1
|
Chen Q, Chen Y, Zheng Q. The RNA-binding protein LSM family regulating reproductive development via different RNA metabolism. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167808. [PMID: 40139411 DOI: 10.1016/j.bbadis.2025.167808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
The LSM (Like-Sm) protein family, characterized by highly conserved LSM domains, is integral to ribonucleic acid (RNA) metabolism. Ubiquitously present in both eukaryotes and select prokaryotes, these proteins bind to RNA molecules with high specificity through their LSM domains. They can also form ring-shaped complexes with other proteins, thereby facilitating various fundamental cellular processes such as mRNA degradation, splicing, and ribosome biogenesis. LSM proteins play crucial roles in gametogenesis, early embryonic development, sex determination, gonadal maturation, and reproductive system formation. In pathological conditions, the absence of LSM14B leads to arrest of oocytes at mid-meiosis, downregulation of LSM4 expression is associated with abnormal spermatogenesis, and aberrant expression of LSM1 protein is linked to the occurrence and progression of breast cancer. This review focuses on the recent advances in the functional research of LSM proteins in reproduction.
Collapse
Affiliation(s)
- Qin Chen
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518033, PR China
| | - Ying Chen
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518033, PR China
| | - Qingliang Zheng
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518033, PR China.
| |
Collapse
|
2
|
Mohanan G, Roy R, Malka-Mahieu H, Lamba S, Fabbri L, Kalia S, Biswas A, Martineau S, M Labbé C, Vagner S, Rajyaguru PI. Genotoxic stress triggers Scd6-dependent regulation of translation to modulate the DNA damage response. EMBO Rep 2025:10.1038/s44319-025-00443-3. [PMID: 40275106 DOI: 10.1038/s44319-025-00443-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/26/2025] Open
Abstract
The role of mRNA translation and decay in the genotoxic stress response remains poorly explored. Here, we identify the role of yeast RGG motif-containing RNA binding protein Scd6 and its human ortholog LSM14A in genotoxic stress response. Scd6 localizes to cytoplasmic puncta upon cell treatment with various genotoxic agents. Scd6 genetically interacts with SRS2, a DNA helicase with an anti-recombination role in DNA damage repair under HU stress. Scd6 directly interacts with the SRS2 mRNA to repress its translation in cytoplasmic granules upon HU stress in an eIF4G1-independent manner. Scd6-SRS2 interaction is modulated by arginine methylation and the LSm-domain of Scd6, which acts as a cis-regulator of Scd6 arginine methylation. LSM14A regulates the translation of mRNAs encoding key NHEJ (Non-homologous end-joining) proteins such as RTEL1 (SRS2 functional homolog) and LIG4. NHEJ activity in yeast and mammalian cells is regulated by Scd6 and LSM14A, respectively. Overall, this report unveils the role of RNA binding proteins in regulating the translation of specific mRNAs coding for DNA damage response proteins upon genotoxic stress.
Collapse
Affiliation(s)
- Gayatri Mohanan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Raju Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
- University of Pennsylvania, Philadelphia, PA, USA
| | - Hélène Malka-Mahieu
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, F-91405, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, INSERM U1278, F-91405, Orsay, France
| | - Swati Lamba
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Lucilla Fabbri
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, F-91405, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, INSERM U1278, F-91405, Orsay, France
| | - Sidhant Kalia
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, F-91405, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, INSERM U1278, F-91405, Orsay, France
| | - Anusmita Biswas
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Sylvain Martineau
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, F-91405, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, INSERM U1278, F-91405, Orsay, France
| | - Céline M Labbé
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, F-91405, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, INSERM U1278, F-91405, Orsay, France
| | - Stéphan Vagner
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, F-91405, Orsay, France.
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, INSERM U1278, F-91405, Orsay, France.
| | | |
Collapse
|
3
|
Togra C, Dhage R, Rajyaguru PI. Tdh3 and Rom2 are functional modulators of a conserved condensate-resident RNA-binding protein, Scd6, in Saccharomyces cerevisiae. Genetics 2024; 228:iyae127. [PMID: 39093296 DOI: 10.1093/genetics/iyae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/07/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
Arginine-glycine-glycine motif proteins play a crucial role in determining mRNA fate. Suppressor of clathrin deficiency 6 (Scd6) is a conserved arginine-glycine-glycine motif containing ribonucleoprotein (RNP) condensate-resident, translation repressor, and decapping activator protein in Saccharomyces cerevisiae. Identifying protein factors that can modulate Scd6 function is critical to understanding the regulation of mRNA fate by Scd6. In this study, using an approach that combined mRNA tethering assay with flow cytometry, we screened 50 genes for their role in modulating the translation repression activity of Scd6. We identified 8 conserved modulators with human homologs. Of these, we further characterized in detail guanine nucleotide exchange factor Rho1 multicopy suppressor 2 (Rom2) and glycolytic enzyme triose phosphate dehydrogenase 3 (Tdh3), which, respectively, impede and promote translation repression activity of Scd6. Our study reveals that Rom2 negatively regulates the arginine methylation of Scd6 and antagonizes its localization to P-bodies. Tdh3, on the other hand, promotes Scd6 interaction with Hmt1, thereby promoting the arginine methylation of Scd6 and enhanced eIF4G1 interaction, which is known to promote its repression activity. Identifying these novel modulators provides exciting new insights into the role of a metabolic enzyme of the glycolytic pathway and guanine nucleotide exchange factor implicated in the cell wall integrity pathway in regulating Scd6 function and, thereby, cytoplasmic mRNA fate.
Collapse
Affiliation(s)
- Chitra Togra
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Riya Dhage
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
4
|
Garg M, Roy D, Rajyaguru PI. Low complexity RGG-motif containing proteins Scd6 and Psp2 act as suppressors of clathrin heavy chain deficiency. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119327. [PMID: 35901970 DOI: 10.1016/j.bbamcr.2022.119327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Clathrin, made up of the heavy- and light-chains, constitutes one of the most abundant proteins involved in intracellular protein trafficking and endocytosis. YPR129W, which encodes RGG-motif containing translation repressor was identified as a part of the multi-gene construct (SCD6) that suppressed clathrin deficiency. However, the contribution of YPR129W alone in suppressing clathrin deficiency has not been documented. This study identifies YPR129W as a necessary and sufficient gene in a multi-gene construct SCD6 that suppresses clathrin deficiency. Importantly, we also identify cytoplasmic RGG-motif protein encoding gene PSP2 as another novel suppressor of clathrin deficiency. Detailed domain analysis of the two suppressors reveals that the RGG-motif of both Scd6 and Psp2 is important for suppressing clathrin deficiency. Interestingly, the endocytosis function of clathrin heavy chain assayed by internalization of GFP-Snc1 and α-factor secretion activity are not complemented by either Scd6 or Psp2. We further observe that inhibition of TORC1 compromises the suppression activity of both SCD6 and PSP2 to different extent, suggesting that two suppressors are differentially regulated. Scd6 granules increased based on its RGG-motif upon Chc1 depletion. Strikingly, Psp2 overexpression increased the abundance of ubiquitin-conjugated proteins in Chc1 depleted cells in its RGG-motif dependent manner and also decreased the accumulation of GFP-Atg8 foci. Overall based on our results using SCD6 and PSP2, we identify a novel role of RGG-motif containing proteins in suppressing clathrin deficiency. Since both the suppressors are RNA-binding proteins, this study opens an exciting avenue for exploring the connection between clathrin function and post-transcriptional gene control processes.
Collapse
Affiliation(s)
- Mani Garg
- Department of Biochemistry, Indian Institute of Science, C V Raman road, Bangalore 560012, India
| | - Debadrita Roy
- Department of Biochemistry, Indian Institute of Science, C V Raman road, Bangalore 560012, India
| | - Purusharth I Rajyaguru
- Department of Biochemistry, Indian Institute of Science, C V Raman road, Bangalore 560012, India.
| |
Collapse
|
5
|
Bhatter N, Iyyappan R, Mohanan G, Rajyaguru PI. Exploring the role of RRM domains and conserved aromatic residues in RGG motif of eIF4G-binding translation repressor protein Sbp1. Wellcome Open Res 2021; 3:102. [PMID: 32175478 PMCID: PMC7059846 DOI: 10.12688/wellcomeopenres.14709.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2021] [Indexed: 11/20/2022] Open
Abstract
Background: RNA binding proteins play crucial role in determining if a given mRNA will be translated, stored, or degraded. Sbp1 is an RGG-motif containing protein that is implicated in affecting mRNA decapping and translation. Sbp1 represses translation by binding eIF4G1 through its RGG-motif and activates decapping when overexpressed. In this report, we have assessed the genetic interaction of Sbp1 with decapping activators such as Dhh1, Pat1, and Scd6. We have further analyzed the importance of different domains and specific conserved residues of Sbp1 in its ability to cause over-expression mediated growth defect. Method: Sequence alignment was performed to identify conserved aromatic residues to be mutated. Using site-directed mutagenesis several point mutations and domain deletions were created in Sbp1 expressed under a galactose-inducible promoter. The mutants were tested for their ability to cause growth defect upon over-expression. The ability of Sbp1 to affect over-expression mediated growth defect of other decapping activators was tested using growth assay. Live cell imaging was done to study localization of Sbp1 and its RRM-deletion mutants to RNA granules upon glucose starvation. Results: Mutation of several aromatic residues in the RGG-motif and that of the phosphorylation sites in the RRM domain of Sbp1 did not affect the growth defect phenotype. Deletion of another eIF4G1-binding RGG-motif protein Scd6 does not affect the ability of Sbp1 to cause growth defect. Moreover, absence of Sbp1 did not affect the growth defect phenotypes observed upon overexpression of decapping activators Dhh1 and Pat1. Strikingly deletion of both the RRM domains (RRM1 and RRM2) and not the RNP motifs within them compromised the growth defect phenotype. Sbp1 mutant lacking both RRM1 and RRM2 was highly defective in localizing to RNA granules. Conclusion: This study identifies an important role of RRM domains independent of the RNP motif in Sbp1 function.
Collapse
Affiliation(s)
- Nupur Bhatter
- Department of Biochemistry, Indian Institute of Science, CV Raman Road, Bangalore, 560012, India
| | - Rajan Iyyappan
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Gayatri Mohanan
- Department of Biochemistry, Indian Institute of Science, CV Raman Road, Bangalore, 560012, India
| | - Purusharth I Rajyaguru
- Department of Biochemistry, Indian Institute of Science, CV Raman Road, Bangalore, 560012, India
| |
Collapse
|
6
|
Bhatter N, Iyyappan R, Rajyaguru PI. Exploring the role of RRM domains and conserved aromatic residues in RGG motif of eIF4G-binding translation repressor protein Sbp1. Wellcome Open Res 2020; 3:102. [DOI: 10.12688/wellcomeopenres.14709.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2020] [Indexed: 11/20/2022] Open
Abstract
Background: Mechanisms of mRNA fate decisions play an important role in determining if a given mRNA will be translated, stored or degraded upon arrival to cytoplasm. Sbp1 is an important RGG-motif containing protein that is implicated in affecting mRNA decapping and translation. Sbp1 represses translation by binding eIF4G1 through its RGG-motif and activates decapping when overexpressed. In this report we have assessed the genetic interaction of Sbp1 with decapping activators such as Dhh1, Pat1 and Scd6. We have further analyzed the importance of different domains and specific conserved residues of Sbp1 in translation repression activity. Method: Sequence alignment was performed to identify conserved aromatic residues to be mutated. Using site-directed mutagenesis several point mutations and domain deletions was created in Sbp1 expressed under a galactose-inducible promoter. The mutants were tested for their ability to cause growth defect upon over-expression. The ability of Sbp1 to affect over expression mediated growth defect of other decapping activators was tested using growth assay. Live cell imaging was done to study localization of Sbp1 and its RRM-deletion mutants to RNA granules upon glucose starvation. Results: Mutation of several aromatic residues in the RGG-motif and that of the phosphorylation sites in the RRM domain of Sbp1 did not affect the growth defect phenotype. Deletion of another eIF4G1-binding RGG-motif protein Scd6 does not affect the ability of Sbp1 to cause growth defect. Moreover, absence of Sbp1 did not affect the growth defect phenotypes observed upon overexpression of decapping activators Dhh1 and Pat1. Strikingly deletion of both the RRM domains (RRM1 and RRM2) and not the RNP motifs within them compromised the growth defect phenotype. Sbp1 mutant lacking both RRM1 and RRM2 was highly defective in localizing to RNA granules. Conclusion: This study identifies an important role of RRM domains independent of RNP motif in Sbp1 repression activity.
Collapse
|