassot , Spain
| | - Kevin Troulé
- b Departamento de Bioquımica y Biologia Molecular and E.R.I. Biotecmed, Universitat de València , Burjassot , Spain
| | - Sebastián Chávez
- c Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocıo-CSIC-Universidad de Sevilla, and Departamento de Genetica, Universidad de Sevilla , Seville , Spain
| | - José E Pérez-Ortín
- b Departamento de Bioquımica y Biologia Molecular and E.R.I. Biotecmed, Universitat de València , Burjassot , Spain
| |
Collapse
|
32
|
Petrezsélyová S, López-Malo M, Canadell D, Roque A, Serra-Cardona A, Marqués MC, Vilaprinyó E, Alves R, Yenush L, Ariño J. Regulation of the Na+/K+-ATPase Ena1 Expression by Calcineurin/Crz1 under High pH Stress: A Quantitative Study. PLoS One 2016; 11:e0158424. [PMID: 27362362 PMCID: PMC4928930 DOI: 10.1371/journal.pone.0158424] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/15/2016] [Indexed: 11/18/2022] Open
Abstract
Regulated expression of the Ena1 Na+-ATPase is a crucial event for adaptation to high salt and/or alkaline pH stress in the budding yeast Saccharomyces cerevisiae. ENA1 expression is under the control of diverse signaling pathways, including that mediated by the calcium-regulatable protein phosphatase calcineurin and its downstream transcription factor Crz1. We present here a quantitative study of the expression of Ena1 in response to alkalinization of the environment and we analyze the contribution of Crz1 to this response. Experimental data and mathematical models substantiate the existence of two stress-responsive Crz1-binding sites in the ENA1 promoter and estimate that the contribution of Crz1 to the early response of the ENA1 promoter is about 60%. The models suggest the existence of a second input with similar kinetics, which would be likely mediated by high pH-induced activation of the Snf1 kinase.
Collapse
Affiliation(s)
- Silvia Petrezsélyová
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - María López-Malo
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - David Canadell
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Alicia Roque
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Albert Serra-Cardona
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - M. Carmen Marqués
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, 46022, Spain
| | - Ester Vilaprinyó
- IRB Lleida, Universitat de Lleida, Lleida 25198, Spain
- Universitat de Lleida, Lleida 25198, Spain
| | - Rui Alves
- IRB Lleida, Universitat de Lleida, Lleida 25198, Spain
- Universitat de Lleida, Lleida 25198, Spain
| | - Lynne Yenush
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, 46022, Spain
| | - Joaquín Ariño
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| |
Collapse
|
33
|
Chávez S, García-Martínez J, Delgado-Ramos L, Pérez-Ortín JE. The importance of controlling mRNA turnover during cell proliferation. Curr Genet 2016; 62:701-710. [PMID: 27007479 DOI: 10.1007/s00294-016-0594-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 12/13/2022]
Abstract
Microbial gene expression depends not only on specific regulatory mechanisms, but also on cellular growth because important global parameters, such as abundance of mRNAs and ribosomes, could be growth rate dependent. Understanding these global effects is necessary to quantitatively judge gene regulation. In the last few years, transcriptomic works in budding yeast have shown that a large fraction of its genes is coordinately regulated with growth rate. As mRNA levels depend simultaneously on synthesis and degradation rates, those studies were unable to discriminate the respective roles of both arms of the equilibrium process. We recently analyzed 80 different genomic experiments and found a positive and parallel correlation between both RNA polymerase II transcription and mRNA degradation with growth rates. Thus, the total mRNA concentration remains roughly constant. Some gene groups, however, regulate their mRNA concentration by uncoupling mRNA stability from the transcription rate. Ribosome-related genes modulate their transcription rates to increase mRNA levels under fast growth. In contrast, mitochondria-related and stress-induced genes lower mRNA levels by reducing mRNA stability or the transcription rate, respectively. We critically review here these results and analyze them in relation to their possible extrapolation to other organisms and in relation to the new questions they open.
Collapse
Affiliation(s)
- Sebastián Chávez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, Seville, Spain. .,Departamento de Genética, Universidad de Sevilla, Seville, Spain.
| | - José García-Martínez
- Departamento de Genética, Universitat de València, Burjassot, Spain.,ERI Biotecmed, Universitat de València, Burjassot, Spain
| | - Lidia Delgado-Ramos
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - José E Pérez-Ortín
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Burjassot, Spain. .,ERI Biotecmed, Universitat de València, Burjassot, Spain.
| |
Collapse
|
34
|
The mRNA cap-binding protein Cbc1 is required for high and timely expression of genes by promoting the accumulation of gene-specific activators at promoters. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:405-19. [PMID: 26775127 DOI: 10.1016/j.bbagrm.2016.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 12/15/2022]
Abstract
The highly conserved Saccharomyces cerevisiae cap-binding protein Cbc1/Sto1 binds mRNA co-transcriptionally and acts as a key coordinator of mRNA fate. Recently, Cbc1 has also been implicated in transcription elongation and pre-initiation complex (PIC) formation. Previously, we described Cbc1 to be required for cell growth under osmotic stress and to mediate osmostress-induced translation reprogramming. Here, we observe delayed global transcription kinetics in cbc1Δ during osmotic stress that correlates with delayed recruitment of TBP and RNA polymerase II to osmo-induced promoters. Interestingly, we detect an interaction between Cbc1 and the MAPK Hog1, which controls most gene expression changes during osmostress, and observe that deletion of CBC1 delays the accumulation of the activator complex Hot1-Hog1 at osmostress promoters. Additionally, CBC1 deletion specifically reduces transcription rates of highly transcribed genes under non-stress conditions, such as ribosomal protein (RP) genes, while having low impact on transcription of weakly expressed genes. For RP genes, we show that recruitment of the specific activator Rap1, and subsequently TBP, to promoters is Cbc1-dependent. Altogether, our results indicate that binding of Cbc1 to the capped mRNAs is necessary for the accumulation of specific activators as well as PIC components at the promoters of genes whose expression requires high and rapid transcription.
Collapse
|
35
|
Role of Heat-Shock Proteins in Cellular Function and in the Biology of Fungi. BIOTECHNOLOGY RESEARCH INTERNATIONAL 2015; 2015:132635. [PMID: 26881084 PMCID: PMC4736001 DOI: 10.1155/2015/132635] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/20/2015] [Accepted: 12/16/2015] [Indexed: 11/18/2022]
Abstract
Stress (biotic or abiotic) is an unfavourable condition for an organism including fungus. To overcome stress, organism expresses heat-shock proteins (Hsps) or chaperons to perform biological function. Hsps are involved in various routine biological processes such as transcription, translation and posttranslational modifications, protein folding, and aggregation and disaggregation of proteins. Thus, it is important to understand holistic role of Hsps in response to stress and other biological conditions in fungi. Hsp104, Hsp70, and Hsp40 are found predominant in replication and Hsp90 is found in transcriptional and posttranscriptional process. Hsp90 and Hsp70 in combination or alone play a major role in morphogenesis and dimorphism. Heat stress in fungi expresses Hsp60, Hsp90, Hsp104, Hsp30, and Hsp10 proteins, whereas expression of Hsp12 protein was observed in response to cold stress. Hsp30, Hsp70, and Hsp90 proteins showed expression in response to pH stress. Osmotic stress is controlled by small heat-shock proteins and Hsp60. Expression of Hsp104 is observed under high pressure conditions. Out of these heat-shock proteins, Hsp90 has been predicted as a potential antifungal target due to its role in morphogenesis. Thus, current review focuses on role of Hsps in fungi during morphogenesis and various stress conditions (temperature, pH, and osmotic pressure) and in antifungal drug tolerance.
Collapse
|
36
|
Serra-Cardona A, Canadell D, Ariño J. Coordinate responses to alkaline pH stress in budding yeast. MICROBIAL CELL 2015; 2:182-196. [PMID: 28357292 PMCID: PMC5349140 DOI: 10.15698/mic2015.06.205] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Alkalinization of the medium represents a stress condition for the budding yeast Saccharomyces cerevisiae to which this organism responds with profound remodeling of gene expression. This is the result of the modulation of a substantial number of signaling pathways whose participation in the alkaline response has been elucidated within the last ten years. These regulatory inputs involve not only the conserved Rim101/PacC pathway, but also the calcium-activated phosphatase calcineurin, the Wsc1-Pkc1-Slt2 MAP kinase, the Snf1 and PKA kinases and oxidative stress-response pathways. The uptake of many nutrients is perturbed by alkalinization of the environment and, consequently, an impact on phosphate, iron/copper and glucose homeostatic mechanisms can also be observed. The analysis of available data highlights cases in which diverse signaling pathways are integrated in the gene promoter to shape the appropriate response pattern. Thus, the expression of different genes sharing the same signaling network can be coordinated, allowing functional coupling of their gene products.
Collapse
Affiliation(s)
- Albert Serra-Cardona
- Departament de Bioquímica i Biologia Molecular & Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain
| | - David Canadell
- Departament de Bioquímica i Biologia Molecular & Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain
| | - Joaquín Ariño
- Departament de Bioquímica i Biologia Molecular & Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain
| |
Collapse
|