1
|
Munoff NJ, Zeberl BJ, Palmer MA, Decatur WA, Walker BM, Adala JD, Szemere ZK, Fakhouri AM, Knutson BA. Specific DNA features of the RNA polymerase I core promoter element targeted by core factor. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2025; 1868:195088. [PMID: 40216226 DOI: 10.1016/j.bbagrm.2025.195088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/08/2025] [Accepted: 04/06/2025] [Indexed: 04/20/2025]
Abstract
RNA polymerase I (Pol I) is essential for ribosomal RNA (rRNA) synthesis, driving ribosome biogenesis in eukaryotes. Transcription initiation by Pol I requires core factor (CF) binding to the core element (CE) of the ribosomal DNA (rDNA) promoter. Despite structural conservation across species, significant sequence variability suggests CF recognizes DNA through structural features rather than specific sequences. We investigated CF's DNA binding preferences to elucidate the role of DNA structural properties in CE recognition. Analysis of CE sequences from 35 fungal species revealed conserved structural features, notably a rigid AT-rich patch at positions -22 to -20 and a conserved G base pair at position -24. Competition-based electrophoretic mobility shift assays (EMSA) with single base-pair substitutions showed CF tolerates mutations at many positions but is sensitive to changes in the AT-rich patch. Loss of CF binding correlated with alterations in DNA structural properties such as increased bendability, decreased curvature, widened minor groove width, and altered helix twist. In vitro SELEX experiments identified novel CE sequences preferentially bound by CF, exhibiting increased GC content, higher bendability, and decreased curvature despite lacking sequence conservation. Classification based on bendability profiles revealed CF preferentially binds bendable sequences. In vivo selection assays confirmed these findings, demonstrating consistent CF binding preferences within a cellular context. Our results indicate that CF recognizes and binds to the CE primarily through specific DNA structural features rather than nucleotide sequences. Structural properties like bendability, curvature, and minor groove width are critical determinants of CF binding, facilitating effective Pol I transcription initiation.
Collapse
Affiliation(s)
- Nathan J Munoff
- SUNY Upstate Medical University, Department of Biochemistry and Molecular Biology, 750 East Adams Street, Syracuse, NY 13210, United States of America
| | - Brian J Zeberl
- SUNY Upstate Medical University, Department of Biochemistry and Molecular Biology, 750 East Adams Street, Syracuse, NY 13210, United States of America
| | - Matthew A Palmer
- SUNY Upstate Medical University, Department of Biochemistry and Molecular Biology, 750 East Adams Street, Syracuse, NY 13210, United States of America
| | - Wayne A Decatur
- SUNY Upstate Medical University, Department of Biochemistry and Molecular Biology, 750 East Adams Street, Syracuse, NY 13210, United States of America
| | - Bridget M Walker
- SUNY Upstate Medical University, Department of Biochemistry and Molecular Biology, 750 East Adams Street, Syracuse, NY 13210, United States of America
| | - Jyoti D Adala
- SUNY Upstate Medical University, Department of Biochemistry and Molecular Biology, 750 East Adams Street, Syracuse, NY 13210, United States of America
| | - Zsuzsa K Szemere
- SUNY Upstate Medical University, Department of Biochemistry and Molecular Biology, 750 East Adams Street, Syracuse, NY 13210, United States of America
| | - Aula M Fakhouri
- SUNY Upstate Medical University, Department of Biochemistry and Molecular Biology, 750 East Adams Street, Syracuse, NY 13210, United States of America
| | - Bruce A Knutson
- SUNY Upstate Medical University, Department of Biochemistry and Molecular Biology, 750 East Adams Street, Syracuse, NY 13210, United States of America.
| |
Collapse
|
2
|
Daiß JL, Griesenbeck J, Tschochner H, Engel C. Synthesis of the ribosomal RNA precursor in human cells: mechanisms, factors and regulation. Biol Chem 2023; 404:1003-1023. [PMID: 37454246 DOI: 10.1515/hsz-2023-0214] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
The ribosomal RNA precursor (pre-rRNA) comprises three of the four ribosomal RNAs and is synthesized by RNA polymerase (Pol) I. Here, we describe the mechanisms of Pol I transcription in human cells with a focus on recent insights gained from structure-function analyses. The comparison of Pol I-specific structural and functional features with those of other Pols and with the excessively studied yeast system distinguishes organism-specific from general traits. We explain the organization of the genomic rDNA loci in human cells, describe the Pol I transcription cycle regarding structural changes in the enzyme and the roles of human Pol I subunits, and depict human rDNA transcription factors and their function on a mechanistic level. We disentangle information gained by direct investigation from what had apparently been deduced from studies of the yeast enzymes. Finally, we provide information about how Pol I mutations may contribute to developmental diseases, and why Pol I is a target for new cancer treatment strategies, since increased rRNA synthesis was correlated with rapidly expanding cell populations.
Collapse
Affiliation(s)
- Julia L Daiß
- Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Joachim Griesenbeck
- Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Herbert Tschochner
- Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Christoph Engel
- Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
3
|
Sanchez-Martin V, Soriano M, Garcia-Salcedo JA. Quadruplex Ligands in Cancer Therapy. Cancers (Basel) 2021; 13:3156. [PMID: 34202648 PMCID: PMC8267697 DOI: 10.3390/cancers13133156] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 02/07/2023] Open
Abstract
Nucleic acids can adopt alternative secondary conformations including four-stranded structures known as quadruplexes. To date, quadruplexes have been demonstrated to exist both in human chromatin DNA and RNA. In particular, quadruplexes are found in guanine-rich sequences constituting G-quadruplexes, and in cytosine-rich sequences forming i-Motifs as a counterpart. Quadruplexes are associated with key biological processes ranging from transcription and translation of several oncogenes and tumor suppressors to telomeres maintenance and genome instability. In this context, quadruplexes have prompted investigations on their possible role in cancer biology and the evaluation of small-molecule ligands as potential therapeutic agents. This review aims to provide an updated close-up view of the literature on quadruplex ligands in cancer therapy, by grouping together ligands for DNA and RNA G-quadruplexes and DNA i-Motifs.
Collapse
Affiliation(s)
- Victoria Sanchez-Martin
- Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain;
- Microbiology Unit, Biosanitary Research Institute IBS, University Hospital Virgen de las Nieves, 18014 Granada, Spain
- Department of Biochemistry, Molecular Biology III and Immunology, University of Granada, 18016 Granada, Spain
| | - Miguel Soriano
- Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain;
- Centre for Intensive Mediterranean Agrosystems and Agri-Food Biotechnology (CIAMBITAL), University of Almeria, 04001 Almeria, Spain
| | - Jose Antonio Garcia-Salcedo
- Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain;
- Microbiology Unit, Biosanitary Research Institute IBS, University Hospital Virgen de las Nieves, 18014 Granada, Spain
| |
Collapse
|
4
|
Mars JC, Tremblay MG, Valere M, Sibai DS, Sabourin-Felix M, Lessard F, Moss T. The chemotherapeutic agent CX-5461 irreversibly blocks RNA polymerase I initiation and promoter release to cause nucleolar disruption, DNA damage and cell inviability. NAR Cancer 2020; 2:zcaa032. [PMID: 33196044 PMCID: PMC7646227 DOI: 10.1093/narcan/zcaa032] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 01/02/2023] Open
Abstract
In the search for drugs to effectively treat cancer, the last 10 years have seen a resurgence of interest in targeting ribosome biogenesis. CX-5461 is a potential inhibitor of ribosomal RNA synthesis that is now showing promise in phase I trials as a chemotherapeutic agent for a range of malignancies. Here, we show that CX-5461 irreversibly inhibits ribosomal RNA transcription by arresting RNA polymerase I (RPI/Pol1/PolR1) in a transcription initiation complex. CX-5461 does not achieve this by preventing formation of the pre-initiation complex nor does it affect the promoter recruitment of the SL1 TBP complex or the HMGB-box upstream binding factor (UBF/UBTF). CX-5461 also does not prevent the subsequent recruitment of the initiation-competent RPI–Rrn3 complex. Rather, CX-5461 blocks promoter release of RPI–Rrn3, which remains irreversibly locked in the pre-initiation complex even after extensive drug removal. Unexpectedly, this results in an unproductive mode of RPI recruitment that correlates with the onset of nucleolar stress, inhibition of DNA replication, genome-wide DNA damage and cellular senescence. Our data demonstrate that the cytotoxicity of CX-5461 is at least in part the result of an irreversible inhibition of RPI transcription initiation and hence are of direct relevance to the design of improved strategies of chemotherapy.
Collapse
Affiliation(s)
- Jean-Clément Mars
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre (CRCHU de Québec-Université Laval), Québec, QC, G1R 3S3, Canada
| | - Michel G Tremblay
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre (CRCHU de Québec-Université Laval), Québec, QC, G1R 3S3, Canada
| | - Mélissa Valere
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre (CRCHU de Québec-Université Laval), Québec, QC, G1R 3S3, Canada
| | - Dany S Sibai
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre (CRCHU de Québec-Université Laval), Québec, QC, G1R 3S3, Canada
| | - Marianne Sabourin-Felix
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre (CRCHU de Québec-Université Laval), Québec, QC, G1R 3S3, Canada
| | - Frédéric Lessard
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre (CRCHU de Québec-Université Laval), Québec, QC, G1R 3S3, Canada
| | - Tom Moss
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre (CRCHU de Québec-Université Laval), Québec, QC, G1R 3S3, Canada
| |
Collapse
|
5
|
Pilsl M, Engel C. Structural basis of RNA polymerase I pre-initiation complex formation and promoter melting. Nat Commun 2020; 11:1206. [PMID: 32139698 PMCID: PMC7057995 DOI: 10.1038/s41467-020-15052-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 02/15/2020] [Indexed: 11/09/2022] Open
Abstract
Transcription of the ribosomal RNA precursor by RNA polymerase (Pol) I is a prerequisite for the biosynthesis of ribosomes in eukaryotes. Compared to Pols II and III, the mechanisms underlying promoter recognition, initiation complex formation and DNA melting by Pol I substantially diverge. Here, we report the high-resolution cryo-EM reconstruction of a Pol I early initiation intermediate assembled on a double-stranded promoter scaffold that prevents the establishment of downstream DNA contacts. Our analyses demonstrate how efficient promoter-backbone interaction is achieved by combined re-arrangements of flexible regions in the ‘core factor’ subunits Rrn7 and Rrn11. Furthermore, structure-function analysis illustrates how destabilization of the melted DNA region correlates with contraction of the polymerase cleft upon transcription activation, thereby combining promoter recruitment with DNA-melting. This suggests that molecular mechanisms and structural features of Pol I initiation have co-evolved to support the efficient melting, initial transcription and promoter clearance required for high-level rRNA synthesis. RNA polymerase I (Pol I) catalyses the transcription of ribosomal RNA precursors, and its transcription initiation mechanism differs from that of Pol II and Pol III. Here the authors present the cryo-EM structure of a trapped early intermediate stage of promoter-recruited Pol I, which reveals the interactions of the basal rDNA transcription machinery with the native promoter, and discuss the mechanistic implications.
Collapse
Affiliation(s)
- Michael Pilsl
- Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Christoph Engel
- Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
6
|
Sadian Y, Baudin F, Tafur L, Murciano B, Wetzel R, Weis F, Müller CW. Molecular insight into RNA polymerase I promoter recognition and promoter melting. Nat Commun 2019; 10:5543. [PMID: 31804486 PMCID: PMC6895186 DOI: 10.1038/s41467-019-13510-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/13/2019] [Indexed: 12/21/2022] Open
Abstract
RNA polymerase I (Pol I) assembles with core factor (CF) and Rrn3 on the rDNA core promoter for transcription initiation. Here, we report cryo-EM structures of closed, intermediate and open Pol I initiation complexes from 2.7 to 3.7 Å resolution to visualize Pol I promoter melting and to structurally and biochemically characterize the recognition mechanism of Pol I promoter DNA. In the closed complex, double-stranded DNA runs outside the DNA-binding cleft. Rotation of CF and upstream DNA with respect to Pol I and Rrn3 results in the spontaneous loading and opening of the promoter followed by cleft closure and positioning of the Pol I A49 tandem winged helix domain (tWH) onto DNA. Conformational rearrangement of A49 tWH leads to a clash with Rrn3 to initiate complex disassembly and promoter escape. Comprehensive insight into the Pol I transcription initiation cycle allows comparisons with promoter opening by Pol II and Pol III. RNA polymerase I (Pol I) catalyses the transcription of pre-ribosomal RNA and for transcription initiation Pol I assembles with core factor and Rrn3 on the rDNA core promoter. Here the authors provide insights into the molecular mechanism of promoter opening by Pol I by determining the cryo-EM structures of two closed, two intermediate and two open Pol I pre-initiation complexes.
Collapse
Affiliation(s)
- Yashar Sadian
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117, Heidelberg, Germany.,Bioimaging Center, University of Geneva, 30, Quai Ernest-Ansermet 4, CH-1211, Geneva, Switzerland
| | - Florence Baudin
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Lucas Tafur
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117, Heidelberg, Germany.,Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, 69120, Heidelberg, Germany.,Department of Molecular Biology, University of Geneva Sciences III, 30, Quai Ernest-Ansermet 4, CH-1211, Geneva, Switzerland
| | - Brice Murciano
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Rene Wetzel
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Felix Weis
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Christoph W Müller
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117, Heidelberg, Germany.
| |
Collapse
|