1
|
Chen WD, Liu L, Cheng L. Functionally Tunable Star-Shaped Multivalent crRNAs for Photocontrol CRISPR/Cas Editing. Angew Chem Int Ed Engl 2025:e202506527. [PMID: 40227971 DOI: 10.1002/anie.202506527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 04/16/2025]
Abstract
Clustered regularly interspaced shortpalindromic repeats/CRISPR-associated (CRISPR/Cas)-based genome editing has significantly advanced genetic engineering due to its precision, simplicity, and versatility. However, achieving precise spatial and temporal control remains challenging, restricting therapeutic and research applications. Herein, we introduce a novel class of star-shaped, multivalent crRNAs engineered for precise spatiotemporal control of CRISPR/Cas9 and Cas12a editing systems. These crRNAs are synthesized via single-site chemical modification and can be efficiently purified. By integrating distinct photo-responsive chemical linkages, we achieved selective activation of crRNA activity upon irradiation with specific wavelengths, enabling orthogonal regulation of multiple genetic targets simultaneously. This method demonstrated robust OFF-ON switching capabilities in vitro, characterized by minimal leakage and rapid activation. Importantly, the approach also proved highly effective for temporally controlled gene editing in mammalian cells in vivo, achieving considerable editing efficiency following brief photoactivation. Due to its target sequence-independent, single-site modification design, this strategy may serve as a universal solution for diverse CRISPR/Cas systems, eliminating cumbersome optimization processes. Future advancements incorporating long-wavelength responsive and reversible linkers promise further enhancement of tissue penetration and control, significantly broadening the applicability and impact of this approach in biological research and therapeutic interventions.
Collapse
Affiliation(s)
- Wen-Da Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Piergentili R, Sechi S. Targeting Regulatory Noncoding RNAs in Human Cancer: The State of the Art in Clinical Trials. Pharmaceutics 2025; 17:471. [PMID: 40284466 PMCID: PMC12030637 DOI: 10.3390/pharmaceutics17040471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
Noncoding RNAs (ncRNAs) are a heterogeneous group of RNA molecules whose classification is mainly based on arbitrary criteria such as the molecule length, secondary structures, and cellular functions. A large fraction of these ncRNAs play a regulatory role regarding messenger RNAs (mRNAs) or other ncRNAs, creating an intracellular network of cross-interactions that allow the fine and complex regulation of gene expression. Altering the balance between these interactions may be sufficient to cause a transition from health to disease and vice versa. This leads to the possibility of intervening in these mechanisms to re-establish health in patients. The regulatory role of ncRNAs is associated with all cancer hallmarks, such as proliferation, apoptosis, invasion, metastasis, and genomic instability. Based on the function performed in carcinogenesis, ncRNAs may behave either as oncogenes or tumor suppressors. However, this distinction is not rigid; some ncRNAs can fall into both classes depending on the tissue considered or the target molecule. Furthermore, some of them are also involved in regulating the response to traditional cancer-therapeutic approaches. In general, the regulation of molecular mechanisms by ncRNAs is very complex and still largely unclear, but it has enormous potential both for the development of new therapies, especially in cases where traditional methods fail, and for their use as novel and more efficient biomarkers. Overall, this review will provide a brief overview of ncRNAs in human cancer biology, with a specific focus on describing the most recent ongoing clinical trials (CT) in which ncRNAs have been tested for their potential as therapeutic agents or evaluated as biomarkers.
Collapse
|
3
|
Xu K, Zhang C, WeiGao, Shi Y, Pu S, Huang N, Dou W. The involvement of circRNAs in molecular processes and their potential use in therapy and diagnostics for glioblastoma. Gene 2025; 940:149214. [PMID: 39756549 DOI: 10.1016/j.gene.2025.149214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/10/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Glioblastoma, a type of brain tumor, is well-known for its aggressive nature and can affect individuals of all ages. Glioblastoma continues to be a difficult cancer to manage because of various resistance mechanisms. The blood-brain barrier restricts the delivery of drugs, and the heterogeneity of tumors, along with overlapping signaling pathways, complicates its effective treatment. Patients diagnosed with glioblastoma typically survive for no more than 2 years. Innovative therapies and early diagnostic tools for glioblastoma are essential. Circular RNAs have emerged as significant contributors to glioblastoma, and influence cancer mechanisms such as cell growth, death, invasion, and resistance to treatment. The circRNAs presence makes them essential candidates for treatment and practical diagnostic tools for glioblastoma. This review highlights the therapeutic approaches and diagnostic potential of circRNAs and explores their role in the molecular mechanisms underlying glioblastoma.
Collapse
Affiliation(s)
- Kanghong Xu
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, PR China
| | - Chunlai Zhang
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, PR China; The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, PR China
| | - WeiGao
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, PR China
| | - Yushan Shi
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, PR China
| | - Shuangshuang Pu
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, PR China
| | - Ning Huang
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, PR China.
| | - Weitao Dou
- Department of Medical Intervention, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China.
| |
Collapse
|
4
|
Yi Q, Ouyang X, Zhong K, Chen Z, Zhu W, Zhu G, Zhong J. circFOXP1: a potential diagnostic and therapeutic target in human diseases. Front Immunol 2024; 15:1489378. [PMID: 39606233 PMCID: PMC11599189 DOI: 10.3389/fimmu.2024.1489378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Circular RNA (circRNA) are a unique class of non-coding RNAs characterized by their covalently closed loop structures, which grant them properties such as stability and conservation. Among these, circFOXP1 has been implicated in various diseases, including cancers, respiratory, skeletal, and cardiovascular disorders. This review systematically examines circFOXP1's role in disease progression, highlighting its involvement in critical biological processes, including cell proliferation, invasion, apoptosis, and autophagy. Mechanistically, circFOXP1 functions through miRNA sponging, protein interactions, and modulation of key signaling pathways such as Wnt and PI3K/AKT. We discuss its potential as a diagnostic and therapeutic target. Our analysis also identifies key unresolved questions, such as the precise regulatory networks involving circFOXP1 and its translation potential, offering pathways for future research.
Collapse
Affiliation(s)
- Qiang Yi
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xinting Ouyang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Kui Zhong
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zheng Chen
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Weijian Zhu
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Gangfeng Zhu
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jinghua Zhong
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
5
|
Zhang B, Li Z, Ye G, Hu K. Biologic activity and treatment resistance to gastrointestinal cancer: the role of circular RNA in autophagy regulation. Front Oncol 2024; 14:1393670. [PMID: 39281375 PMCID: PMC11392687 DOI: 10.3389/fonc.2024.1393670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/15/2024] [Indexed: 09/18/2024] Open
Abstract
Circular RNAs (circRNAs) lack the 5'-end methylated guanine cap structure and 3' polyadenylate tail structure, classifying it as a non-coding RNA. With the extensive investigation of circRNA, its role in regulating cell death has garnered significant attention in recent years, establishing it as a recognized participant in cancer's biological processes. Autophagy, an essential pathway in programmed cell death (PCD), involves the formation of autophagosomes using lysosomes to degrade cellular contents under the regulation of various autophagy-related (ATG) genes. Numerous studies have demonstrated that circRNA can modulate the biological activity of cancer cells by influencing the autophagy pathway, exhibiting a dualistic role in suppressing or promoting carcinogenesis. In this review, we comprehensively analyze how autophagy-related circRNA impacts the progression of gastrointestinal cancer (GIC). Additionally, we discuss drug resistance phenomena associated with autophagy regulation in GIC. This review offers valuable insights into exploring potential biological targets for prognosis and treatment strategies related to GIC.
Collapse
Affiliation(s)
- Bo Zhang
- Health Science Center, Ningbo University, Ningbo, China
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Zhe Li
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Guoliang Ye
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Kefeng Hu
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
6
|
Petrova M, Margasyuk S, Vorobeva M, Skvortsov D, Dontsova O, Pervouchine DD. BRD2 and BRD3 genes independently evolved RNA structures to control unproductive splicing. NAR Genom Bioinform 2024; 6:lqad113. [PMID: 38226395 PMCID: PMC10789245 DOI: 10.1093/nargab/lqad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/13/2023] [Accepted: 12/28/2023] [Indexed: 01/17/2024] Open
Abstract
The mammalian BRD2 and BRD3 genes encode structurally related proteins from the bromodomain and extraterminal domain protein family. The expression of BRD2 is regulated by unproductive splicing upon inclusion of exon 3b, which is located in the region encoding a bromodomain. Bioinformatic analysis indicated that BRD2 exon 3b inclusion is controlled by a pair of conserved complementary regions (PCCR) located in the flanking introns. Furthermore, we identified a highly conserved element encoding a cryptic poison exon 5b and a previously unknown PCCR in the intron between exons 5 and 6 of BRD3, however, outside of the homologous bromodomain. Minigene mutagenesis and blockage of RNA structure by antisense oligonucleotides demonstrated that RNA structure controls the rate of inclusion of poison exons. The patterns of BRD2 and BRD3 expression and splicing show downregulation upon inclusion of poison exons, which become skipped in response to transcription elongation slowdown, further confirming a role of PCCRs in unproductive splicing regulation. We conclude that BRD2 and BRD3 independently acquired poison exons and RNA structures to dynamically control unproductive splicing. This study describes a convergent evolution of regulatory unproductive splicing mechanisms in these genes, providing implications for selective modulation of their expression in therapeutic applications.
Collapse
Affiliation(s)
- Marina Petrova
- Skolkovo Institute of Science and Technology, Bolshoy Bulvar, 30, str. 1, Moscow 121205, Russia
| | - Sergey Margasyuk
- Skolkovo Institute of Science and Technology, Bolshoy Bulvar, 30, str. 1, Moscow 121205, Russia
| | - Margarita Vorobeva
- Faculty of Chemistry, Moscow State University, GSP-1, 1-3 Leninskiye Gory, Moscow 119991, Russia
| | - Dmitry Skvortsov
- Skolkovo Institute of Science and Technology, Bolshoy Bulvar, 30, str. 1, Moscow 121205, Russia
- Faculty of Chemistry, Moscow State University, GSP-1, 1-3 Leninskiye Gory, Moscow 119991, Russia
| | - Olga A Dontsova
- Skolkovo Institute of Science and Technology, Bolshoy Bulvar, 30, str. 1, Moscow 121205, Russia
- Faculty of Chemistry, Moscow State University, GSP-1, 1-3 Leninskiye Gory, Moscow 119991, Russia
| | - Dmitri D Pervouchine
- Skolkovo Institute of Science and Technology, Bolshoy Bulvar, 30, str. 1, Moscow 121205, Russia
| |
Collapse
|
7
|
Rebolledo C, Silva JP, Saavedra N, Maracaja-Coutinho V. Computational approaches for circRNAs prediction and in silico characterization. Brief Bioinform 2023; 24:7150741. [PMID: 37139555 DOI: 10.1093/bib/bbad154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/20/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Circular RNAs (circRNAs) are single-stranded and covalently closed non-coding RNA molecules originated from RNA splicing. Their functions include regulatory potential over other RNA species, such as microRNAs, messenger RNAs and RNA binding proteins. For circRNA identification, several algorithms are available and can be classified in two major types: pseudo-reference-based and split-alignment-based approaches. In general, the data generated from circRNA transcriptome initiatives is deposited on public specific databases, which provide a large amount of information on different species and functional annotations. In this review, we describe the main computational resources for the identification and characterization of circRNAs, covering the algorithms and predictive tools to evaluate its potential role in a particular transcriptomics project, including the public repositories containing relevant data and information for circRNAs, recapitulating their characteristics, reliability and amount of data reported.
Collapse
Affiliation(s)
- Camilo Rebolledo
- Center of Molecular Biology & Pharmacogenetics, Department of Basic Sciences, Scientific and Technological Resources, Universidad de La Frontera, Temuco, Chile
- Advanced Center for Chronic Diseases - ACCDiS, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Centro de Modelamiento Molecular, Biofísica y Bioinformática - CM2B2, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Juan Pablo Silva
- Centro de Modelamiento Molecular, Biofísica y Bioinformática - CM2B2, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- ANID Anillo ACT210004 SYSTEMIX, Rancagua, Chile
| | - Nicolás Saavedra
- Center of Molecular Biology & Pharmacogenetics, Department of Basic Sciences, Scientific and Technological Resources, Universidad de La Frontera, Temuco, Chile
| | - Vinicius Maracaja-Coutinho
- Advanced Center for Chronic Diseases - ACCDiS, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Centro de Modelamiento Molecular, Biofísica y Bioinformática - CM2B2, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- ANID Anillo ACT210004 SYSTEMIX, Rancagua, Chile
- Anillo Inflammation in HIV/AIDS - InflammAIDS, Santiago, Chile
| |
Collapse
|
8
|
Eleazer R, De Silva K, Andreeva K, Jenkins Z, Osmani N, Rouchka EC, Fondufe-Mittendorf Y. PARP1 Regulates Circular RNA Biogenesis though Control of Transcriptional Dynamics. Cells 2023; 12:1160. [PMID: 37190069 PMCID: PMC10136798 DOI: 10.3390/cells12081160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Circular RNAs (circRNAs) are a recently discovered class of RNAs derived from protein-coding genes that have important biological and pathological roles. They are formed through backsplicing during co-transcriptional alternative splicing; however, the unified mechanism that accounts for backsplicing decisions remains unclear. Factors that regulate the transcriptional timing and spatial organization of pre-mRNA, including RNAPII kinetics, the availability of splicing factors, and features of gene architecture, have been shown to influence backsplicing decisions. Poly (ADP-ribose) polymerase I (PARP1) regulates alternative splicing through both its presence on chromatin as well as its PARylation activity. However, no studies have investigated PARP1's possible role in regulating circRNA biogenesis. Here, we hypothesized that PARP1's role in splicing extends to circRNA biogenesis. Our results identify many unique circRNAs in PARP1 depletion and PARylation-inhibited conditions compared to the wild type. We found that while all genes producing circRNAs share gene architecture features common to circRNA host genes, genes producing circRNAs in PARP1 knockdown conditions had longer upstream introns than downstream introns, whereas flanking introns in wild type host genes were symmetrical. Interestingly, we found that the behavior of PARP1 in regulating RNAPII pausing is distinct between these two classes of host genes. We conclude that the PARP1 pausing of RNAPII works within the context of gene architecture to regulate transcriptional kinetics, and therefore circRNA biogenesis. Furthermore, this regulation of PARP1 within host genes acts to fine tune their transcriptional output with implications in gene function.
Collapse
Affiliation(s)
- Rebekah Eleazer
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA; (R.E.); (Z.J.)
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA;
| | - Kalpani De Silva
- Department of Neuroscience Training, University of Louisville, Louisville, KY 40292, USA; (K.D.S.); (K.A.)
- Kentucky IDeA Networks of Biomedical Research Excellence Bioinformatics Core, University of Louisville, Louisville, KY 40292, USA;
| | - Kalina Andreeva
- Department of Neuroscience Training, University of Louisville, Louisville, KY 40292, USA; (K.D.S.); (K.A.)
- Kentucky IDeA Networks of Biomedical Research Excellence Bioinformatics Core, University of Louisville, Louisville, KY 40292, USA;
| | - Zoe Jenkins
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA; (R.E.); (Z.J.)
| | - Nour Osmani
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA;
| | - Eric C. Rouchka
- Kentucky IDeA Networks of Biomedical Research Excellence Bioinformatics Core, University of Louisville, Louisville, KY 40292, USA;
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202, USA
| | | |
Collapse
|
9
|
CircPACRGL promoted cell proliferation, migration and invasion as well as inhibited cell apoptosis in colorectal cancer via regulation of the miR-330-3p/CNBP axis. Mol Cell Biochem 2022; 478:1633-1644. [DOI: 10.1007/s11010-022-04543-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/09/2022] [Indexed: 12/05/2022]
|
10
|
Hsa_circ_0044301 Regulates Gastric Cancer Cell’s Proliferation, Migration, and Invasion by Modulating the Hsa-miR-188-5p/DAXX Axis and MAPK Pathway. Cancers (Basel) 2022; 14:cancers14174183. [PMID: 36077718 PMCID: PMC9454757 DOI: 10.3390/cancers14174183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/15/2022] [Accepted: 08/24/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary This study aimed to investigate whether circRNA could be potential prognosis or therapeutic target. And we found the upregulated hsa_circ_0044301 was positively correlated with the 5-year survival rate of patients, which also could influence the proliferation, migration and invasion of gastric cancer cells in vitro and in vivo. Mechanically, it could act as the sponge of hsa-miR-188-5p and regulate the expression and function of targeted gene DAXX. In addition, this circRNA could also modulate the effect of GDC-0994 on ERK1/2 or 5-FU in cells. These findings have made a significant contribution to the study of circRNA in the treatment field of gastric cancer. Meanwhile this is the first detailed investigation of hsa_circ_0044301 in gastric cancer, and the circRNA has the value of further animal and clinical translation. Abstract Background: Despite advances in diagnostic and therapeutic technologies, the prognosis of patients with gastric cancer (GC) remains poor, necessitating further search for more effective therapeutic targets and markers for prognosis prediction. Circular RNA (circRNA) plays a role in various diseases, including GC. Methods: CircRNA expression in GC tissues was detected by circRNA microarray and quantitative reverse transcription polymerase chain reaction (qRT-PCR). The correlation between circRNA-0044301 and patient survival was analyzed by log-rank test and Cox regression analysis. Next, in vitro characterization and functional analysis of circRNA-0044301 was done by various assays using RNase R, actinomycin D, and RNA fluorescence in situ hybridization, as well as investigations into its use as a drug to treat tumors in a subcutaneous tumorigenesis model. RNA immunoprecipitation and dual-luciferase reporter assays were used to identify circRNA-0044301-related miRNA (miRNA-188-5p), key proteins of the related pathway (ERK1/2), and the downstream target DAXX. Finally, we investigated the relationship between circRNA-0044301 and ravoxertinib (GDC-0994) and 5-fluorouracil (5-FU) using qRT-PCR, Western blotting, and CCK8 assays. Results: CircRNA-0044301 was upregulated in tissues and cancer cells compared to its levels in controls, related to patient prognosis, and its specific siRNA-vivo could slow tumor growth. On the mechanism, it acted as a sponge of miRNA-188-5p, could regulate the downstream target DAXX, and modulated the effect of GDC-0994 on ERK1/2 and 5-FU in cells. Conclusions: CircRNA-0044301/miRNA-188-5p/DAXX (ERK1/2) may be a key axis in GC progression, and circRNA-0044301 has immense potential to be a therapeutic target for GC.
Collapse
|
11
|
Circular RNA circPOSTN promotes neovascularization by regulating miR-219a-2-3p/STC1 axis and stimulating the secretion of VEGFA in glioblastoma. Cell Death Dis 2022; 8:349. [PMID: 35927233 PMCID: PMC9352789 DOI: 10.1038/s41420-022-01136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 11/09/2022]
Abstract
Glioblastoma (GBM), the most malignant type of astrocytic tumor, is one of the deadliest cancers prevalent in adults. Along with tumor growth, patients with GBM generally suffer from extensive cerebral edema and apparent symptoms of intracranial hyper-pressure. Accumulating evidence has demonstrated that circRNA plays a critically important role in tumorigenesis and progression. However, the biological function and the underlying mechanism of circRNA in GBM remain elusive. In this study, by conducting gene expression detection based on 15 pairs of GBM clinical specimens and the normal adjunct tissues, we observed that circPOSTN showed abnormally higher expression in GBM. Both loss-of-function and gain-of-function biological experiments demonstrated that circPOSTN scheduled the proliferation, migration, and neovascularization abilities of GBM cells. Further, fluorescence in situ hybridization (FISH) assay, quantitative RT-PCR, and subcellular separation suggested that circPOSTN was predominately localized in the cytoplasm and may serve as a competing endogenous RNA (ceRNA). CircRNA-miRNA interaction prediction based on online analytical processing, AGO2-RIP assay, biotin labeled RNA pulldown assay, and dual-luciferase reporter assay revealed that circPOSTN sponged miR-219a-2-3p, limited its biological function, and ultimately upregulated their common downstream gene STC1. Finally, by carrying out in vitro and in vivo functional assays, we uncovered a new regulatory axis circPOSTN/miR-219a-2-3p/STC1 that promoted GBM neovascularization by increasing vascular endothelial growth factor A (VEGFA) secretion. Our study underscores the critical role of circPOSTN in GBM progression, providing a novel insight into GBM anti-tumor therapy.
Collapse
|
12
|
CircRNAs in lung cancer- role and clinical application. Cancer Lett 2022; 544:215810. [PMID: 35780929 DOI: 10.1016/j.canlet.2022.215810] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/01/2022] [Accepted: 06/27/2022] [Indexed: 02/08/2023]
Abstract
Lung cancer holds the highest mortality rate among malignancies worldwide. Nevertheless, the potential molecular mechanisms of its tumorigenesis and evolution remain obscure. Circular RNAs (circRNAs), a broad category of covalently closed molecules, follow a malignancy-restricted expression pattern. Leading-edge studies have demonstrated the clinical application prospects of circRNAs in lung cancer. Herein, this review elucidates the biogenesis, biological functions, and pathophysiology of circRNAs. Furthermore, we underscore the forefront of the diagnostic, prognostic, and therapeutic potential of circRNAs in lung cancer as well as discuss the bottleneck that needs to be overcome to translate the basic advances of circRNAs into clinical practice.
Collapse
|
13
|
Chen B, Wu L, Tang X, Wang T, Wang S, Yu H, Wan G, Xie M, Zhang R, Xiao H, Deng W. Quercetin Inhibits Tumorigenesis of Colorectal Cancer Through Downregulation of hsa_circ_0006990. Front Pharmacol 2022; 13:874696. [PMID: 35662705 PMCID: PMC9158466 DOI: 10.3389/fphar.2022.874696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Quercetin can significantly inhibit the progression of colorectal cancer (CRC). However, its specific mechanism remains largely unclear. In this study, we aimed to explore the correlation among quercetin, tumour-associated macrophages (TAMs) and circular RNAs (circRNAs) in the progression of CRC and to present a novel strategy for the treatment of CRC. In this study, we revealed that quercetin could suppress the autophagy of M2-TAMs and induced their differentiation into M1-TAMs, by which quercetin significantly reversed the inhibition of M2-TAMS on CRC cell apoptosis and the promotion of M2-TAMS on CRC cell proliferation. Moreover, quercetin could promote the expression of downregulated hsa_circ_0006990 in CRC cells co-cultured with M2-TAMs, and the overexpression of hsa_circ_0006990 significantly reversed the anti-tumour effect of quercetin on CRC. Furthermore, we found quercetin can notably suppress the progression of CRC via mediation of the hsa_circ_0006990/miR-132-3p/MUC13 axis. In conclusion, our results suggested that quercetin inhibits the tumorigenesis of CRC via inhibiting the polarisation of M2 macrophages and downregulating hsa_circ_0006990. Our study provides useful insights for those exploring new methods of treating CRC.
Collapse
Affiliation(s)
- Bin Chen
- Department of Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linguangjin Wu
- Department of Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoxia Tang
- Department of Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Wang
- Department of Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuyun Wang
- Department of Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongjie Yu
- Department of Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangsheng Wan
- Department of Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Manli Xie
- Department of Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ruijuan Zhang
- Department of Traditional Chinese Medicine, Putuo People's Hospital, Tongji University, Shanghai, China
| | - Haijuan Xiao
- Department of Oncology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Wanli Deng
- Department of Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
14
|
Xue C, Li G, Zheng Q, Gu X, Bao Z, Lu J, Li L. The functional roles of the circRNA/Wnt axis in cancer. Mol Cancer 2022; 21:108. [PMID: 35513849 PMCID: PMC9074313 DOI: 10.1186/s12943-022-01582-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/22/2022] [Indexed: 01/09/2023] Open
Abstract
CircRNAs, covalently closed noncoding RNAs, are widely expressed in a wide range of species ranging from viruses to plants to mammals. CircRNAs were enriched in the Wnt pathway. Aberrant Wnt pathway activation is involved in the development of various types of cancers. Accumulating evidence indicates that the circRNA/Wnt axis modulates the expression of cancer-associated genes and then regulates cancer progression. Wnt pathway-related circRNA expression is obviously associated with many clinical characteristics. CircRNAs could regulate cell biological functions by interacting with the Wnt pathway. Moreover, Wnt pathway-related circRNAs are promising potential biomarkers for cancer diagnosis, prognosis evaluation, and treatment. In our review, we summarized the recent research progress on the role and clinical application of Wnt pathway-related circRNAs in tumorigenesis and progression.
Collapse
Affiliation(s)
- Chen Xue
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| | - Ganglei Li
- grid.13402.340000 0004 1759 700XDepartment of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Qiuxian Zheng
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| | - Xinyu Gu
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| | - Zhengyi Bao
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| | - Juan Lu
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| | - Lanjuan Li
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| |
Collapse
|
15
|
De Palma FDE, Salvatore F, Pol JG, Kroemer G, Maiuri MC. Circular RNAs as Potential Biomarkers in Breast Cancer. Biomedicines 2022; 10:725. [PMID: 35327527 PMCID: PMC8945016 DOI: 10.3390/biomedicines10030725] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 02/06/2023] Open
Abstract
Due to the high heterogeneity and initially asymptomatic nature of breast cancer (BC), the management of this disease depends on imaging together with immunohistochemical and molecular evaluations. These tests allow early detection of BC and patient stratification as they guide clinicians in prognostication and treatment decision-making. Circular RNAs (circRNAs) represent a class of newly identified long non-coding RNAs. These molecules have been described as key regulators of breast carcinogenesis and progression. Moreover, circRNAs play a role in drug resistance and are associated with clinicopathological features in BC. Accumulating evidence reveals a clinical interest in deregulated circRNAs as diagnostic, prognostic and predictive biomarkers. Furthermore, due to their covalently closed structure, circRNAs are highly stable and easily detectable in body fluids, making them ideal candidates for use as non-invasive biomarkers. Herein, we provide an overview of the biogenesis and pleiotropic functions of circRNAs, and report on their clinical relevance in BC.
Collapse
Affiliation(s)
- Fatima Domenica Elisa De Palma
- Equipe 11 Labellisée Par La Ligue Nationale Contre Le Cancer, Centre de Recherche Des Cordeliers, Inserm U1138, Université de Paris Cité, Sorbonne Université, 75006 Paris, France; (J.G.P.); (G.K.)
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94800 Villejuif, France
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy;
- CEINGE-Biotecnologie Avanzate, 80145 Naples, Italy
| | - Francesco Salvatore
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy;
- CEINGE-Biotecnologie Avanzate, 80145 Naples, Italy
- Inter-University Center for multifactorial and multi genetic chronic human diseases, “Federico II”-Naples, Tor Vergata-Roma II, and Chieti-Pescara Universities, 80131 Naples, Italy
| | - Jonathan G. Pol
- Equipe 11 Labellisée Par La Ligue Nationale Contre Le Cancer, Centre de Recherche Des Cordeliers, Inserm U1138, Université de Paris Cité, Sorbonne Université, 75006 Paris, France; (J.G.P.); (G.K.)
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Guido Kroemer
- Equipe 11 Labellisée Par La Ligue Nationale Contre Le Cancer, Centre de Recherche Des Cordeliers, Inserm U1138, Université de Paris Cité, Sorbonne Université, 75006 Paris, France; (J.G.P.); (G.K.)
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94800 Villejuif, France
- Institut Universitaire de France, 75005 Paris, France
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
| | - Maria Chiara Maiuri
- Equipe 11 Labellisée Par La Ligue Nationale Contre Le Cancer, Centre de Recherche Des Cordeliers, Inserm U1138, Université de Paris Cité, Sorbonne Université, 75006 Paris, France; (J.G.P.); (G.K.)
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94800 Villejuif, France
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy
| |
Collapse
|
16
|
Ghafouri-Fard S, Khoshbakht T, Taheri M, Jamali E. A Concise Review on the Role of CircPVT1 in Tumorigenesis, Drug Sensitivity, and Cancer Prognosis. Front Oncol 2021; 11:762960. [PMID: 34804965 PMCID: PMC8599443 DOI: 10.3389/fonc.2021.762960] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/15/2021] [Indexed: 12/16/2022] Open
Abstract
CircPVT1 (hsa_circ_0001821) is a cancer-related circular RNA (circRNA) that originated from a genomic locus on chromosome 8q24. This locus has been previously found to encode the oncogenic long non-coding RNA PVT1. Expression of this circRNA has been found to be upregulated in diverse neoplastic conditions. CircPVT1 acts as a sponge for miR-125a, miR-125b, miR-124-3p, miR-30a-5p, miR-205-5p, miR-423-5p, miR-526b, miR-137, miR-145-5p, miR-497, miR-30d/e, miR-455-5p, miR-29a-3p, miR-204-5p, miR-149, miR-106a-5p, miR-377, miR-3666, miR-203, and miR-199a-5p. Moreover, it can regulate the activities of PI3K/AKT, Wnt5a/Ror2, E2F2, and HIF-1α. Upregulation of circPVT1 has been correlated with decreased survival of patients with different cancer types. In the current review, we explain the oncogenic impact of circPVT1 in different tissues based on evidence from in vitro, in vivo, and clinical investigations.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Elena Jamali
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Zhang S, Sun J, Gu M, Wang G, Wang X. Circular RNA: A promising new star for the diagnosis and treatment of colorectal cancer. Cancer Med 2021; 10:8725-8740. [PMID: 34796685 PMCID: PMC8683543 DOI: 10.1002/cam4.4398] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/18/2021] [Accepted: 10/19/2021] [Indexed: 12/11/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common malignant tumors of the digestive tract. According to the research of circular RNAs in the CRC field, compared with linear RNAs, circular RNAs are a special type of noncoding RNA that are covalently closed circular structures, which have no 5' cap structure and 3' polyA tail and are not affected by RNA exonuclease and actinomycin D. Biological functions Notably, circular RNAs have a high degree of stability and potential effect on gene regulation. Meanwhile, circular RNAs are involved in the sponge action of microRNAs and mediate protein translation and direct binding, alternative splicing, and histone modification. Relationships with CRC Studies have shown that circular RNAs are related to the proliferation, invasion, recurrence, metastasis, ferroptosis, apoptosis, and chemotherapy resistance of CRC. Conclusions This article provides a brief review based on the source, structural characteristics, mechanisms, biological functions of circular RNAs, and the relationships between CRC.
Collapse
Affiliation(s)
- Shunhao Zhang
- Graduate School of Nantong University, Nantong, China
| | - Jing Sun
- Graduate School of Nantong University, Nantong, China
| | - Minqi Gu
- Graduate School of Nantong University, Nantong, China
| | - Guihua Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Xudong Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
18
|
Huang Y, Zhang Z, Wang J, Shen S, Yao T, Xu Y, Chen Z, Fang B, Ma J. circSPG21 protects against intervertebral disc disease by targeting miR-1197/ATP1B3. Exp Mol Med 2021; 53:1547-1558. [PMID: 34611269 PMCID: PMC8568895 DOI: 10.1038/s12276-021-00674-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/24/2021] [Accepted: 07/29/2021] [Indexed: 12/15/2022] Open
Abstract
The abnormal expression of circular RNAs (circRNAs) is associated with numerous human diseases. This study investigated the mechanism by which circRNA acts as competitive endogenous RNA in the regulation of degenerative intervertebral disc disease (IVDD). Decreased expression of circSPG21 was detected in degenerated nucleus pulposus cells (NPCs), the function of circSPG21 in NPCs was explored and verified, and the downstream target of circSPG21 was investigated. The interaction between circSPG21 and miR-1197 and its target gene (ATP1B3) was studied by online database prediction and molecular biological verification. Finally, the circSPG21/miR-1197/ATP1B3 axis was verified in the mouse tail-looping model. The expression of circSPG21 in the nucleus pulposus in IVDD was directly related to an imbalance of anabolic and catabolic factors, which affected cell senescence. circSPG21 was found to play a role in human NPCs by acting as a sponge of miR-1197 and thereby affecting ATP1B3. The regulation of circSPG21 provides a potentially effective therapeutic strategy for IVDD.
Collapse
Affiliation(s)
- Yizhen Huang
- grid.13402.340000 0004 1759 700XDepartment of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China ,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China
| | - Zhenlei Zhang
- grid.13402.340000 0004 1759 700XDepartment of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China ,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China
| | - Jianle Wang
- grid.13402.340000 0004 1759 700XDepartment of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China ,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China
| | - Shuying Shen
- grid.13402.340000 0004 1759 700XDepartment of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China ,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China
| | - Teng Yao
- grid.13402.340000 0004 1759 700XDepartment of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China ,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China
| | - Yining Xu
- grid.412551.60000 0000 9055 7865Shaoxing University School of Medicine, Shaoxing, China
| | - Zizheng Chen
- grid.13402.340000 0004 1759 700XDepartment of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China ,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China
| | - Bin Fang
- grid.412449.e0000 0000 9678 1884Department of Spine Surgery, Shaoxing Central Hospital, China Medical University, Shaoxing, China
| | - Jianjun Ma
- grid.13402.340000 0004 1759 700XDepartment of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China ,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China
| |
Collapse
|
19
|
Huang Y, Zhu Q. Mechanisms Regulating Abnormal Circular RNA Biogenesis in Cancer. Cancers (Basel) 2021; 13:4185. [PMID: 34439339 PMCID: PMC8391333 DOI: 10.3390/cancers13164185] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/22/2023] Open
Abstract
Circular RNAs (circRNAs), which are a class of endogenous RNA with covalently closed loops, play important roles in epigenetic regulation of gene expression at both the transcriptional and post-transcriptional level. Accumulating evidence demonstrated that numerous circRNAs were abnormally expressed in tumors and their dysregulation was involved in the tumorigenesis and metastasis of cancer. Although the functional mechanisms of many circRNAs have been revealed, how circRNAs are dysregulated in cancer remains elusive. CircRNAs are generated by a "back-splicing" process, which is regulated by different cis-regulatory elements and trans-acting proteins. Therefore, how these cis and trans elements change during tumorigenesis and how they regulate the biogenesis of circRNAs in cancer are two questions that interest us. In this review, we summarized the pathways for the biogenesis of circRNAs; and then illustrated how circRNAs dysregulated in cancer by discussing the changes of cis-regulatory elements and trans-acting proteins that related to circRNA splicing and maturation in cancer.
Collapse
Affiliation(s)
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China;
| |
Collapse
|
20
|
Chen L, Sun Z, Xu H, Xie Q, Qi M, Tian X, Wang T. Emerging roles of circular RNAs in thyroid cancer. Exp Cell Res 2021; 404:112626. [PMID: 34023393 DOI: 10.1016/j.yexcr.2021.112626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 11/30/2022]
Abstract
As the most common endocrine-related malignant tumor, the prevalence of thyroid cancer (TC) has soared strikingly over the past thirty years then verged to stabilization or even descension temporally. Distributed in a cell-specific manner, circular RNAs (circRNAs) is a novel class of non-coding RNAs characterized by its covalently closed loop without 5'-terminal cap and 3'-terminal poly A tail, which guarantee its distinctive evolutionary conservation and exonucleases resistance. Emerging evidence indicates that circRNA participates in the pathogenesis and carcinogenesis of several cancers including thyroid cancer. In this review, we concentrated on the connection between circRNAs and thyroid cancer so as to obtain a more profound understanding. We aim to discuss this relationship between TC and circRNAs by summarizing the effect of various circRNAs on tumor biological behaviors and clinical application, and systematically outlook the conceivable application of circRNAs in TC diagnosis and therapy.
Collapse
Affiliation(s)
- Lin Chen
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Zhigang Sun
- Department of Colorectal Surgery and State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Hao Xu
- Department of Thyroid and Breast Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| | - Qiuping Xie
- Department of Thyroid Surgery, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, Zhejiang, 310009, China.
| | - Ming Qi
- Department of Thyroid and Breast Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| | - Xingsong Tian
- Department of Thyroid and Breast Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| | - Tiantian Wang
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Thyroid and Breast Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Department of Thyroid Surgery, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
21
|
Rausch JW, Heinz WF, Payea MJ, Sherpa C, Gorospe M, Le Grice SFJ. Characterizing and circumventing sequence restrictions for synthesis of circular RNA in vitro. Nucleic Acids Res 2021; 49:e35. [PMID: 33406226 DOI: 10.1093/nar/gkaa1256] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/27/2020] [Accepted: 12/18/2020] [Indexed: 01/10/2023] Open
Abstract
Just as eukaryotic circular RNA (circRNA) is a product of intracellular backsplicing, custom circRNA can be synthesized in vitro using a transcription template in which transposed halves of a split group I intron flank the sequence of the RNA to be circularized. Such permuted intron-exon (PIE) constructs have been used to produce circRNA versions of ribozymes, mimics of viral RNA motifs, a streptavidin aptamer, and protein expression vectors for genetic engineering and vaccine development. One limitation of this approach is the obligatory incorporation of small RNA segments (E1 and E2) into nascent circRNA at the site of end-joining. This restriction may preclude synthesis of small circRNA therapeutics and RNA nanoparticles that are sensitive to extraneous sequence, as well as larger circRNA mimics whose sequences must precisely match those of the native species on which they are modelled. In this work, we used serial mutagenesis and in vitro selection to determine how varying E1 and E2 sequences in a thymidylate synthase (td) group I intron PIE transcription template construct affects circRNA synthesis yield. Based on our collective findings, we present guidelines for the design of custom-tailored PIE transcription templates from which synthetic circRNAs of almost any sequence may be efficiently synthesized.
Collapse
Affiliation(s)
- Jason W Rausch
- Basic Research Laboratory, National Cancer Institute, NIH, Frederick, MD 21702, USA
| | - William F Heinz
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Matthew J Payea
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Chringma Sherpa
- Basic Research Laboratory, National Cancer Institute, NIH, Frederick, MD 21702, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Stuart F J Le Grice
- Basic Research Laboratory, National Cancer Institute, NIH, Frederick, MD 21702, USA
| |
Collapse
|
22
|
Belter A, Popenda M, Sajek M, Woźniak T, Naskręt-Barciszewska MZ, Szachniuk M, Jurga S, Barciszewski J. A new molecular mechanism of RNA circularization and the microRNA sponge formation. J Biomol Struct Dyn 2020; 40:3038-3045. [PMID: 33200684 DOI: 10.1080/07391102.2020.1844802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A new mechanism of RNA circularization driven by specific binding of miRNAs is described. We identified the 71 CUUCC pentanucleotide motifs distributed regularly throughout the entire molecule of CDR1as RNA that bind to 71 miRNAs through their seed sequence GGAAG. The sequential binding of miR-7 RNAs (71 molecules) brings both ends of CDR1as RNA (1 molecule) together and stimulate phosphodiester bond formation between nucleotides C1 and A1299 at the 5' and 3' end, respectively. The binding of miRNAs to CDR1as RNA results in the unique complex formation, which shows three specific structural domains: (i) two short helixes with an internal loop, (ii) the hinge, and (iii) the triple-helix. The proposed mechanism explains specific RNA circularization and its function as a miRNAs sponge. Furthermore, the existing wet experimental data on the interaction of CDR1as RNA with miR-7 fully supports our observation. Although miR-671 shows the same seed sequence as miR-7, it forms an almost perfect double helix with CDR1as RNA and induces the cleavage of CDR1as, but does not stimulate circularization. To check how common is the proposed mechanism among circular RNAs, we analyzed the most recent circAtlas database counting almost 1.1 million sequences. It turned out that there are a huge number of circRNAs, which showed miRNAs seed binding sequences distributed through the whole circRNA sequences and prove that circularization of linear transcript is miRNA dependent.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Agnieszka Belter
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Mariusz Popenda
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Marcin Sajek
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Tomasz Woźniak
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | | | - Marta Szachniuk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland.,Institute of Computing Science, Poznan University of Technology, Piotrowo, Poznań, Poland
| | - Stefan Jurga
- NanoBioMedical Centre, Adam Mickiewicz University, Poznań, Poland
| | - Jan Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland.,NanoBioMedical Centre, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
23
|
Herrán A, Colmenar JM, Duarte A. An efficient metaheuristic for the K-page crossing number minimization problem. Knowl Based Syst 2020. [DOI: 10.1016/j.knosys.2020.106352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Ottesen EW, Singh RN. Characteristics of circular RNAs generated by human Survival Motor Neuron genes. Cell Signal 2020; 73:109696. [PMID: 32553550 PMCID: PMC7387165 DOI: 10.1016/j.cellsig.2020.109696] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023]
Abstract
Circular RNAs (circRNAs) belong to a diverse class of stable RNAs expressed in all cell types. Their proposed functions include sponging of microRNAs (miRNAs), sequestration and trafficking of proteins, assembly of multimeric complexes, production of peptides, and regulation of transcription. Backsplicing due to RNA structures formed by an exceptionally high number of Alu repeats lead to the production of a vast repertoire of circRNAs by human Survival Motor Neuron genes, SMN1 and SMN2, that code for SMN, an essential multifunctional protein. Low levels of SMN due to deletion or mutation of SMN1 result in spinal muscular atrophy (SMA), a major genetic disease of infants and children. Mild SMA is also recorded in adult population, expanding the spectrum of the disease. Here we review SMN circRNAs with respect to their biogenesis, sequence features, and potential functions. We also discuss how SMN circRNAs could be exploited for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Eric W Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| | - Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America.
| |
Collapse
|
25
|
Pu Z, Xu M, Yuan X, Xie H, Zhao J. Circular RNA circCUL3 Accelerates the Warburg Effect Progression of Gastric Cancer through Regulating the STAT3/HK2 Axis. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:310-318. [PMID: 33230436 PMCID: PMC7527579 DOI: 10.1016/j.omtn.2020.08.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023]
Abstract
The Warburg effect is a significant hallmark of gastric cancer (GC), and increasing evidence emphasizes the crucial role of circular RNAs (circRNAs) in GC tumorigenesis. However, the precise molecular mechanisms by which circRNAs drive the GC Warburg effect are still elusive. The present study was designed to unveil the roles of circRNAs and the corresponding potential mechanism. High-regulated expression of circCUL3 was observed in both GC tissues and cell lines. Clinically, the high expression of circCUL3 was closely correlated with advanced clinical stage and overall survival in GC patients. Functionally, cellular experimental investigations demonstrated that circCUL3 promoted the proliferation, glucose consumption, lactate production, ATP quantity, and extracellular acidification rate (ECAR) of GC cells. In vivo, circCUL3 knockdown repressed tumor growth. Mechanistic analysis demonstrated that circCUL3 promoted signal transducer and activator of transcription (STAT)3 expression through sponging miR-515-5p; moreover, transcription factor STAT3 accelerated the transcriptional level of hexokinase 2 (HK2). In summary, the present findings provide mechanistic insights into circCUL3/miR-515-5p/STAT3/HK2 axis regulation on the GC Warburg effect, providing a novel possibility for an understanding of GC pathogenesis.
Collapse
Affiliation(s)
- Zhichen Pu
- Department of Drug Clinical Evaluation Center, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Maodi Xu
- Department of Drug Clinical Evaluation Center, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Xiaolong Yuan
- Department of Pharmacy, Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, China.,Vascular Diseases Research Center of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Haitang Xie
- Department of Drug Clinical Evaluation Center, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Jun Zhao
- Department of Gastrointestinal Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, China
| |
Collapse
|
26
|
Singh NN, Ottesen EW, Singh RN. A survey of transcripts generated by spinal muscular atrophy genes. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2020; 1863:194562. [PMID: 32387331 PMCID: PMC7302838 DOI: 10.1016/j.bbagrm.2020.194562] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/01/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023]
Abstract
Human Survival Motor Neuron (SMN) genes code for SMN, an essential multifunctional protein. Complete loss of SMN is embryonic lethal, while low levels of SMN lead to spinal muscular atrophy (SMA), a major genetic disease of children and infants. Reduced levels of SMN are associated with the abnormal development of heart, lung, muscle, gastro-intestinal system and testis. The SMN loci have been shown to generate a vast repertoire of transcripts, including linear, back- and trans-spliced RNAs as well as antisense long noncoding RNAs. However, functions of the majority of these transcripts remain unknown. Here we review the nature of RNAs generated from the SMN loci and discuss their potential functions in cellular metabolism.
Collapse
Affiliation(s)
- Natalia N Singh
- Department of Biomedical Science, Iowa State University, Ames, IA, 50011, United States of America
| | - Eric W Ottesen
- Department of Biomedical Science, Iowa State University, Ames, IA, 50011, United States of America
| | - Ravindra N Singh
- Department of Biomedical Science, Iowa State University, Ames, IA, 50011, United States of America.
| |
Collapse
|
27
|
Zhang G, Deng Y, Liu Q, Ye B, Dai Z, Chen Y, Dai X. Identifying Circular RNA and Predicting Its Regulatory Interactions by Machine Learning. Front Genet 2020; 11:655. [PMID: 32849764 PMCID: PMC7396586 DOI: 10.3389/fgene.2020.00655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
Circular RNA (circRNA) is a closed long non-coding RNA (lncRNA) formed by covalently closed loops through back-splicing. Emerging evidence indicates that circRNA can influence cellular physiology through various molecular mechanisms. Thus, accurate circRNA identification and prediction of its regulatory information are critical for understanding its biogenesis. Although several computational tools based on machine learning have been proposed for circRNA identification, the prediction accuracy remains to be improved. Here, first we present circLGB, a machine learning-based framework to discriminate circRNA from other lncRNAs. circLGB integrates commonly used sequence-derived features and three new features containing adenosine to inosine (A-to-I) deamination, A-to-I density and the internal ribosome entry site. circLGB categorizes circRNAs by utilizing a LightGBM classifier with feature selection. Second, we introduce circMRT, an ensemble machine learning framework to systematically predict the regulatory information for circRNA, including their interactions with microRNA, the RNA binding protein, and transcriptional regulation. Feature sets including sequence-based features, graph features, genome context, and regulatory information features were modeled in circMRT. Experiments on public and our constructed datasets show that the proposed algorithms outperform the available state-of-the-art methods. circLGB is available at http://www.circlgb.com. Source codes are available at https://github.com/Peppags/circLGB-circMRT.
Collapse
Affiliation(s)
- Guishan Zhang
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China
| | - Yiyun Deng
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China
| | - Qingyu Liu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China
| | - Bingxu Ye
- Key Laboratory of Digital Signal and Image Processing of Guangdong Provincial, College of Engineering, Shantou University, Shantou, China
| | - Zhiming Dai
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Big Data Analysis and Processing, Sun Yat-sen University, Guangzhou, China
| | - Yaowen Chen
- Key Laboratory of Digital Signal and Image Processing of Guangdong Provincial, College of Engineering, Shantou University, Shantou, China
| | - Xianhua Dai
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| |
Collapse
|
28
|
Singh RN, Seo J, Singh NN. RNA in spinal muscular atrophy: therapeutic implications of targeting. Expert Opin Ther Targets 2020; 24:731-743. [PMID: 32538213 DOI: 10.1080/14728222.2020.1783241] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Spinal muscular atrophy (SMA) is caused by low levels of the Survival Motor Neuron (SMN) protein due to deletions of or mutations in the SMN1 gene. Humans carry another nearly identical gene, SMN2, which mostly produces a truncated and less stable protein SMNΔ7 due to predominant skipping of exon 7. Elevation of SMN upon correction of SMN2 exon 7 splicing and gene therapy have been proven to be the effective treatment strategies for SMA. AREAS COVERED This review summarizes existing and potential SMA therapies that are based on RNA targeting.We also discuss the mechanistic basis of RNA-targeting molecules. EXPERT OPINION The discovery of intronic splicing silencer N1 (ISS-N1) was the first major step towards developing the currently approved antisense-oligonucleotide (ASO)-directed therapy (SpinrazaTM) based on the correction of exon 7 splicing of the endogenous SMN2pre-mRNA. Recently, gene therapy (Zolgensma) has become the second approved treatment for SMA. Small compounds (currently in clinical trials) capable of restoring SMN2 exon 7 inclusion further expand the class of the RNA targeting molecules for SMA therapy. Endogenous RNA targets, such as long non-coding RNAs, circular RNAs, microRNAs and ribonucleoproteins, could be potentially exploited for developing additional SMA therapies.
Collapse
Affiliation(s)
- Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University , Ames, IA, USA
| | - Joonbae Seo
- Department of Biomedical Sciences, Iowa State University , Ames, IA, USA
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University , Ames, IA, USA
| |
Collapse
|
29
|
Baralle FE, Singh RN, Stamm S. RNA structure and splicing regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194448. [PMID: 31730825 DOI: 10.1016/j.bbagrm.2019.194448] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Francisco E Baralle
- Italian Liver Disease Foundation (FIF), Building Q AREA Science Park, Basovizza Campus ss14, Km 163,5, 34149 Trieste, Italy
| | - Ravindra N Singh
- Iowa State University, Department of Biomedical Science, 2034 Veterinary Medicine, Ames, IA 50011, United States.
| | - Stefan Stamm
- University of Kentucky, Department of Molecular and Cellular Biochemistry, College of Medicine, B159 Biomedical Biological Sciences Research Bldg. 741 South Limestone, Lexington, KY 40536, United States
| |
Collapse
|